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Preface

Some twenty years ago I started my first job in the UK. This job involved a
commute by train, giving me about an hour a day to read without distraction.
Around about the same time I first heard about Structure and Interpretation
of Computer Programs, referred to as the “wizard book” and spoken of in
reverential terms. It sounded like the just the thing for a recent graduate
looking to become a better developer. I purchased a copy and spent the
journey reading it, doing most of the exercises in my head. Structure and
Interpretation of Computer Programs was already an old book at this time, and
it’s programming style was archaic. However it’s core concepts were timeless
and it’s fair to say it absolutely blew my mind, putting me on a path I’m still on
today.

Another notable stop on this path occured some ten years ago when Dave and
I started writing Scala with Cats. In Scala with Catswe attempted to explain the
core type classes found in the Cats library, and their use in building software.
I’m proud of the book we wrote together, but time and experience showed
that type classes are only a small piece of the puzzle of building software in a
functional programming style. We needed a much wider scope if we were to
showpeople how to effectively build softwarewith all the tools that functional
programming provides. Still, writing a book is a lot of work, and we were busy
with other projects, so Scala with Cats remained largely untouched for many
years.

Around 2020 I got the itch to return to Scala with Cats. My initial plan was
simply to update the book for Scala 3. Dave was busy with other projects so
I decided to go alone. As the writing got underway I realized I really wanted

i



ii

to cover the additional topics I thought were missing. If Scala with Cats was
a good book, I wanted to aim to write a great book; one that would contain
almost everything I had learned about building software. The title Scala with
Cats no longer fit the content, and hence I adopted a new name for what is
largely a new book. The result, Functional Programming Strategies in Scala with
Cats, is what you are reading now. I hope you find it useful, and I hope that
just maybe some young developer will find this book inspiring the same way
I found Structure and Interpretation of Computer Programs inspiring all those
years ago.

Preface from Scala with Cats

The aims of this book are two‐fold: to introduce monads, functors, and other
functional programming patterns as a way to structure program design, and to
explain how these concepts are implemented in Cats.

Monads, and related concepts, are the functional programming equivalent
of object‐oriented design patterns—architectural building blocks that turn up
over and over again in code. They differ from object‐oriented patterns in two
main ways:

• they are formally, and thus precisely, defined; and
• they are extremely (extremely) general.

This generality means they can be difficult to understand. Everyone finds
abstraction difficult. However, it is generality that allows concepts likemonads
to be applied in such a wide variety of situations.

In this bookwe aim to show the concepts in a number of differentways, to help
you build a mental model of how they work and where they are appropriate.
We have extended case studies, a simple graphical notation, many smaller
examples, and of course themathematical definitions. Between themwehope
you’ll find something that works for you.

Ok, let’s get started!

http://typelevel.org/cats


iii

Versions

This book is written for Scala 3.3.4 and Cats 2.10.0. Here is a minimal build.
sbt containing the relevant dependencies and settings¹:

scalaVersion := "3.3.4"

libraryDependencies +=

"org.typelevel" %% "cats-core" % "2.10.0"

scalacOptions ++= Seq(

"-Xfatal-warnings"

)

Template Projects

For convenience, we have created a Giter8 template to get you started. To
clone the template type the following:

$ sbt new scalawithcats/cats-seed.g8

This will generate a sandbox project with Cats as a dependency. See the
generated README.md for instructions on how to run the sample code and/or
start an interactive Scala console.

The cats-seed template is very minimal. If you’d prefer a more batteries‐
included starting point, check out Typelevel’s sbt-catalysts template:

$ sbt new typelevel/sbt-catalysts.g8

This will generate a project with a suite of library dependencies and compiler
plugins, together with templates for unit tests and documentation. See the
project pages for catalysts and sbt‐catalysts for more information.

¹We assume you are using SBT 1.0.0 or newer.

https://github.com/typelevel/catalysts
https://github.com/typelevel/sbt-catalysts
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Conventions Used in This Book

This book contains a lot of technical information and program code. We use
the following typographical conventions to reduce ambiguity and highlight
important concepts:

Typographical Conventions

New terms and phrases are introduced in italics. After their initial introduction
they are written in normal roman font.

Terms fromprogram code, filenames, and file contents, arewritten in monospace
font. Note that we do not distinguish between singular and plural forms. For
example, we might write String or Strings to refer to java.lang.String.

References to external resources are written as hyperlinks. References to API
documentation are written using a combination of hyperlinks and monospace
font, for example: scala.Option.

Source Code

Source code blocks are written as follows. Syntax is highlighted appropriately
where applicable:

object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

Most code passes through mdoc to ensure it compiles. mdoc uses the Scala
console behind the scenes, so we sometimes show console‐style output as
comments:

"Hello Cats!".toUpperCase

// res0: String = "HELLO CATS!"

https://underscore.io
http://www.scala-lang.org/api/current/scala/Option.html
https://github.com/scalameta/mdoc
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Callout Boxes

We use two types of callout box to highlight particular content:

Tip callouts indicate handy summaries, recipes, or best practices.

Advanced callouts provide additional information on corner cases or
underlying mechanisms. Feel free to skip these on your first read‐
through—come back to them later for extra information.

License

This work is licensed under CC BY‐SA 4.0. To view a copy of this license, visit
http://creativecommons.org/licenses/by‐sa/4.0/

Portions of this work are based on Scala with Cats by Dave Pereira‐Gurnell and
Noel Welsh, which is licensed under CC BY‐SA 3.0.

http://creativecommons.org/licenses/by-sa/4.0/
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Chapter 1

Functional Programming
Strategies

This is a book on strategies for creating code in a functional programming (FP)
style, seen through a Scala lens. If you understand most of the mechanics
of Scala, but feel there is something missing in your understanding of how
to use the language effectively, this book is for you. If you don’t know so
much Scala, but are prepared to learn it as part of learning about functional
programming, this book is also for you. It covers the usual functional
programming abstractions like monads and monoids, but more than that it
tries to teach you how to think like a functional programmer. It’s a book as
much about process as it is about the code that results from process, and in
particular it focuses on what I call metacognitive programming strategies.

I would guess most programmers would struggle to describe the process
they use to write code. Some might mention “test driven development”
and perhaps “pair programming”, but I wouldn’t expect much more from
the general programming population. Both the above techniques come
from eXtreme Programming, which dates to the late 90s, and you would
hope our field had added new knowledge in that time. But it’s not really
the fault of the developers—most of them haven’t been taught any explicit
process. Our industry certainly likes to talk about process, in the form of
agile, kanban boards, and so on, and in recent times a tremendous effort has

1
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spent on expanding those who are taught programming. However the actual
programming—the bit that produces the code that is the whole point of the
endeavour—is still largely treated as magic. It doesn’t have to be that way.

Functional programmers love fancy words for simple ideas, so it’s no surprise
I’m drawn to metacognitive programming strategies. Let’s unpack that phrase
to see what it means. Metacognition means thinking about thinking. A lot of
research has shown the benefits of metacognition in learning, and that it is an
important part of developing expertise. Metacognition is not just one thing—
it’s not sufficient to just tell someone to think about their thinking. Rather we
should expect metacognition to be a collection of different strategies, some
of which are general and some of which are domain specific. From this we
get the idea of metacognitive programming strategies—explicitly naming and
describing different thinking strategies that proficient programmers use.

I believe metacognitive programming strategies are useful for both beginners
and experts. For beginners we can make programming a more systematic
and repeatable process. Producing code no longer requires magic in the
majority of cases, but rather the application of some well defined steps. For
experts, the benefit is exactly the same. At least that is my experience (and
I believe I’ve been programming long enough to call myself an expert.) By
having an explicit process I can run it exactly the same way every day, which
makes my code simpler to write and read, and saves my brain cycles for more
important problems. In some ways this is an attempt to bring to programming
the benefit that process and standardization has brought to manufacturing,
particularly the “Toyota Way”. In Toyota’s process individuals are expected to
think about how their work is done and how it can be improved. This is, in
effect, metacognition for assembly lines. This is only possible if the actual
work itself does not require their full attention. The dramatic improvements
in productivity and quality in car manufacturing that Toyota pioneered speak
to the effectiveness of this approach. Software development is more varied
than car manufacturing but we should still expect some benefit, particularly
given the primitive state of our current industry.

The question then becomes: what metacognitive strategies can programmers
use? I believe that functional programming is particularly well suited to
answer this question. A major theme in functional programming research
is finding and naming useful code structures. Once we have discovered a
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useful abstraction we can get the programmer to ask themselves “would this
abstraction solve this problem?” This is essentially what the design patterns
community did, also back in the nineties, but there is an important difference.
The academic FP community strongly values formal models, which means that
the building blocks of FP have a precision that design patterns lack. However
there is more to process than categorizing the output. There is also the actual
process of how the code comes to be. Code doesn’t usually spring fully
formed from our keyboard, and in the iterative refinement of code we also
find structure. Here the academic FP community has less to say, but there is
a strong folklore of techniques such as “type driven development”

Over the last ten or so years of programming and teaching programming I’ve
collected a wide range of strategies. Some come from others (for example,
How to Design Programs and its many offshoots remain very influential for
me) and some I’ve found myself. Ultimately I don’t think anything here is new;
rather my contribution is in collecting and presenting these strategies as one
coherent whole.

1.1 Three Levels for Thinking About Code

Let’s start thinking about thinking about programming, with a model that
describes three different levels thatwe can use to think about code. The levels,
from highest to lowest, are paradigm, theory, and craft. Each level provides
guidance for the ones below.

The paradigm level refers to the programming paradigm, such as object‐
oriented or functional programming. You’re probably familiar with these
terms, but what exactly is a programming paradigm? To me, the core of a
programming paradigm is a set of principles that define, usually somewhat
loosely, the properties of good code. A paradigm is also, implicitly, a claim
that code that follows these principles will be better than code that does
not. For functional programming I believe these principles are composition
and reasoning. I’ll explain these shortly. Object‐oriented programmers might
point to, say, the SOLID principles as guiding their coding decisions.

The importance of the paradigm is that it provides criteria for choosing
between different implementation strategies. There are many possible

http://htdp.org/
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solutions for any programming problem, and we can use the principles in the
paradigm to decide which approach to take. For example, if we’re a functional
programmer we can consider how easily we can reason about a particular
implementation, or how composable it is. Without the paradigm we have no
basis for making a choice.

The theory level translates the broad principles of the paradigm to specificwell
defined techniques that apply to many languages within the paradigm. We are
still, however, at a level above the code. Design patterns are an example in
the object‐oriented world. Algebraic data types are an example in functional
programming. Most languages that are in the functional programming
paradigm, such as Haskell and O’Caml, support algebraic data types, as do
many languages that straddle multiple paradigms, such as Rust, Scala, and
Swift.

The theory level is where we find most of our programming strategies.

At the craft level we get to actual code, and the language specific nuance that
goes into it. An example in Scala is the implementation of algebraic data types
in terms of sealed trait and final case class in Scala 2, or enum in Scala 3.
There are many concerns at this level that are important for writing idiomatic
code, such as placing constructors on companion objects in Scala, that are not
relevant at the higher levels.

In the next section I’ll describe the functional programming paradigm. The
remainder of this book is primarily concerned with theory and craft. The
theory is language agnostic but the craft is firmly in the world of Scala. Before
we move onto the functional programming paradigm are two points I want to
emphasize:

1. Paradigms are social constructs. They change over time. Object‐
oriented programming as practiced today differs from the style
originally used in Simula and Smalltalk, and functional programming
today is very different from the original LISP code.

2. The three level organization is just a tool for thought. In the real world
it is more complicated.
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1.2 Functional Programming

This is a book about the techniques and practices of functional programming
(FP). This naturally leads to the question: what is FP and what does it mean to
write code in a functional style? It’s common to view functional programming
as a collection of language features, such as first class functions, or to define
it as a programming style using immutable data and pure functions. (Pure
functions always return the same output given the same input.) This was
my view when I started down the FP route, but I now believe the true goals
of FP are enabling local reasoning and composition. Language features and
programming style are in service of these goals. Let me attempt to explain the
meaning and value of local reasoning and composition.

1.2.1 What Functional Programming Is

I believe that functional programming is a hypothesis about software quality:
that it is easier to write and maintain software that can be understood before
it is run, and is built of small reusable components. The first property is known
as local reasoning, and the second as composition. Let’s address each in turn.

Local reasoning means we can understand pieces of code in isolation. When
we see the expression 1 + 1we knowwhat it means regardless of the weather,
the database, or the current status of our Kubernetes cluster. None of these
external events can change it. This is a trivial and slightly silly example, but it
illustrates the point. A goal of functional programming is to extend this ability
across our code base.

It can help to understand local reasoning by looking at what it is not. Shared
mutable state is out because relying on shared state means that other code
can change what our code does without our knowledge. It means no
global mutable configuration, as found in many web frameworks and graphics
libraries for example, as any random code can change that configuration.
Metaprogramming has to be carefully controlled. No monkey patching, for
example, as again it allows other code to change our code in non‐obvious
ways. As we can see, adapting code to enable local reasoning can mean quite
some sweeping changes. However if we work in a language that embraces

https://en.wikipedia.org/wiki/Monkey_patch
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functional programming this style of programming is the default.

Composition means building big things out of smaller things. Numbers are
compositional. We can take any number and add one, giving us a new number.
Lego is also compositional. We compose Lego by sticking it together. In the
particular sense we’re using composition we also require the original elements
we combine don’t change in any way when they are composed. When we
create by 2 by adding 1 and 1 we get a new result that doesn’t change what 1
means.

We can find compositional ways to model common programming tasks once
we start looking for them. React components are one example familiar tomany
front‐end developers: a component can consist of many components. HTTP
routes can be modelled in a compositional way. A route is a function from
an HTTP request to either a handler function or a value indicating the route
did not match. We can combine routes as a logical or: try this route or, if it
doesn’t match, try this other route. Processing pipelines are another example
that often use sequential composition: perform this pipeline stage and then
this other pipeline stage.

1.2.1.1 Types

Types are not strictly part of functional programming but statically typed FP is
the most popular form of FP and sufficiently important to warrant a mention.
Types help compilers generate efficient code but types in FP are as much
for the programmer as they are the compiler. Types express properties of
programs, and the type checker automatically ensures that these properties
hold. They can tell us, for example, what a function accepts andwhat it returns,
or that a value is optional. We can also use types to express our beliefs about
a program and the type checker will tell us if those beliefs are correct. For
example, we can use types to tell the compiler we do not expect an error at a
particular point in our code and the type checker will let us know if this is the
case. In this way types are another tool for reasoning about code.

Type systems push programs towards particular designs, as to work effectively
with the type checker requires designing code in a way the type checker can
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understand. As modern type systems come to more languages they naturally
tend to shift programmers in those languages towards a FP style of coding.

1.2.2 What Functional Programming Isn’t

In my view functional programming is not about immutability, or keeping to
“the substitution model of evaluation”, and so on. These are tools in service
of the goals of enabling local reasoning and composition, but they are not the
goals themselves. Code that is immutable always allows local reasoning, for
example, but it is not necessary to avoid mutation to still have local reasoning.
Here is an example of summing a collection of numbers.

def sum(numbers: List[Int]): Int = {

var total = 0

numbers.foreach(x => total = total + x)

total

}

In the implementation we mutate total. This is ok though! We cannot tell
from the outside that this is done, and therefore all users of sum can still use
local reasoning. Inside sum we have to be careful when we reason about total
but this block of code is small enough that it shouldn’t cause any problems.

In this case we can reason about our code despite the mutation, but the
Scala compiler can determine that this is ok. Scala allows mutation but it’s
up to us to use it appropriately. A more expressive type system, perhaps with
features like Rust’s, would be able to tell that sum doesn’t allow mutation to
be observed by other parts of the system¹. Another approach, which is the

¹The example I gave is fairly simple. A compiler that used escape analysis could recognize
that no reference to total is possible outside sum and hence sum is pure (or referentially
transparent). Escape analysis is a well studied technique. In the general case the problem
is a lot harder. We’d often like to know that a value is only referenced once at various points
in our program, and hence we can mutate that value without changes being observable in
other parts of the program. This might be used, for example, to pass an accumulator through
various processing stages. To do this requires a programming language with what is called
a substructural type system. Rust has such a system, with affine types. Linear types are in
development for Haskell.

https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Substructural_type_system
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one taken by Haskell, is to disallow all mutation and thus guarantee it cannot
cause problems.

Mutation also interferes with composition. For example, if a value relies on
internal state then composing it may produce unexpected results. Consider
Scala’s Iterator. It maintains internal state that is used to generate the next
value. If we have two Iterators we might want to combine them into one
Iterator that yields values from the two inputs. The zip method does this.

This works if we pass two distinct generators to zip.

val it = Iterator(1, 2, 3, 4)

val it2 = Iterator(1, 2, 3, 4)

it.zip(it2).next()

// res0: Tuple2[Int, Int] = (1, 1)

However if we pass the same generator twice we get a surprising result.

val it3 = Iterator(1, 2, 3, 4)

it3.zip(it3).next()

// res1: Tuple2[Int, Int] = (1, 2)

The usual functional programming solution is to avoid mutable state but we
can envisage other possibilities. For example, an effect tracking system would
allow us to avoid combining two generators that use the same memory region.
These systems are still research projects, however.

So in my opinion immutability (and purity, referential transparency, and no
doubt more fancy words that I have forgotten) have become associated
with functional programming because they guarantee local reasoning and
composition, and until recently we didn’t have the language tools to
automatically distinguish safe uses of mutation from those that cause
problems. Restricting ourselves to immutability is the easiest way to ensure

https://en.wikipedia.org/wiki/Effect_system
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the desirable properties of functional programming, but as languages evolve
this might come to be regarded as a historical artifact.

1.2.3 Why It Matters

I have described local reasoning and composition but have not discussed their
benefits. Why are they are desirable? The answer is that they make efficient
use of knowledge. Let me expand on this.

We care about local reasoning because it allows our ability to understand
code to scale with the size of the code base. We can understand module
A and module B in isolation, and our understanding does not change when
we bring them together in the same program. By definition if both A and B
allow local reasoning there is no way that B (or any other code) can change
our understanding of A, and vice versa. If we don’t have local reasoning
every new line of code can force us to revisit the rest of the code base to
understand what has changed. This means it becomes exponentially harder to
understand code as it grows in size as the number of interactions (and hence
possible behaviours) grows exponentially. We can say that local reasoning is
compositional. Our understanding of module A calling module B is just our
understanding of A, our understanding of B, and whatever calls A makes to B.

We introduced numbers and Lego as examples of composition. They have an
interesting property in common: the operations that we can use to combine
them (for example, addition, subtraction, and so on for numbers; for Lego the
operation is “sticking bricks together”) give us back the same kind of thing. A
number multiplied by a number is a number. Two bits of Lego stuck together
is still Lego. This property is called closure: when you combine things you end
up with the same kind of thing. Closure means you can apply the combining
operations (sometimes called combinators) an arbitrary number of times. No
matter how many times you add one to a number you still have a number and
can still add or subtract or multiply or…you get the idea. If we understand
module A, and the combinators that A provides are closed, we can build very
complex structures using A without having to learn new concepts! This is also
one reason functional programmers tend to like abstractions such a monads
(beyond liking fancy words): they allow us to use one mental model in lots of
different contexts.
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In a sense local reasoning and composition are two sides of the same coin.
Local reasoning is compositional; composition allows local reasoning. Both
make code easier to understand.

1.2.4 The Evidence for Functional Programming

I’ve made arguments in favour of functional programming and I admit I am
biased—I do believe it is a better way to develop code than imperative
programming. However, is there any evidence to back up my claim? There
has not been much research on the effectiveness of functional programming,
but there has been a reasonable amount done on static typing. I feel static
typing, particularly using modern type systems, serves as a good proxy for
functional programming so let’s look at the evidence there.

In the corners of the Internet I frequent the common refrain is that static
typing has neglible effect on productivity. I decided to look into this and
was surprised that the majority of the results I found support the claim that
static typing increases productivity. For example, the literature review in this
dissertation (section 2.3, p16–19) shows a majority of results in favour of
static typing, in particular the most recent studies. However the majority
of these studies are very small and use relatively inexperienced developers—
which is noted in the review by Dan Luu that I linked. My belief is that
functional programming comes into its own on larger systems. Furthermore,
programming languages, like all tools, require proficiency to use effectively.
I’m not convinced very junior developers have sufficient skill to demonstrate
a significant difference between languages.

To me the most useful evidence of the effectiveness of functional
programming is that industry is adopting functional programming en masse.
Consider, say, the widespread and growing adoption of Typescript and React.
If we are to argue that FP as embodied by Typescript or React has no value
we are also arguing that the thousands of Javascript developers who have
switched to using them are deluded. At some point this argument becomes
untenable.

This doesn’t mean we’ll all be using Haskell in five years. More likely we’ll
see something like the shift to object‐oriented programming of the nineties:

https://danluu.com/empirical-pl/
https://danluu.com/empirical-pl/
https://web.cs.unlv.edu/stefika/documents/MerlinDissertation.pdf
https://web.cs.unlv.edu/stefika/documents/MerlinDissertation.pdf
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Smalltalk was the paradigmatic example of OO, but it was more familiar
languages like C++ and Java that brought OO to the mainstream. In the case
of FP this probably means languages like Scala, Swift, Kotlin, or Rust, and
mainstream languages like Javascript and Java continuing to adopt more FP
features.

1.2.5 Final Words

I’ve given my opinion on functional programming—that the real goals are local
reasoning and composition, and programming practices like immutability are in
service of these. Other people may disagree with this definition, and that’s ok.
Words are defined by the community that uses them, and meanings change
over time.

Functional programming emphasises formal reasoning, and there are some
implications that I want to briefly touch on.

Firstly, I find that FP is most valuable in the large. For a small system it is
possible to keep all the details in our head. It’s when a program becomes too
large for anyone to understand all of it that local reasoning really shows its
value. This is not to say that FP should not be used for small projects, but
rather that if you are, say, switching from an imperative style of programming
you shouldn’t expect to see the benefit when working on toy projects.

The formal models that underlie functional programming allow systematic
construction of code. This is in some ways the reverse of reasoning: instead
of taking code and deriving properties, we start from some properties and
derive code. This sounds very academic but is in fact very practical, and how
I develop most of my code.

Finally, reasoning is not the only way to understand code. It’s valuable
to appreciate the limitations of reasoning, other methods for gaining
understanding, and using a variety of strategies depending on the situation.
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In this first part of the bookwe’re building the foundational strategies onwhich
the rest of the book will build and elaborate. In Chapter 2 we look at algebraic
data types, which are our main way of modelling data. We turn to codata in
Chapter 3, which is the opposite, or dual, or algebraic data. Type classes are
the focus on Chapter 4, while fundamentals of interpreters are discussed in
Chapter 5. These four strategies all describe code artifacts. For example, we
can label part of code as an algebraic data type or a type class. We’ll also
see strategies that help us write code but don’t necessarily end up directly
reflected in it, such as following the types.
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Chapter 2

Algebraic Data Types

This chapter has our first example of a programming strategy: algebraic data
types. Any data we can describe using logical ands and logical ors is an
algebraic data type. Once we recognize an algebraic data type we get three
things for free:

• the Scala representation of the data;
• a structural recursion skeleton to transform the algebraic data type into
any other type; and

• a structural corecursion skeleton to construct the algebraic data type
from any other type.

The key point is this: from an implementation independent representation
of data we can automatically derive most of the interesting implementation
specific parts of working with that data.

We’ll start with some examples of data, from which we’ll extract the common
structure that motivates algebraic data types. We will then look at their
representation in Scala 2 and Scala 3. Next we’ll turn to structural recursion
for transforming algebraic data types, followed by structural corecursion for
constructing them. We’ll finish by looking at the algebra of algebraic data
types, which is interesting but not essential.

17
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2.1 Building Algebraic Data Types

Let’s start with some examples of data from a few different domains. These
are simplified description but they are all representative of real applications.

A user in a discussion forum will typically have a screen name, an email
address, and a password. Users also typically have a specific role: normal user,
moderator, or administrator, for example. From this we get the following data:

• a user is a screen name, an email address, a password, and a role; and
• a role is normal, moderator, or administrator.

A product in an e‐commerce store might have a stock keeping unit (a unique
identifier for each variant of a product), a name, a description, a price, and a
discount.

In two‐dimensional vector graphics it’s typical to represent shapes as a path,
which is a sequence of actions of a virtual pen. The possible actions are usually
straight lines, Bezier curves, or movement that doesn’t result in visible output.
A straight line has an end point (the starting point is implicit), a Bezier curve
has two control points and an end point, and a move has an end point.

What is common between all the examples above is that the individual
elements—the atoms, if you like—are connected by either a logical and or a
logical or. For example, a user is a screen name and an email address and
a password and a role. A 2D action is a straight line or a Bezier curve or a
move. This is the core of algebraic data types: an algebraic data type is data
that is combined using logical ands or logical ors. Conversely, whenever we
can describe data in terms of logical ands and logical ors we have an algebraic
data type.

2.1.1 Sums and Products

Being functional programmers we can’t let a simple concept go without
attaching some fancy jargon:

• a product type means a logical and; and
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• a sum type means a logical or.

So algebraic data types consist of sum and product types.

2.1.2 Closed Worlds

Algebraic data types are closed worlds, which means they cannot be extended
after they have been defined. In practical terms this means we have to modify
the source code where we define the algebraic data type if we want to add or
remove elements.

The closed world property is important because it gives us guarantees we
would not otherwise have. In particular, it allows the compiler to check that
we handle all possible caseswhenwe use an algebraic data type. This is known
as exhaustivity checking. This is an example of how functional programming
prioritizes reasoning about code—in this case automated reasoning by the
compiler—over other properties such as extensibility. We’ll learn more about
exhaustivity checking soon.

2.2 Algebraic Data Types in Scala

Now we know what algebraic data types are, we will turn to their
representation in Scala. The important point here is that the translation
to Scala is entirely determined by the structure of the data; no thinking is
required! This means the work is in finding the structure of the data that best
represents the problem at hand. Work out the structure of the data and the
code directly follows from it.

As algebraic data types are defined in terms of logical ands and logical ors, to
represent algebraic data types in Scala we must know how to represent these
two concepts. Scala 3 simplifies the representation of algebraic data types
compared to Scala 2, so we’ll look at each language version separately.

I’m assuming that you’re familiar with the language features we use to
represent algebraic data types in Scala, so I won’t be going over them.



20 CHAPTER 2. ALGEBRAIC DATA TYPES

2.2.1 Algebraic Data Types in Scala 3

In Scala 3 a logical and (a product type) is represented by a final case class.
If we define a product type A is B and C, the representation in Scala 3 is

final case class A(b: B, c: C)

Not everyone makes their case classes final, but they should. A non‐final
case class can still be extended by a class, which breaks the closed world
criteria for algebraic data types.

A logical or (a sum type) is represented by an enum. For the sum type A is B or C,
the Scala 3 representation is

enum A {

case B

case C

}

There are a few wrinkles to be aware of.

If we have a sum of products, such as:

• A is B or C; and
• B is D and E; and
• C is F and G

the representation is

enum A {

case B(d: D, e: E)

case C(f: F, g: G)

}

In other words we don’t write final case class inside an enum. You also can’t
nest enum inside enum. Nested logical ors can be rewritten into a single logical or
containing only logical ands (known as disjunctive normal form) so this is not
a limitation in practice. However the Scala 2 representation is still available in
Scala 3 should you want more expressivity.
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2.2.2 Algebraic Data Types in Scala 2

A logical and (product type) has the same representation in Scala 2 as in Scala
3. If we define a product type A is B and C, the representation in Scala 2 is

final case class A(b: B, c: C)

A logical or (a sum type) is represented by a sealed abstract class. For the
sum type A is a B or C the Scala 2 representation is

sealed abstract class A

final case class B() extends A

final case class C() extends A

Scala 2 has several little tricks to defining algebraic data types.

Firstly, instead of using a sealed abstract class you can use a sealed trait

. There isn’t much practical difference between the two. When teaching
beginners I’ll often use sealed trait to avoid having to introduce abstract

class. I believe sealed abstract class has slightly better performance and Java
interoperability, but I haven’t tested this. I also think sealed abstract class is
closer, semantically, to the meaning of a sum type.

For extra style points we can extend Product with Serializable from sealed

abstract class. Compare the reported types belowwith and without this little
addition.

Let’s first see the code without extending Product and Serializable.

sealed abstract class A

final case class B() extends A

final case class C() extends A

val list = List(B(), C())

// list: List[A extends Product with Serializable] = List(B(), C())

Notice how the type of list includes Product and Serializable.

Now we have extending Product and Serializable.
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sealed abstract class A extends Product with Serializable

final case class B() extends A

final case class C() extends A

val list = List(B(), C())

// list: List[A] = List(B(), C())

Much easier to read!

You’ll only see this in Scala 2. Scala 3 has the concept of transparent traits,
which aren’t reported in inferred types, so you’ll see the same output in Scala
3 no matter whether you add Product and Serializable or not.

Finally, we can use a case object instead of a case class when we’re defining
some type that holds no data. For example, reading from a text stream, such
as a terminal, can return a character or the end‐of‐file. We can model this as

sealed abstract class Result

final case class Character(value: Char) extends Result

case object Eof extends Result

As the end‐of‐file indicator Eof has no associated data we use a case object

. There is no need to mark the case object as final, as objects cannot be
extended.

2.2.3 Examples

Let’s make the discussion above more concrete with some examples.

2.2.3.1 Role and User

In the discussion forum example, we said a role is normal, moderator, or
administrator. This is a logical or, so we can directly translate it to Scala using
the appropriate pattern. In Scala 3 we write
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enum Role {

case Normal

case Moderator

case Administrator

}

In Scala 2 we write

sealed abstract class Role extends Product with Serializable

case object Normal extends Role

case object Moderator extends Role

case object Administrator extends Role

The cases within a role don’t hold any data, so we used a case object in the
Scala 2 code.

We defined a user as a screen name, an email address, a password, and a role.
In both Scala 3 and Scala 2 this becomes

final case class User(

screenName: String,

emailAddress: String,

password: String,

role: Role

)

I’ve used String to represent most of the data within a User, but in real code
we might want to define distinct types for each field.

2.2.3.2 Paths

We defined a path as a sequence of actions of a virtual pen. The possible
actions are straight lines, Bezier curves, or movement that doesn’t result in
visible output. A straight line has an end point (the starting point is implicit), a
Bezier curve has two control points and an end point, and a move has an end
point.

This has a straightforward translation to Scala. We can represent paths as the
following in both Scala 3 and Scala 2.
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final case class Path(actions: Seq[Action])

An action is a logical or, so we have different representations in Scala 3 and
Scala 2. In Scala 3 we’d write

enum Action {

case Line(end: Point)

case Curve(cp1: Point, cp2: Point, end: Point)

case Move(end: Point)

}

where Point is a suitable representation of a two‐dimensional point.

In Scala 2 we have to go with the more verbose

sealed abstract class Action extends Product with Serializable

final case class Line(end: Point) extends Action

final case class Curve(cp1: Point, cp2: Point, end: Point)

extends Action

final case class Move(end: Point) extends Action

2.2.4 Representing ADTs in Scala 3

We’ve seen that the Scala 3 representation of algebraic data types, using enum
, is more compact than the Scala 2 representation. However the Scala 2
representation is still available. Should you ever use the Scala 2 representation
in Scala 3? There are a few cases where you may want to:

• Scala 3’s doesn’t currently support nested enums (enums within enums).
This may change in the future, but right now it can be more convenient
to use the Scala 2 representation to express this without having to
convert to disjunctive normal form.

• Scala 2’s representation can express things that are almost, but not
quite, algebraic data types. For example, if you define a method on
an enum you must be able to define it for all the members of the enum.
Sometimes you want a case of an enum to have methods that are only
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defined for that case. To implement this you’ll need to use the Scala 2
representation instead.

Exercise: Tree

To gain a bit of practice defining algebraic data types, code the following
description in Scala (your choice of version, or do both.)

A Tree with elements of type A is:

• a Leaf with a value of type A; or
• a Node with a left and right child, which are both Trees with elements of
type A.

See the solution

2.3 Structural Recursion

Structural recursion is our second programming strategy. Algebraic data types
tell us how to create data given a certain structure. Structural recursion tells
us how to transform an algebraic data types into any other type. Given an
algebraic data type, the transformation can be implemented using structural
recursion.

As with algebraic data types, there is distinction between the concept of
structural recursion and the implementation in Scala. This is more obvious
because there are two ways to implement structural recursion in Scala: via
pattern matching or via dynamic dispatch. We’ll look at each in turn.

2.3.1 Pattern Matching

I’m assuming you’re familiar with pattern matching in Scala, so I’ll only
talk about how to implement structural recursion using pattern matching.
Remember there are two kinds of algebraic data types: sum types (logical ors)
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and product types (logical ands). We have corresponding rules for structural
recursion implemented using pattern matching:

1. For each branch in a sum type we have a distinct case in the pattern
match; and

2. Each case corresponds to a product type with the pattern written in the
usual way.

Let’s see this in code, using an example ADT that includes both sum and
product types:

• A is B or C; and
• B is D and E; and
• C is F and G

which we represent (in Scala 3) as

enum A {

case B(d: D, e: E)

case C(f: F, g: G)

}

Following the rules above means a structural recursion would look like

anA match {

case B(d, e) => ???

case C(f, g) => ???

}

The ??? bits are problem specific, and we cannot give a general solution for
them. However we’ll soon see strategies to help create them.

2.3.2 The Recursion in Structural Recursion

At this point you might be wondering where the recursion in structural
recursion comes from. This is an additional rule for recursion: whenever the
data is recursive the method is recursive in the same place.
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Let’s see this in action for a real data type.

We can define a list with elements of type A as:

• the empty list; or
• a pair containing an A and a tail, which is a list of A.

This is exactly the definition of List in the standard library. Notice it’s an
algebraic data type as it consists of sums and products. It is also recursive:
in the pair case the tail is itself a list.

We can directly translate this to code, using the strategy for algebraic data
types we saw previously. In Scala 3 we write

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

}

Let’s implement map for MyList. We start with the method skeleton specifying
just the name and types.

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

???

}

Our first step is to recognize that map can bewritten using a structural recursion.
MyList is an algebraic data type, map is transforming this algebraic data type,
and therefore structural recursion is applicable. We now apply the structural
recursion strategy, giving us

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])
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def map[B](f: A => B): MyList[B] =

this match {

case Empty() => ???

case Pair(head, tail) => ???

}

}

I forgot the recursion rule! The data is recursive in the tail of Pair, so map is
recursive there as well.

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

this match {

case Empty() => ???

case Pair(head, tail) => ??? tail.map(f)

}

}

I left the ??? to indicate that we haven’t finished with that case.

Now we can move on to the problem specific parts. Here we have three
strategies to help us:

1. reasoning independently by case;
2. assuming the recursion is correct; and
3. following the types

The first two are specific to structural recursion, while the final one is a general
strategy we can use in many situations. Let’s briefly discuss each and then see
how they apply to our example.

The first strategy is relatively simple: when we consider the problem specific
code on the right hand side of a pattern matching case, we can ignore the code
in any other pattern match cases. So, for example, when considering the case
for Empty above we don’t need to worry about the case for Pair, and vice versa.
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The next strategy is a little bit more complicated, and has to do with recursion.
Remember that the structural recursion strategy tells us where to place any
recursive calls. This means we don’t have to think through the recursion.
Insteadwe assume the recursive call will correctly compute what it claims, and
only consider how to further process the result of the recursion. The result is
guaranteed to be correct so long as we get the non‐recursive parts correct.

In the example above we have the recursion tail.map(f). We can assume this
correctly computes map on the tail of the list, and we only need to think about
what we should do with the remaining data: the head and the result of the
recursive call.

It’s this property that allows us to consider cases independently. Recursive
calls are the only thing that connect the different cases, and they are given to
us by the structural recursion strategy.

Our final strategy is following the types. It can be used in many situations, not
just structural recursion, so I consider it a separate strategy. The core idea is
to use the information in the types to restrict the possible implementations.
We can look at the types of inputs and outputs to help us.

Now let’s use these strategies to finish the implementation of map. We start
with

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

this match {

case Empty() => ???

case Pair(head, tail) => ??? tail.map(f)

}

}

Our first strategy is to consider the cases independently. Let’s start with
the Empty case. There is no recursive call here, so reasoning about recursion
doesn’t come into play. Let’s instead use the types. There is no input here
other than the Empty case we have already matched, so we cannot use the
input types to further restrict the code. Let’s instead consider the output type.
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We’re trying to create a MyList[B]. There are only two ways to create a MyList
[B]: an Empty or a Pair. To create a Pair we need a head of type B, which we
don’t have. So we can only use Empty. This is the only possible code we can write.
The types are sufficiently restrictive that we cannot write incorrect code for
this case.

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

this match {

case Empty() => Empty()

case Pair(head, tail) => ??? tail.map(f)

}

}

Now let’s move to the Pair case. We can apply both the structural recursion
reasoning strategy and following the types. Let’s use each in turn.

The case for Pair is

case Pair(head, tail) => ??? tail.map(f)

Remember we can consider this independently of the other case. We assume
the recursion is correct. This means we only need to think about what we
should do with the head, and how we should combine this result with tail.map

(f). Let’s now follow the types to finish the code. Our goal is to produce a
MyList[B]. We already the following available:

• tail.map(f), which has type MyList[B];
• head, with type A;
• f, with type A => B; and
• the constructors Empty and Pair.

We could return just Empty, matching the case we’ve already written. This has
the correct type but we might expect it is not the correct answer because it
does not use the result of the recursion, head, or f in any way.
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We could return just tail.map(f). This has the correct type but we might
expect it is not correct because we don’t use head or f in any way.

We can call f on head, producing a value of type B, and then combine this value
and the result of the recursive call using Pair to produce a MyList[B]. This is
the correct solution.

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

this match {

case Empty() => Empty()

case Pair(head, tail) => Pair(f(head), tail.map(f))

}

}

If you’ve followed this example you’ve hopefully see howwe can use the three
strategies to systematically find the correct implementation. Notice how we
interleaved the recursion strategy and following the types to guide us to a
solution for the Pair case. Also note how following the types alone gave us
three possible implementations for the Pair case. In this code, and as is usually
the case, the solution was the implementation that used all of the available
inputs.

2.3.3 Exhaustivity Checking

Remember that algebraic data types are a closed world: they cannot be
extended once defined. The Scala compiler can use this to check that we
handle all possible cases in a pattern match, so long as we write the pattern
match in a way the compiler can work with. This is known as exhaustivity
checking.

Here’s a simple example. We start by defining a straight‐forward algebraic
data type.
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// Some of the possible units for lengths in CSS

enum CssLength {

case Em(value: Double)

case Rem(value: Double)

case Pt(value: Double)

}

If we write a pattern match using the structural recursion strategy, the
compiler will complain if we’re missing a case.

import CssLength.*

CssLength.Em(2.0) match {

case Em(value) => value

case Rem(value) => value

}

// -- [E029] Pattern Match Exhaustivity Warning:

----------------------------------

// 1 |CssLength.Em(2.0) match {

// |^^^^^^^^^^^^^^^^^

// |match may not be exhaustive.

// |

// |It would fail on pattern case: CssLength.Pt(_)

// |

// | longer explanation available when compiling with `-explain`

Exhaustivity checking is incredibly useful. For example, if we add or remove
a case from an algebraic data type, the compiler will tell us all the pattern
matches that need to be updated.

2.3.4 Dynamic Dispatch

Using dynamic dispatch to implement structural recursion is an
implementation technique that may feel more natural to people with a
background in object‐oriented programming.

The dynamic dispatch approach consists of:

1. defining an abstract method at the root of the algebraic data types; and
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2. implementing that abstract method at every leaf of the algebraic data
type.

This implementation technique is only available if we use the Scala 2 encoding
of algebraic data types.

Let’s see it in the MyList example we just looked at. Our first step is to rewrite
the definition of MyList to the Scala 2 style.

sealed abstract class MyList[A] extends Product with Serializable

final case class Empty[A]() extends MyList[A]

final case class Pair[A](head: A, tail: MyList[A]) extends MyList[A]

Next we define an abstract method for map on MyList.

sealed abstract class MyList[A] extends Product with Serializable {

def map[B](f: A => B): MyList[B]

}

final case class Empty[A]() extends MyList[A]

final case class Pair[A](head: A, tail: MyList[A]) extends MyList[A]

Then we implement map on the concrete subtypes Empty and Pair.

sealed abstract class MyList[A] extends Product with Serializable {

def map[B](f: A => B): MyList[B]

}

final case class Empty[A]() extends MyList[A] {

def map[B](f: A => B): MyList[B] =

Empty()

}

final case class Pair[A](head: A, tail: MyList[A]) extends MyList[A] {

def map[B](f: A => B): MyList[B] =

Pair(f(head), tail.map(f))

}

We can use exactly the same strategies we used in the pattern matching
case to create this code. The implementation technique is different but the
underlying concept is the same.
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Given we have two implementation strategies, which should we use? If we’re
using enum in Scala 3 we don’t have a choice; we must use pattern matching.
In other situations we can choose between the two. I prefer to use pattern
matching when I can, as it puts the entire method definition in one place.
However, Scala 2 in particular has problems inferring types in some pattern
matches. In these situations we can use dynamic dispatch instead. We’ll learn
more about this when we look at generalized algebraic data types.

Exercise: Methods for Tree

In a previous exercise we created a Tree algebraic data type:

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

}

Or, in the Scala 2 encoding:

sealed abstract class Tree[A] extends Product with Serializable

final case class Leaf[A](value: A) extends Tree[A]

final case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A

]

Let’s get some practice with structural recursion and write some methods for
Tree. Implement

• size, which returns the number of values (Leafs) stored in the Tree;
• contains, which returns true if the Tree contains a given element of type

A, and false otherwise; and
• map, which creates a Tree[B] given a function A => B

Use whichever you prefer of pattern matching or dynamic dispatch to
implement the methods.

See the solution
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2.3.5 Folds as Structural Recursions

Let’s finish by looking at the fold method as an abstraction over structural
recursion. If you did the Tree exercise above, you will have noticed that we
wrote the same kind of code again and again. Here are the methods we wrote.
Notice the left‐hand sides of the pattern matches are all the same, and the
right‐hand sides are very similar.

def size: Int =

this match {

case Leaf(value) => 1

case Node(left, right) => left.size + right.size

}

def contains(element: A): Boolean =

this match {

case Leaf(value) => element == value

case Node(left, right) => left.contains(element) || right.contains

(element)

}

def map[B](f: A => B): Tree[B] =

this match {

case Leaf(value) => Leaf(f(value))

case Node(left, right) => Node(left.map(f), right.map(f))

}

This is the point of structural recursion: to recognize and formalize this
similarity. However, as programmers we might want to abstract over this
repetition. Can we write a method that captures everything that doesn’t
change in a structural recursion, and allows the caller to pass arguments for
everything that does change? It turns out we can. For any algebraic data type
we can define at least one method, called a fold, that captures all the parts of
structural recursion that don’t change and allows the caller to specify all the
problem specific parts.

Let’s see how this is done using the example of MyList. Recall the definition of
MyList is
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enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

}

We know the structural recursion skeleton for MyList is

def doSomething[A](list: MyList[A]) =

list match {

case Empty() => ???

case Pair(head, tail) => ??? doSomething(tail)

}

Implementing fold for MyList means defining a method

def fold[A, B](list: MyList[A]): B =

list match {

case Empty() => ???

case Pair(head, tail) => ??? fold(tail)

}

where B is the type the caller wants to create.

To complete fold we add method parameters for the problem specific (???)
parts. In the case for Empty, we need a value of type B (notice that I’m following
the types here).

def fold[A, B](list: MyList[A], empty: B): B =

list match {

case Empty() => empty

case Pair(head, tail) => ??? fold(tail, empty)

}

For the Pair case, we have the head of type A and the recursion producing a
value of type B. This means we need a function to combine these two values.
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def foldRight[A, B](list: MyList[A], empty: B, f: (A, B) => B): B =

list match {

case Empty() => empty

case Pair(head, tail) => f(head, foldRight(tail, empty, f))

}

This is foldRight (and I’ve renamed the method to indicate this). You might
have noticed there is another valid solution. Both empty and the recursion
produce values of type B. If we follow the types we can come up with

def foldLeft[A,B](list: MyList[A], empty: B, f: (A, B) => B): B =

list match {

case Empty() => empty

case Pair(head, tail) => foldLeft(tail, f(head, empty), f)

}

which is foldLeft, the tail‐recursive variant of fold for a list. (We’ll talk about
tail‐recursion in a later chapter.)

We can follow the same process for any algebraic data type to create its folds.
The rules are:

• a fold is a function from the algebraic data type and additional
parameters to some generic type that I’ll call B below for simplicity;

• the fold has one additional parameter for each case in a logical or;
• each parameter is a function, with result of type B and parameters that
have the same type as the corresponding constructor arguments except
recursive values are replaced with B; and

• if the constructor has no arguments (for example, Empty) we can use a
value of type B instead of a function with no arguments.

Returning to MyList, it has:

• two cases, and hence two parameters to fold (other than the parameter
that is the list itself);

• Empty is a constructor with no arguments and hencewe use a parameter
of type B; and

• Pair is a constructor with one parameter of type A and one recursive
parameter, and hence the corresponding function has type (A, B)=> B.
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Exercise: Tree Fold

Implement a fold for Tree defined earlier. There are several different ways to
traverse a tree (pre‐order, post‐order, and in‐order). Just choose whichever
seems easiest.

See the solution

Exercise: Using Fold

Prove to yourself that you can replace structural recursion with calls to fold,
by redefining size, contains, and map for Tree using only fold.

See the solution

2.4 Structural Corecursion

Structural corecursion is the opposite—more correctly, the dual—of structural
recursion. Whereas structural recursion tells us how to take apart an algebraic
data type, structural corecursion tells us how to build up, or construct, an
algebraic data type. Whereas we can use structural recursion whenever the
input of a method or function is an algebraic data type, we can use structural
corecursion whenever the output of a method or function is an algebraic data
type.

Duality in Functional Programming

Two concepts or structures are duals if one can be translated in a one‐
to‐one fashion to the other. Duality is one of the main themes of this
book. By relating concepts as duals we can transfer knowledge from
one domain to another.

Duality is often indicated by attaching the co‐ prefix to one of the
structures or concepts. For example, corecursion is the dual of
recursion, and sum types, also known as coproducts, are the dual of
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product types.

Structural recursion works by considering all the possible inputs (which we
usually represent as patterns), and then working out what we do with each
input case. Structural corecursion works by considering all the possible
outputs, which are the constructors of the algebraic data type, and then
working out the conditions under which we’d call each constructor.

Let’s return to the list with elements of type A, defined as:

• the empty list; or
• a pair containing an A and a tail, which is a list of A.

In Scala 3 we write

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

}

We can use structural corecursion if we’re writing a method that produces a
MyList. A good example is map:

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

???

}

The output of this method is a MyList, which is an algebraic data type. Since
we need to construct a MyList we can use structural corecursion. The
structural corecursion strategy says we write down all the constructors and
then consider the conditions that will cause us to call each constructor. So our
starting point is to just write down the two constructors, and put in dummy
conditions.



40 CHAPTER 2. ALGEBRAIC DATA TYPES

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

if ??? then Empty()

else Pair(???, ???)

}

We can also apply the recursion rule: where the data is recursive so is the
method.

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

if ??? then Empty()

else Pair(???, ???.map(f))

}

To complete the left‐hand side we can use the strategies we’ve already seen:

• we can use structural recursion to tell us there are two possible
conditions; and

• we can follow the types to align these conditionswith the codewe have
already written.

In short order we arrive at the correct solution

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

def map[B](f: A => B): MyList[B] =

this match {

case Empty() => Empty()

case Pair(head, tail) => Pair(f(head), tail.map(f))



2.4. STRUCTURAL CORECURSION 41

}

}

There are a few interesting points here. Firstly, we should acknowledge
that map is both a structural recursion and a structural corecursion. This is
not always the case. For example, foldLeft and foldRight are not structural
corecursions because they are not constrained to only produce an algebraic
data type. Secondly, note that when we walked through the process
of creating map as a structural recursion we implicitly used the structural
corecursion pattern, as part of following the types. We recognised that we
were producing a List, that there were two possibilities for producing a List

, and then worked out the correct conditions for each case. Formalizing
structural corecursion as a separate strategy allows us to be more conscious
of where we apply it. Finally, notice how I switched from an if expression
to a pattern match expression as we progressed through defining map. This
is perfectly fine. Both kinds of expression achieve the same effect. Pattern
matching is a little bit safer due to exhaustivity checking. If we wanted to
continue using an if we’d have to define a method (for example, isEmpty) that
allows us to distinguish an Empty element from a Pair. This methodwould have
to use pattern matching in its implementation, so avoiding pattern matching
directly is just pushing it elsewhere.

2.4.1 Unfolds as Structural Corecursion

Just as we could abstract structural recursion as a fold, for any given algebraic
data type we can abstract structural corecursion as an unfold. Unfolds are
much less commonly used than folds, but they are still a nice tool to have.

Let’s work through the process of deriving unfold, using MyList as our example
again.

enum MyList[A] {

case Empty()

case Pair(head: A, tail: MyList[A])

}

The corecursion skeleton is
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if ??? then MyList.Empty()

else MyList.Pair(???, recursion(???))

Our starting point is writing the skeleton for unfold. It’s a little bit unusual in
that I’ve added a parameter seed. This is the information we use to create an
element. We’ll need this, but we cannot derive it from our strategies, so I’ve
added it in here as a starting assumption.

def unfold[A, B](seed: A): MyList[B] =

???

Now we start using our strategies to fill in the missing pieces. I’m using the
corecursion skeleton and I’ve applied the recursion rule immediately in the
code below, to save a bit of time in the derivation.

def unfold[A, B](seed: A): MyList[B] =

if ??? then MyList.Empty()

else MyList.Pair(???, unfold(seed))

We can abstract the condition using a function from A => Boolean.

def unfold[A, B](seed: A, stop: A => Boolean): MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(???, unfold(seed, stop))

Now we need to handle the case for Pair. We have a value of type A (seed), so
to create the head element of Pair we can ask for a function A => B

def unfold[A, B](seed: A, stop: A => Boolean, f: A => B): MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(f(seed), unfold(???, stop, f))

Finally we need to update the current value of seed to the next value. That’s
a function A => A.
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def unfold[A, B](seed: A, stop: A => Boolean, f: A => B, next: A => A)

: MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(f(seed), unfold(next(seed), stop, f, next))

At this point we’re done. Let’s see that unfold is useful by declaring some other
methods in terms of it. We’re going to declare map, which we’ve already seen
is a structural corecursion, using unfold. We will also define fill and iterate,
which are methods that construct lists and correspond to the methods with
the same names on List in the Scala standard library.

To make this easier to work with I’m going to declare unfold as a method on
the MyList companion object. I have made a slight tweak to the definition to
make type inference work a bit better. In Scala, types inferred for one method
parameter cannot be used for othermethod parameters in the same parameter
list. However, types inferred for one method parameter list can be used in
subsequent lists. Separating the function parameters from the seed parameter
means that the value inferred for A from seed can be used for inference of the
function parameters’ input parameters.

I have also declared some destructor methods, which are methods that take
apart an algebraic data type. For MyList these are head, tail, and the predicate
isEmpty. We’ll talk more about these a bit later.

Here’s our starting point.

enum MyList[A] {

case Empty()

case Pair(_head: A, _tail: MyList[A])

def isEmpty: Boolean =

this match {

case Empty() => true

case _ => false

}

def head: A =

this match {

case Pair(head, _) => head

}
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def tail: MyList[A] =

this match {

case Pair(_, tail) => tail

}

}

object MyList {

def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A =>

A): MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

}

Now let’s define the constructors fill and iterate, and map, in terms of unfold.
I think the constructors are a bit simpler, so I’ll do those first.

object MyList {

def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A =>

A): MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

def fill[A](n: Int)(elem: => A): MyList[A] =

???

def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =

???

}

Here I’ve just added the method skeletons, which are taken straight from the
List documentation. To implement these methods we can use one of two
strategies:

• reasoning about loops in the way we might in an imperative language;
or

• reasoning about structural recursion over the natural numbers.

Let’s talk about each in turn.
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Youmight have noticed that the parameters to unfold are almost exactly those
you need to create a for‐loop in a language like Java. A classic for‐loop, of the
for(i = 0; i < n; i++) kind, has four components:

1. the initial value of the loop counter;
2. the stopping condition of the loop;
3. the statement that advances the counter; and
4. the body of the loop that uses the counter.

These correspond to the seed, stop, next, and f parameters of unfold

respectively.

Loop variants and invariants are the standard way of reasoning about
imperative loops. I’m not going to describe them here, as you have probably
already learned how to reason about loops (though perhaps not using these
terms). Instead I’m going to discuss the second reasoning strategy, which
relates writing unfold to something we’ve already discussed: structural
recursion.

Our first step is to note that natural numbers (the integers 0 and larger) are
conceptually algebraic data types even though the implementation in Scala—
using Int—is not. A natural number is either:

• zero; or
• 1 + a natural number.

It’s the simplest possible algebraic data type that is both a sum and a product
type.

Once we see this, we can use the reasoning tools for structural recursion for
creating the parameters to unfold. Let’s show how this works with fill. The n
parameter tells us howmany elements there are in the Listwe’re creating. The
elem parameter creates those elements, and is called once for each element. So
our starting point is to consider this as a structural recursion over the natural
numbers. We can take n as seed, and stop as the function x => x == 0. These
are the standard conditions for a structural recursion over the natural numbers.
What about next? Well, the definition of natural numbers tells us we should
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subtract one in the recursive case, so next becomes x => x - 1. We only need
f, and that comes from the definition of how fill is supposed to work. We
create the value from elem, so f is just _ => elem

object MyList {

def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A =>

A): MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

def fill[A](n: Int)(elem: => A): MyList[A] =

unfold(n)(_ == 0, _ => elem, _ - 1)

def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =

???

}

We should check that our implementation works as intended. We can do this
by comparing it to List.fill.

List.fill(5)(1)

// res6: List[Int] = List(1, 1, 1, 1, 1)

MyList.fill(5)(1)

// res7: MyList[Int] = MyList(1, 1, 1, 1, 1)

Here’s a slightly more complex example, using a stateful method to create a
list of ascending numbers. First we define the state and method that uses it.

var counter = 0

def getAndInc(): Int = {

val temp = counter

counter = counter + 1

temp

}

Now we can create it to create lists.
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List.fill(5)(getAndInc())

// res8: List[Int] = List(0, 1, 2, 3, 4)

counter = 0

MyList.fill(5)(getAndInc())

// res10: MyList[Int] = MyList(0, 1, 2, 3, 4)

Exercise: Iterate

Implement iterate using the same reasoning as we did for fill. This is slightly
more complex than fill as we need to keep two bits of information: the value
of the counter and the value of type A.

See the solution

Exercise: Map

Once you’ve completed iterate, try to implement map in terms of unfold. You’ll
need to use the destructors to implement it.

See the solution

Now a quick discussion on destructors. The destructors do two things:

1. distinguish the different cases within a sum type; and
2. extract elements from each product type.

So for MyList the minimal set of destructors is isEmpty, which distinguishes
Empty from Pair, and head and tail. The extractors are partial functions in the
conceptual, not Scala, sense; they are only defined for a particular product
type and throw an exception if used on a different case. You may have also
noticed that the functions we passed to fill are exactly the destructors for
natural numbers.

The destructors are another part of the duality between structural recursion
and corecursion. Structural recursion is:

• defined by pattern matching on the constructors; and
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• takes apart an algebraic data type into smaller pieces.

Structural corecursion instead is:

• defined by conditions on the input, which may use destructors; and
• build up an algebraic data type from smaller pieces.

One last thing before we leave unfold. If we look at the usual definition of
unfold we’ll probably find the following definition.

def unfold[A, B](in: A)(f: A => Option[(A, B)]): List[B]

This is equivalent to the definition we used, but a bit more compact in terms
of the interface it presents. We used a more explicit definition that makes the
structure of the method clearer.

2.5 The Algebra of Algebraic Data Types

A question that sometimes comes up is where the “algebra” in algebraic data
types comes from. I want to talk about this a little bit and show some of the
algebraic manipulations that can be done on algebraic data types.

The term algebra is used in the sense of abstract algebra, an area of
mathematics. Abstract algebra deals with algebraic structures. An algebraic
structure consists of a set of values, operations on that set, and properties
that those operations must maintain. An example is the set of integers, the
operations addition and multiplication, and the familiar properties of these
operations such as associativity, which says that a + (b + c) = (a + b) + c.
The abstract in abstract algebrameans that it doesn’t deal with concrete values
like integers—that would be far too easy to understand—and instead with
abstractionswithwacky names like semigroup, monoid, and ring. The example
of integers above is an instance of a ring. We’ll see a lot more of these soon
enough!

Algebraic data types also correspond to the algebraic structure called a
ring. A ring has two operations, which are conventionally written + and
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×. You’ll perhaps guess that these correspond to sum and product types
respectively, and you’d be absolutely correct. What about the properties of
these operations? We’ll they are similar to what we know from basic algebra:

• + and× are associative, so a + (b + c) = (a + b) + c and likewise
for×;

• a + b = b + a, known as commutivitiy;
• there is an identity 0 such that a + 0 = a;
• there is an identity 1 such that a × 1 = a;
• there is distribution, so that a × (b + c) = (a × b) + (a × c)

So far, so abstract. Let’s make it concrete by looking at actual examples in
Scala.

Remember the algebraic data types work with types, so the operations+ and
× take types as parameters. So Int × String is equivalent to

final case class IntAndString(int: Int, string: String)

We can use tuples to avoid creating lots of names.

type IntAndString = (Int, String)

We can do the same thing for+. Int + String is

enum IntOrString {

case IsInt(int: Int)

case IsString(string: String)

}

or just

type IntOrString = Either[Int, String]
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Exercise: Identities

Can you work out which Scala type corresponds to the identity 1 for product
types?

See the solution

What about the Scala type corresponding to the identity 0 for sum types?

See the solution

What about the distribution law? This allows us to manipulate algebraic data
types to form equivalent, but perhaps more useful, representations. Consider
this example of a user data type.

final case class Person(name: String, permissions: Permissions)

enum Permissions {

case User

case Moderator

}

Written in mathematical notation, this is

Person = String × Permissions

Permissions = User + Moderator

Performing substitution gets us

Person = String × (User + Moderator)

Applying distribution results in

Person = (String × User) + (String × Moderator)

which in Scala we can represent as
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enum Person {

case User(name: String)

case Moderator(name: String)

}

Is this representation more useful? I can’t say without the context of where
the data is being used. However I can say that knowing this manipulation is
possible, and correct, is useful.

There is a lot more that could be said about algebraic data types, but at this
point I feel we’re really getting into the weeds. I’ll finish up with a few pointers
to other interesting facts:

• Exponential types exist. They are functions! A function A => B is
equivalent to ba.

• Quotient types also exist, but they are a bit weird. Read up about them
if you’re interested.

• Another interesting algebraic manipulation is taking the derivative of an
algebraic data type. This gives us a kind of iterator, known as a zipper,
for that type.

2.6 Conclusions

We have covered a lot of material in this chapter. Let’s recap the key points.

Algebraic data types allow us to express data types by combining existing data
types with logical and and logical or. A logical and constructs a product type
while a logical or constructs a sum type. Algebraic data types are the main
way to represent data in Scala.

Structural recursion gives us a skeleton for transforming any given algebraic
data type into any other type. Structural recursion can be abstracted into a
fold method.

We use several reasoning principles to help us complete the problem specific
parts of a structural recursion:
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1. reasoning independently by case;
2. assuming recursion is correct; and
3. following the types.

Following the types is a very general strategy that is can be used in many other
situations.

Structural corecursion gives us a skeleton for creating any given algebraic data
type from any other type. Structural corecursion can be abstracted into an
unfold method. When reasoning about structural corecursion we can reason
as we would for an imperative loop, or, if the input is an algebraic data type,
use the principles for reasoning about structural recursion.

Notice that the two main themes of functional programming—composition
and reasoning—are both already apparent. Algebraic data types are
compositional: we compose algebraic data types using sum and product.
We’ve seen many reasoning principles in this chapter.

I haven’t covered everything there is to know about algebraic data types; I
think doing so would be a book in its own right. Below are some references
that you might find useful if you want to dig in further, as well as some
biographical remarks.

Algebraic data types are standard in introductory material on functional
programming. Structural recursion is certainly extremely common in
functional programming, but strangely seems to rarely be explicitly defined
as I’ve done here. I learned about both fromHow to Design Programs [Felleisen
et al. 2018].

I’m not aware of any approachable yet thorough treatment of either algebraic
data types or structural recursion. Both seem to have become assumed
background of any researcher in the field of programming languages, and
relatively recent work is caked in layers of mathematics and obtuse notation
that I find difficult reading. The infamous Functional Programmingwith Bananas,
Lenses, Envelopes and Barbed Wire [Meijer et al. 1991] is an example of such
work. I suspect the core ideas of both date back to at least the emergence of
computability theory in the 1930s, well before any digital computers existed.

The earliest reference I’ve found to structural recursion is Proving Properties
of Programs by Structural Induction [Burstall 1969]. Algebraic data types don’t
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seem to have been fully developed, along with pattern matching, until NPL in
1977. NPLwas quickly followed by themore influential languageHope, which
spread the concept to other programming languages.

Corecursion is a bit better documented in the contemporary literature. How
to Design Co‐Programs [Gibbons 2021] covers the main ideas we have looked
at here, while Gibbons and Jones [1998] discusses uses of unfold.

The Derivative of a Regular Type is its Type of One‐Hole Contexts [McBride 2001]
describes the derivative of algebraic data types.

https://en.wikipedia.org/wiki/NPL_(programming_language)
https://en.wikipedia.org/wiki/Hope_(programming_language)
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Chapter 3

Objects as Codata

In this chapter we will look at codata, the dual of algebraic data types.
Algebraic data types focus on how things are constructed. Codata, in
contrast, focuses on how things are used. We define codata by specifying the
operations that can be performed on the type. This is very similar to the use
of interfaces in object‐oriented programming, and this is the first reason that
we are interested in codata: codata puts object‐oriented programming into a
coherent conceptual framework with the other strategies we are discussing.

We’re not only interested in codata as a lens to view object‐oriented
programming. Codata also has properties that algebraic data does not. Codata
allows us to create structures with an infinite number of elements, such as
a list that never ends or a server loop that runs indefinitely. Codata has a
different form of extensibility to algebraic data. Whereas we can easily write
new functions that transform algebraic data, we cannot add new cases to
the definition of an algebraic data type without changing the existing code.
The reverse is true for codata. We can easily create new implementations of
codata, but functions that transform codata are limited by the interface the
codata defines.

In the previous chapter we saw structural recursion and structural corecursion
as strategies to guide us in writing programs using algebraic data types. The
same holds for codata. We can use codata forms of structural recursion and

55
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corecursion to guide us in writing programs that consume and produce codata
respectively.

We’ll begin our exploration of codata by more precisely defining it and seeing
some examples. We’ll then talk about representing codata in Scala, and the
relationship to object‐oriented programming. Once we can create codata,
we’ll see how to work with it using structural recursion and corecursion, using
an example of an infinite structure. Next wewill look at transforming algebraic
data to codata, and vice versa. We will finish by examining differences in
extensibility.

A quick note about terminology before we proceed. We might expect to use
the term algebraic codata for the dual of algebraic data, but conventionally
just codata is used. I assume this is because data is usually understood to
have a wider meaning than just algebraic data, but codata is not used outside
of programming language theory. For simplicity and symmetry, within this
chapter I’ll just use the term data to refer to algebraic data types.

3.1 Data and Codata

Data describes what things are, while codata describes what things can do.

We have seen that data is defined in terms of constructors producing elements
of the data type. Let’s take a very simple example: a Bool is either True or False.
We know we can represent this in Scala as

enum Bool {

case True

case False

}

The definition tells us there are two ways to construct an element of type Bool.
Furthermore, if we have such an element we can tell exactly which case it is,
by using a pattern match for example. Similarly, if the instances themselves
hold data, as in List for example, we can always extract all the data within
them. Again, we can use pattern matching to achieve this.
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Codata, in contrast, is defined in terms of operations we can perform on the
elements of the type. These operations are sometimes called destructors
(which we’ve already encountered), observations, or eliminators. A common
example of codata is a data structures such as a set. We might define the
operations on a Set with elements of type A as:

• contains which takes a Set[A] and an element A and returns a Boolean

indicating if the set contains the element;
• insert which takes a Set[A] and an element A and returns a Set[A]

containing all the elements from the original set and the new element;
and

• union which takes a Set[A] and a set Set[A] and returns a Set[A]

containing all the elements of both sets.

In Scala we could implement this definition as

trait Set[A] {

/** True if this set contains the given element */

def contains(elt: A): Boolean

/** Construct a new set containing all elements in this set and the

given element */

def insert(elt: A): Set[A]

/** Construct the union of this and that set */

def union(that: Set[A]): Set[A]

}

This definition does not tell us anything about the internal representation of
the elements in the set. It could use a hash table, a tree, or something more
exotic. It does, however, tell us what we can do with the set. We know we
can take the union but not the intersection, for example.

If you come from the object‐oriented world you might recognize the
description of codata above as programming to an interface. In some ways
codata is just taking concepts from the object‐oriented world and presenting
them in a way that is consistent with the rest of the functional programming



58 CHAPTER 3. OBJECTS AS CODATA

paradigm. However, this does not mean adopting all the features of object‐
oriented programming. We won’t use state, which is difficult to reason
about. We also won’t use implementation inheritance either, for the same
reason. In our subset of object‐oriented programming we’ll either be defining
interfaces (whichmay have default implementations of somemethods) or final
classes that implement those interfaces. Interestingly, this subset of object‐
oriented programming is often recommended by advocates of object‐oriented
programming.

Let’s now be a little more precise in our definition of codata, which will make
the duality between data and codata clearer. Remember the definition of data:
it is defined in terms of sums (logical ors) and products (logical ands). We
can transform any data into a sum of products. Each product in the sum is
a constructor, and the product itself is the parameters that the constructor
accepts. Finally, we can think of constructors as functions which take some
arbitrary input and produce an element of data. Our end point is a sum of
functions from arbitrary input to data.

More abstractly, if we are constructing an element of some data type Awe call
one of the constructors

• A1: (B, C, ...)=> A; or
• A2: (D, E, ...)=> A; or
• A3: (F, G, ...)=> A; and so on.

Now we’ll turn to codata. Codata is defined as a product of functions, these
functions being the destructors. The input to a destructor is always an element
of the codata type and possibly some other parameters. The output is usually
something that is not of the codata type. Thus constructing an element of
some codata type A means defining

• A1: (A, B, ...)=> C; and
• A2: (A, D, ...)=> E; and
• A3: (A, F, ...)=> G; and so on.

This hopefully makes the duality between the two clearer.
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Now we understand what codata is, we will turn to representing codata in
Scala.

3.2 Codata in Scala

We have already seen an example of codata, which I have repeated below.

trait Set[A] {

def contains(elt: A): Boolean

def insert(elt: A): Set[A]

def union(that: Set[A]): Set[A]

}

The abstract definition of this, which is a product of functions, defines a Set

with elements of type A as:

• a function contains taking a Set[A] and an element A and returning a
Boolean,

• a function insert taking a Set[A] and an element A and returning a Set
[A], and

• a function union taking a Set[A] and a set Set[A] and returning a Set[A].

Notice that the first parameter of each function is the type we are defining,
Set[A].

The translation to Scala is:

• the overall type becomes a trait; and
• each function becomes a method on that trait. The first parameter
is the hidden this parameter, and other parameters become normal
parameters to the method.
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This gives us the Scala representation we started with.

This is only half the story for codata. We also need to actually implement the
interface we’ve just defined. There are three approaches we can use:

1. a final subclass, in the case where we want to name the
implementation;

2. an anonymous subclass; or
3. more rarely, an object.

Neither final nor anonymous subclasses can be further extended, meaningwe
cannot create deep inheritance hierarchies. This in turn avoids the difficulties
that come from reasoning about deep hierarchies. Using a class rather than
a case class means we don’t expose implementation details like constructor
arguments.

Some examples are in order. Here’s a simple example of Set, which uses a List
to hold the elements in the set.

final class ListSet[A](elements: List[A]) extends Set[A] {

def contains(elt: A): Boolean =

elements.contains(elt)

def insert(elt: A): Set[A] =

ListSet(elt :: elements)

def union(that: Set[A]): Set[A] =

elements.foldLeft(that) { (set, elt) => set.insert(elt) }

}

object ListSet {

def empty[A]: Set[A] = ListSet(List.empty)

}

This uses the first implementation approach, a final subclass. Where would
we use an anonymous subclass? They are most useful when implementing
methods that return our codata type. Let’s take union as an example. It returns
our codata type, Set, and we could implement it as shown below.
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trait Set[A] {

def contains(elt: A): Boolean

def insert(elt: A): Set[A]

def union(that: Set[A]): Set[A] = {

val self = this

new Set[A] {

def contains(elt: A): Boolean =

self.contains(elt) || that.contains(elt)

def insert(elt: A): Set[A] =

// Arbitrary choice to insert into self

self.insert(elt).union(that)

}

}

}

This uses an anonymous subclass to implement union on the Set trait, and
hence defines the method for all subclasses. I haven’t made the method final

so that subclasses can override it with a more efficient implementation. This
does open up the danger of implementation inheritance. This is an example
of where theory and craft diverge. In theory we never want implementation
inheritance, but in practice it can be useful as an optimization.

It can also be useful to implement utility methods defined purely in terms of
the destructors. Let’s say we wanted to implement a method containsAll that
checks if a Set contains all the elements in an Iterable collection.

def containsAll(elements: Iterable[A]): Boolean

We can implement this purely in terms of contains on Set and forall on
Iterable.

trait Set[A] {

def contains(elt: A): Boolean

def insert(elt: A): Set[A]
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def union(that: Set[A]): Set[A]

def containsAll(elements: Iterable[A]): Boolean =

elements.forall(elt => this.contains(elt))

}

Once again we could make this a finalmethod. In this case it’s probably more
justified as it’s difficult to imagine a more efficient implementation.

Data and codata are both realized in Scala as variations of the same language
features of classes and objects. This means we can define types that have
properties of both data and codata. We have actually already done this. When
we define data we must define names for the fields within the data, thus
defining destructors. This is the same in most languages, which don’t make
a hard distinction between data and codata.

Part of the appeal, I think, of classes and objects is that they can express so
many conceptually different abstractions with the same language constructs.
This gives them a surface appearance of simplicity; it seems we need to learn
only one abstraction to solve a huge of number of coding problems. However
this apparent simplicity hides real complexity, as this variety of uses forces us
to reverse engineer the conceptual intention from the code.

3.3 Structural Recursion and Corecursion for Codata

In this section we’ll build a library for streams, also known as lazy lists. These
are the codata equivalent of lists. Whereas a list must have a finite length,
streams have an infinite length. We’ll use this example to explore structural
recursion and structural corecursion as applied to codata.

Let’s start by reviewing structural recursion and corecursion. The key idea is to
use the input or output type, respectively, to drive the process of writing the
method. We’ve already seen how this works with data, where we emphasized
structural recursion. With codata it’s more often the case that structural
corecursion is used. The steps for using structural corecursion are:

1. recognize the output of the method or function is codata;
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2. write down the skeleton to construct an instance of the codata type,
usually using an anonymous subclass; and

3. fill in the methods, using strategies such as structural recursion or
following the types to help.

It’s important that any computation takes places within the methods, and so
only runs when the methods are called. Once we start creating streams the
importance of this will become clear.

For structural recursion the steps are:

1. recognize the input of the method or function is codata;
2. note the codata’s destructors as possible sources of values in writing
the method; and

3. complete the method, using strategies such as following the types or
structural corecursion and the methods identified above.

Our first step is to define our stream type. As this is codata, it is defined in
terms of its destructors. The destructors that define a Stream of elements of
type A are:

• a head of type A; and
• a tail of type Stream[A].

Note these are almost the destructors of List. We haven’t defined isEmpty as a
destructor because our streams never end and thus this method would always
return false. (A lot of real implementations, such as the LazyList in the Scala
standard library, do define such a method which allows them to represent
finite and infinite lists in the same structure. We’re not doing this for simplicity
and because we want to work with codata in its purest form.)

We can translate this to Scala, as we’ve previously seen, giving us
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trait Stream[A] {

def head: A

def tail: Stream[A]

}

Nowwe can create an instance of Stream. Let’s create a never‐ending streamof
ones. We will start with the skeleton below and apply strategies to complete
the code.

val ones: Stream[Int] = ???

The first strategy is structural corecursion. We’re returning an instance of
codata, so we can insert the skeleton to construct a Stream.

val ones: Stream[Int] =

new Stream[Int] {

def head: Int = ???

def tail: Stream[Int] = ???

}

Here I’ve used the anonymous subclass approach, so I can just write all the
code in one place.

The next step is to fill in the method bodies. The first method, head, is trivial.
The answer is 1 by definition.

val ones: Stream[Int] =

new Stream[Int] {

def head: Int = 1

def tail: Stream[Int] = ???

}

It’s not so obvious what to do with tail. We want to return a Stream[Int] so
we could apply structural corecursion again.

val ones: Stream[Int] =

new Stream[Int] {

def head: Int = 1

def tail: Stream[Int] =
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new Stream[Int] {

def head: Int = 1

def tail: Stream[Int] = ???

}

}

This approach doesn’t seem like it’s going to work. We’ll have to write this out
an infinite number of times to correctly implement the method, which might
be a problem.

Instead we can follow the types. We need to return a Stream[Int]. We have
one in scope: ones. This is exactly the Stream we need to return: the infinite
stream of ones!

val ones: Stream[Int] =

new Stream[Int] {

def head: Int = 1

def tail: Stream[Int] = ones

}

You might be alarmed to see the circular reference to ones in tail. This works
because it is within a method, and so is only evaluated when that method is
called. This delaying of evaluation is what allows us to represent an infinite
number of elements, as we only ever evaluate a finite portion of them. This is
a core difference from data, which is fully evaluated when it is constructed.

Let’s check that our definition of ones does indeed work. We can’t extract all
the elements from an infinite Stream (at least, not in finite time) so in general
we’ll have to resort to checking a finite sequence of elements.

ones.head

// res0: Int = 1

ones.tail.head

// res1: Int = 1

ones.tail.tail.head

// res2: Int = 1

This all looks correct. We’ll often want to check our implementation in this
way, so let’s implement a method, take, to make this easier.
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trait Stream[A] {

def head: A

def tail: Stream[A]

def take(count: Int): List[A] =

count match {

case 0 => Nil

case n => head :: tail.take(n - 1)

}

}

We can use either the structural recursion or structural corecursion strategies
for data to implement take. Since we’ve already covered these in detail I
won’t go through them here. The important point is that take only uses the
destructors when interacting with the Stream.

Now we can more easily check our implementations are correct.

ones.take(5)

// res4: List[Int] = List(1, 1, 1, 1, 1)

For our next task we’ll implement map. Implementing a method on Stream

allows us to see both structural recursion and corecursion for codata in action.
As usual we begin by writing out the method skeleton.

trait Stream[A] {

def head: A

def tail: Stream[A]

def map[B](f: A => B): Stream[B] =

???

}

Now we have a choice of strategy to use. Since we haven’t used structural
recursion yet, let’s start with that. The input is codata, a Stream, and the
structural recursion strategy tells us we should consider using the destructors.
Let’s write them down to remind us of them.
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trait Stream[A] {

def head: A

def tail: Stream[A]

def map[B](f: A => B): Stream[B] = {

this.head ???

this.tail ???

}

}

To make progress we can follow the types or use structural corecursion. Let’s
choose corecursion to see another example of it in use.

trait Stream[A] {

def head: A

def tail: Stream[A]

def map[B](f: A => B): Stream[B] = {

this.head ???

this.tail ???

new Stream[B] {

def head: B = ???

def tail: Stream[B] = ???

}

}

}

Now we’ve used structural recursion and structural corecursion, a bit of
following the types is in order. This quickly arrives at the correct solution.

trait Stream[A] {

def head: A

def tail: Stream[A]

def map[B](f: A => B): Stream[B] = {

val self = this

new Stream[B] {

def head: B = f(self.head)

def tail: Stream[B] = self.tail.map(f)

}
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}

}

There are two important points. Firstly, notice how I gave the name self to
this. This is so I can access the value inside the new Stream we are creating,
where this would be bound to this new Stream. Next, notice that we access
self.head and self.tail inside the methods on the new Stream. This maintains
the correct semantics of only performing computation when it has been asked
for. If we performed the computation outside of the methods that we would
do it too early, which is some cases can lead to an infinite loop.

As our final example, let’s return to constructing Stream, and implement
the universal constructor unfold. We start with the skeleton for unfold,
remembering the seed parameter.

trait Stream[A] {

def head: A

def tail: Stream[A]

}

object Stream {

def unfold[A, B](seed: A): Stream[B] =

???

}

It’s natural to apply structural corecursion to make progress.

trait Stream[A] {

def head: A

def tail: Stream[A]

}

object Stream {

def unfold[A, B](seed: A): Stream[B] =

new Stream[B]{

def head: B = ???

def tail: Stream[B] = ???

}

}

Nowwe can follow the types, adding parameters as we need them. This gives
us the complete method shown below.
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trait Stream[A] {

def head: A

def tail: Stream[A]

}

object Stream {

def unfold[A, B](seed: A, f: A => B, next: A => A): Stream[B] =

new Stream[B]{

def head: B =

f(seed)

def tail: Stream[B] =

unfold(next(seed), f, next)

}

}

We can use this to implement some interesting streams. Here’s a stream that
alternates between 1 and -1.

val alternating = Stream.unfold(

true,

x => if x then 1 else -1,

x => !x

)

We can check it works.

alternating.take(5)

// res11: List[Int] = List(1, -1, 1, -1, 1)

Exercise: Stream Combinators

It’s time for you to get some practice with structural recursion and structural
corecursion using codata. Implement filter, zip, and scanLeft on Stream. They
have the same semantics as the same methods on List, and the signatures
shown below.

trait Stream[A] {

def head: A

def tail: Stream[A]
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def filter(pred: A => Boolean): Stream[A]

def zip[B](that: Stream[B]): Stream[(A, B)]

def scanLeft[B](zero: B)(f: (B, A) => B): Stream[B]

}

See the solution

We can do some neat things with the methods defined above. For example,
here is the stream of natural numbers.

val naturals = Stream.ones.scanLeft(0)((b, a) => b + a)

As usual, we should check it works.

naturals.take(5)

// res15: List[Int] = List(0, 1, 2, 3, 4)

We could also define naturals using unfold. More interesting is defining it in
terms of itself.

val naturals: Stream[Int] =

new Stream {

def head = 1

def tail = naturals.map(_ + 1)

}

This might be confusing. If so, spend a bit of time thinking about it. It really
does work!

naturals.take(5)

// res17: List[Int] = List(1, 2, 3, 4, 5)

3.3.1 Efficiency and Effects

You may have noticed that our implement recomputes values, possibly many
times. A good example is the implementation of filter. This recalculates the
head and tail on each call, which could be a very expensive operation.
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def filter(pred: A => Boolean): Stream[A] = {

val self = this

new Stream[A] {

def head: A = {

def loop(stream: Stream[A]): A =

if pred(stream.head) then stream.head

else loop(stream.tail)

loop(self)

}

def tail: Stream[A] = {

def loop(stream: Stream[A]): Stream[A] =

if pred(stream.head) then stream.tail.filter(pred)

else loop(stream.tail)

loop(self)

}

}

}

Weknow that delaying the computation until themethod is called is important,
because that is how we can handle infinite and self‐referential data. However
we don’t need to redo this computation on successive calls. We can instead
cache the result from the first call and use that next time. Scala makes
this easy with lazy val, which is a val that is not computed until its first
call. Additionally, Scala’s use of the uniform access principle means we can
implement a method with no parameters using a lazy val. Here’s a quick
example demonstrating it in use.

def always[A](elt: => A): Stream[A] =

new Stream[A] {

lazy val head: A = elt

lazy val tail: Stream[A] = always(head)

}

val twos = always(2)

As usual we should check our work.
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twos.take(5)

// res18: List[Int] = List(2, 2, 2, 2, 2)

We get the same result whether we use a method or a lazy val, because
we are assuming that we are only dealing with pure computations that have
no dependency on state that might change. In this case a lazy val simply
consumes additional space to save on time.

Recomputing a result every time it is needed is known as call by name, while
caching the result the first time it is computed is known as call by need.
These two different evaluation strategies can be applied to individual values,
as we’ve done here, or across an entire programming. Haskell, for example,
uses call by need. All values in Haskell are only computed the first time they
are need. This is approach is sometimes known as lazy evaluation. Another
alternative, called call by value, computes results when they are defined
instead of waiting until they are needed. This is the default in Scala.

We can illustrate the difference between call by name and call by need if we
use an impure computation. For example, we can define a stream of random
numbers. Random number generators depend on some internal state.

Here’s the call by name implementation, using the methods we have already
defined.

import scala.util.Random

val randoms: Stream[Double] =

Stream.unfold(Random, r => r.nextDouble(), r => r)

Notice that we get different results each time we take a section of the Stream.
We would expect these results to be the same.

randoms.take(5)

// res19: List[Double] = List(

// 0.9237544457421732,

// 0.8642186540625004,

// 0.8698989306256442,

// 0.22468019943285522,

// 0.3767615145643115
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// )

randoms.take(5)

// res20: List[Double] = List(

// 0.7267811044418853,

// 0.7859444709051769,

// 0.8694361699640497,

// 0.05752032099131699,

// 0.7662521778815536

// )

Now let’s define the same stream in a call by need style, using lazy val.

val randomsByNeed: Stream[Double] =

new Stream[Double] {

lazy val head: Double = Random.nextDouble()

lazy val tail: Stream[Double] = randomsByNeed

}

This time we get the same result when we take a section, and each number is
the same.

randomsByNeed.take(5)

// res21: List[Double] = List(

// 0.5985585836455464,

// 0.5985585836455464,

// 0.5985585836455464,

// 0.5985585836455464,

// 0.5985585836455464

// )

randomsByNeed.take(5)

// res22: List[Double] = List(

// 0.5985585836455464,

// 0.5985585836455464,

// 0.5985585836455464,

// 0.5985585836455464,

// 0.5985585836455464

// )

If we wanted a stream that had a different random number for each element
but those numbers were constant, we could redefine unfold to use call by
need.
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def unfoldByNeed[A, B](seed: A, f: A => B, next: A => A): Stream[B] =

new Stream[B]{

lazy val head: B =

f(seed)

lazy val tail: Stream[B] =

unfoldByNeed(next(seed), f, next)

}

Now redefining randomsByNeed using unfoldByNeed gives us the result we are
after. First, redefine it.

val randomsByNeed2 =

unfoldByNeed(Random, r => r.nextDouble(), r => r)

Then check it works.

randomsByNeed2.take(5)

// res23: List[Double] = List(

// 0.21419192838220846,

// 0.9695332496155052,

// 0.5332322197450731,

// 0.25855021551871094,

// 0.864891048874998

// )

randomsByNeed2.take(5)

// res24: List[Double] = List(

// 0.21419192838220846,

// 0.9695332496155052,

// 0.5332322197450731,

// 0.25855021551871094,

// 0.864891048874998

// )

These subtleties are one of the reasons that functional programmers try to
avoid using state as far as possible.

3.4 Relating Data and Codata

In this section we’ll explore the relationship between data and codata, and in
paritcular converting one to the other. We’ll look at it in two ways: firstly a
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very surface‐level relationship between the two, and then a deep connection
via fold.

Remember that data is a sum of products, where the products are constructors
and we can view constructors as functions. So we can view data as a sum
of functions. Meanwhile, codata is a product of functions. We can easily
make a direct correspondence between the functions‐as‐constructors and the
functions in codata. What about the difference between the sum and the
product that remains. Well, when we have a product of functions we only call
one at any point in our code. So the logical or is in the choice of function to
call.

Let’s see how this works with a familiar example of data, List. As an algebraic
data type we can define

enum List[A] {

case Pair(head: A, tail: List[A])

case Empty()

}

The codata equivalent is

trait List[A] {

def pair(head: A, tail: List[A]): List[A]

def empty: List[A]

}

In the codata implementation we are explicitly representing the constructors
as methods, and pushing the choice of constructor to the caller. In a few
chapters we’ll see a use for this relationship, but for now we’ll leave it and
move on.

The other way to view the relationship is a connection via fold. We’ve already
learned how to derive the fold for any algebraic data type. For Bool, defined
as
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enum Bool {

case True

case False

}

the fold method is

enum Bool {

case True

case False

def fold[A](t: A)(f: A): A =

this match {

case True => t

case False => f

}

}

We know that fold is universal: we can write any other method in terms of
it. It therefore provides a universal destructor and is the key to treating data
as codata. In this case the fold is something we use all the time, except we
usually call it if.

Here’s the codata version of Bool, with fold renamed to if. (Note that Scala
allows us to define methods with the same name as key words, in this case if,
but we have to surround them in backticks to use them.)

trait Bool {

def `if`[A](t: A)(f: A): A

}

Now we can define the two instances of Bool purely as codata.

val True = new Bool {

def `if`[A](t: A)(f: A): A = t

}
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val False = new Bool {

def `if`[A](t: A)(f: A): A = f

}

Let’s see this in use by defining and in terms of if, and then creating some
examples. First the definition of and.

def and(l: Bool, r: Bool): Bool =

new Bool {

def `if`[A](t: A)(f: A): A =

l.`if`(r)(False).`if`(t)(f)

}

Now the examples. This is simple enough that we can try the entire truth
table.

and(True, True).`if`("yes")("no")

// res1: String = "yes"

and(True, False).`if`("yes")("no")

// res2: String = "no"

and(False, True).`if`("yes")("no")

// res3: String = "no"

and(False, False).`if`("yes")("no")

// res4: String = "no"

Exercise: Or and Not

Test your understanding of Bool by implementing or and not in the same way
we implemented and above.

See the solution

Notice that, once again, computation only happens on demand. In this case,
nothing happens until if is actually called. Until that point we’re just building
up a representation of what we want to happen. This again points to how
codata can handle infinite data, by only computing the finite amount required
by the actual computation.

The rules here for converting from data to codata are:
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1. On the interface (trait) defining the codata, define a method with the
same signature as fold.

2. Define an implementation of the interface for each product case in the
data. The data’s constructor arguments become constructor arguments
on the codata classes. If there are no constructor arguments, as in Bool,
we can define values instead of classes.

3. Each implementation implements the case of fold that it corresponds
to.

Let’s apply this to a slightly more complex example: List. We’ll start by
defining it as data and implementing fold. I’ve chosen to implement foldRight
but foldLeft would be just as good.

enum List[A] {

case Pair(head: A, tail: List[A])

case Empty()

def foldRight[B](empty: B)(f: (A, B) => B): B =

this match {

case Pair(head, tail) => f(head, tail.foldRight(empty)(f))

case Empty() => empty

}

}

Now let’s implement it as codata. We start by defining the interface with the
fold method. In this case I’m calling it foldRight as it’s going to exactly mirror
the foldRight we just defined.

trait List[A] {

def foldRight[B](empty: B)(f: (A, B) => B): B

}

Now we define the implementations. There is one for Pair and one for Empty,
which are the two cases in data definition of List. Notice that in this case
the classes have constructor arguments, which correspond to the constructor
arguments on the correspnding product types.
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final class Pair[A](head: A, tail: List[A]) extends List[A] {

def foldRight[B](empty: B)(f: (A, B) => B): B =

???

}

final class Empty[A]() extends List[A] {

def foldRight[B](empty: B)(f: (A, B) => B): B =

???

}

I didn’t implement the bodies offoldRight so I could show this as a separate
step. The implementation here directly mirrors foldRight on the data
implementation, and we can use the same strategies to implement the codata
equivalents. That is to say, we can use the recursion rule, reasoning by case,
and following the types. I’m going to skip these details as we’ve already gone
through them in depth. The final code is shown below.

final class Pair[A](head: A, tail: List[A]) extends List[A] {

def foldRight[B](empty: B)(f: (A, B) => B): B =

f(head, tail.foldRight(empty)(f))

}

final class Empty[A]() extends List[A] {

def foldRight[B](empty: B)(f: (A, B) => B): B =

empty

}

This code is almost the same as the dynamic dispatch implementation, which
again shows the relationship between codata and object‐oriented code.

The transformation from data to codata goes under several names:
refunctionalization, Church encoding, and Böhm‐Berarducci encoding. The
latter two terms specifically refer to transformations into the untyped and
typed lambda calculus respectively. The lambda calculus is a simple model
programming language that contains only functions. We’re going to take a
quick detour to show that we can, indeed, encode lists using just functions.
This demonstrates that objects and functions have equivalent power.

The starting point is creating a type alias List, which defines a list as a fold.
This uses a polymorphic function type, which is new in Scala 3. Inspect the
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type signature and you’ll see it is the same as foldRight above.

type List[A, B] = (B, (A, B) => B) => B

Now we can define Pair and Empty as functions. The first parameter list is the
constructor arguments, and the second parameter list is the parameters for
foldRight.

val Empty: [A, B] => () => List[A, B] =

[A, B] => () => (empty, f) => empty

val Pair: [A, B] => (A, List[A, B]) => List[A, B] =

[A, B] => (head: A, tail: List[A, B]) => (empty, f) =>

f(head, tail(empty, f))

Finally, let’s see an example to show it working. We will first define the list
containing 1, 2, 3. Due to a restriction in polymorphic function types, I have to
add the useless empty parameter.

val list: [B] => () => List[Int, B] =

[B] => () => Pair(1, Pair(2, Pair(3, Empty())))

Now we can compute the sum and product of the elements in this list.

val sum = list()(0, (a, b) => a + b)

// sum: Int = 6

val product = list()(1, (a, b) => a * b)

// product: Int = 6

It works!

The purpose of this little demonstration is to show that functions are just
objects (in the codata sense) with a single method. Scala this makes apparent,
as functions are objects with an apply method.

We’ve seen that data can be translated to codata. The reverse is also possible:
we simply tabulate the results of each possible method call. In other words,
the data representation is memoisation, a lookup table, or a cache.
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Althoughwe can convert data to codata and vice versa, there are good reasons
to choose one over the other. We’ve already seen one reason: with codata
we can represent infinite structures. In this next section we’ll see another
difference: the extensibility that data and codata permit.

3.5 Data and Codata Extensibility

We have seen that codata can represent types with an infinite number of
elements, such as Stream. This is one expressive difference from data, which
must always be finite. We’ll now look at another, which is the type of
extensibility we get from data and from codata. Together these gives use
guidelines to choose between the two.

Firstly, let’s define extensibility. It means the ability to add new features
without modifying existing code. (If we allow modification of existing code
then any extension becomes trivial.) In particular there are two dimensions
along which we can extend code: adding new functions or adding new
elements. We will see that data and codata have orthogonal extensibility: it’s
easy to add new functions to data but adding new elements is impossible
without modifying existing code, while adding new elements to codata is
straight‐forward but adding new functions is not.

Let’s start with a concrete example of both data and codata. For data we’ll use
the familiar List type.

enum List[A] {

case Empty()

case Pair(head: A, tail: List[A])

}

For codata, we’ll use Set as our exemplar.

trait Set[A] {

def contains(elt: A): Boolean

def insert(elt: A): Set[A]

def union(that: Set[A]): Set[A]
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}

We know there are lots of methods we can define on List. The standard
library is full of them! We also know that any method we care to write can
be written using structural recursion. Finally, we can write these methods
without modifying existing code.

Imagine filter was not defined on List. We can easily implement it as

import List.*

def filter[A](list: List[A], pred: A => Boolean): List[A] =

list match {

case Empty() => Empty()

case Pair(head, tail) =>

if pred(head) then Pair(head, filter(tail, pred))

else filter(tail, pred)

}

Wecould even use an extensionmethod tomake it appear as a normal method.

extension [A](list: List[A]) {

def filter(pred: A => Boolean): List[A] =

list match {

case Empty() => Empty()

case Pair(head, tail) =>

if pred(head) then Pair(head, tail.filter(pred))

else tail.filter(pred)

}

}

This shows we can add new functions to data without issue.

What about adding new elements to data? Perhaps we want to add a special
case to optimize single‐element lists. This is impossible without changing
existing code. By definition, we cannot add a new element to an enumwithout
changing the enum. Adding such a new element would break all existing pattern
matches, and so require they all change. So in summary we can add new
functions to data, but not new elements.
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Now let’s look at codata. This has the opposite extensibility; duality strikes
again! In the codata case we can easily add new elements. We simply
implement the trait that defines the codata interface. We saw this when
we defined, for example, ListSet.

final class ListSet[A](elements: List[A]) extends Set[A] {

def contains(elt: A): Boolean =

elements.contains(elt)

def insert(elt: A): Set[A] =

ListSet(elt :: elements)

def union(that: Set[A]): Set[A] =

elements.foldLeft(that) { (set, elt) => set.insert(elt) }

}

object ListSet {

def empty[A]: Set[A] = ListSet(List.empty)

}

What about adding new functionality? If the functionality can be defined
in terms of existing functionality then we’re ok. We can easily define this
functionality, andwe can use the extensionmethod trick tomake it appear like
a built‐in. However, if we want to define a function that cannot be expressed
in terms of existing functions we are out of luck. Let’s saw we want to define
some kind of iterator over the elements of a Set. We might use a LazyList

, the standard library’s equivalent of Stream we defined earlier, because we
know some sets have an infinite number of elements. Well, we can’t do
this without changing the definition of Set, which in turn breaks all existing
implementations. We cannot define it in a different way because we don’t
know all the possible implementations of Set.

So in summary we can add new elements to codata, but not new functions.

If we tabulate this we clearly see that data and codata have orthogonal
extensibility.
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Extension Data Codata

Add elements No Yes
Add functions Yes No

This difference in extensibility gives us another rule for choosing between
data and codata as an implementation strategy, in addition to the finite vs
infinite distinction we saw earlier. If we want extensibilty of functions but not
elements we should use data. If we have a fixed interface but an unknown
number of possible implementations we should use codata.

You might wonder if we can have both forms of extensibility. Achieving this is
called the expression problem. There are various ways to solve the expression
problem, and we’ll see one that works particularly well in Scala in a later
chapter.

3.6 Exercise: Sets

In this extended exercise we’ll explore the Set interface we have already used
in several examples, reproduced below.

trait Set[A] {

/** True if this set contains the given element */

def contains(elt: A): Boolean

/** Construct a new set containing the given element */

def insert(elt: A): Set[A]

/** Construct the union of this and that set */

def union(that: Set[A]): Set[A]

}

We also saw a simple implementation, storing the elements in the set in a List.
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final class ListSet[A](elements: List[A]) extends Set[A] {

def contains(elt: A): Boolean =

elements.contains(elt)

def insert(elt: A): Set[A] =

ListSet(elt :: elements)

def union(that: Set[A]): Set[A] =

elements.foldLeft(that) { (set, elt) => set.insert(elt) }

}

object ListSet {

def empty[A]: Set[A] = ListSet(List.empty)

}

The implementation for union is a bit unsatisfactory; it’s doesn’t use any of
our strategies for writing code. We can implement both union and insert in a
generic way that works for all sets (in other words, is implemented on the Set

trait) and uses the strategies we’ve seen in this chapter. Go ahead and do this.

See the solution

Your next challenge is to implement Evens, the set of all even integers, which
we’ll represent as a Set[Int]. This is an infinite set; we cannot directly
enumerate all the elements in this set. (We actually could enumerate all the
even elements that are 32‐bit Ints, but we don’t want to as this would use
excessive amounts of space.)

See the solution

We can generalize this idea to defining sets in terms of indicator functions,
which is a function of type A => Boolean, returning returns true if the input
belows to the set. Implement IndicatorSet, which is constructed with a single
indicator function parameter.

See the solution
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3.7 Conclusions

In this chapter we’ve explored codata, the dual of data. Codata is defined by
its interface—what we can do with it—as opposed to data, which is defined by
what it is. More formally, codata is a product of destructors, where destructors
are functions from the codata type (and, optionally, some other inputs) to
some type. By avoiding the elements of object‐oriented programming that
make it hard to reason about—state and implementation inheritance—codata
brings elements of object‐oriented programming that accord with the other
functional programming strategies. In Scala we define codata as a trait, and
implement it as a final class, anonymous subclass, or an object.

We have two strategies for implementing methods using codata: structural
corecursion, which we can use when the result is codata, and structural
recursion, which we can use when an input is codata. Structural corecursion
is usually the more useful of the two, as it gives more structure (pun intended)
to the method we are implementing. The reverse is true for data.

We saw that data is connected to codata via fold: any data can instead be
implemented as codata with a single destructor that is the fold for that data.
The reverse is also: we can enumerate all potential pairs of inputs and outputs
of destructors to represent codata as data. However this does not mean that
data and codata are equivalent. We have seen many examples of codata
representing infinite structures, such as sets of all even numbers and streams
of all natural numbers. We have also seen that data and codata offer different
forms of extensibility: data makes it easy to add new functions, but adding
new elements requires changing existing code, while it is easy to add new
elements to codata but we change existing code if we add new functions.

The earliest reference I could find to codata in programming languages is
Hagino [1989]. This is much more recent than algebraic data, which I think
explains why codata is relatively unknown. There are some excellent recent
papers that deal with codata. I highly recommendCodata in Action [Downen et
al. 2019], which inspired large portions of this chapter. Exploring Codata: The
Relation to Object‐Orientation [Sullivan 2019] is also worthwhile. How to Add
Laziness to a Strict Language Without Even Being Odd [Wadler et al. 1998] is an
older paper that discusses the implementation of streams, and in particular the
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difference between a not‐quite‐lazy‐enough implementation they label odd
and the version we saw, which they call even. These correspond to Stream

and LazyList in the Scala standard library respectively. Classical (Co)Recursion:
Programming [Downen and Ariola 2021] is an interesting survey of corecursion
in different languages, and covers many of the same examples that I used here.
Finally, if you really want to get into the weeds of the relationship between
data and codata, Beyond Church encoding: Boehm‐Berarducci isomorphism of
algebraic data types and polymorphic lambda‐terms [Kiselyov 2005] is for you.
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Chapter 4

Contextual Abstraction

All but the simplest programs depend on the context in which they run.
The number of available CPU cores is an example of context provided by
the computer, which a program might adapt to by changing how work is
distributed. Other forms of context include configuration read from files and
environment variables, and (and we’ll see at lot of this later) values created at
compile‐time, such as serialization formats, in response to the type of some
method parameters.

Scala is one of the few languages that provides features for contextual
abstraction, known as implicits in Scala 2 or given instances in Scala 3. In
Scala these features are intimately related to types; types are used to select
between different available given instances and drive construction of given
instances at compile‐time.

Most Scala programmers are less confident with the features for contextual
abstraction than with other parts of the language, and they are often entirely
novel to programmers coming from other languages. Hence this chapter will
start by reviewing the abstractions formely known as implicits: given instances
and using clauses. We will then look at one of their major uses, type classes¹.
Type classes allow us to extend existing types with new functionality, without
using traditional inheritance, and without altering the original source code.

¹The word “class” doesn’t strictly mean class in the Scala or Java sense.

89



90 CHAPTER 4. CONTEXTUAL ABSTRACTION

Type classes are the core of Cats, which we will be exploring in the next part
of this book.

4.1 The Mechanics of Contextual Abstraction

In section we’ll go through the main Scala language features for contextual
abstraction. Once we have a firm understanding of the mechanics of
contextual abstraction we’ll move on to their use.

The language features for contextual abstraction have changed name from
Scala 2 to Scala 3, but they work in largely the same way. In the table below
I show the Scala 3 features, and their Scala 2 equivalents. If you use Scala 2
you’ll find that most of the code works simply by replacing givenwith implicit
val and using with implicit.

Scala 3 Scala 2

given instance implicit value
using clause implicit parameter

Let’s now explain how these language features work.

4.1.1 Using Clauses

We’ll start with using clauses. A using clause is a method parameter list that
starts with the using keyword. We use the term context parameters for the
parameters in a using clause.

def double(using x: Int) = x + x

The using keyword applies to all parameters in the list, so in add below both x

and y are context parameters.
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def add(using x: Int, y: Int) = x + y

We can have normal parameter lists, and multiple using clauses, in the same
method.

def addAll(x: Int)(using y: Int)(using z: Int): Int =

x + y + z

We cannot pass parameters to a using clause in the normal way. We must
proceed the parameters with the using keyword as shown below.

double(using 1)

// res0: Int = 2

add(using 1, 2)

// res1: Int = 3

addAll(1)(using 2)(using 3)

// res2: Int = 6

However this is not the typical way to pass parameters. In factwe don’t usually
explicit pass parameters to using clause at all. We usually use given instances
instead, so let’s turn to them.

4.1.2 Given Instances

A given instance is a value that is defined with the given keyword. Here’s a
simple example.

given theMagicNumber: Int = 3

We can use a given instance like a normal value.

theMagicNumber * 2

However, it’s more common to use them with a using clause. When we call a
method that has a using clause, and we do not explicitly supply values for the
context parameters, the compiler will look for given instances of the required
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type. If it finds a given instance it will automatically use it to complete the
method call.

For example, we defined double above with a single Int context parameter.
The given instance we just defined, theMagicNumber, also has type Int. So if we
call doublewithout providing any value for the context parameter the compiler
will provide the value theMagicNumber for us.

double

// res4: Int = 6

The same given instance will be used for multiple parameters in a using clause
with the same type, as in add defined above.

add

// res5: Int = 6

The above are the most important points for using clauses and given instances.
We’ll now turn to some of the details of their semantics.

4.1.3 Given Scope and Imports

Given instances are usually not explicitly passed to using clauses. Their whole
reason for existence is to get the compiler to do this for us. This could make
code hard to understand, so we need to be very clear about which given
instances are candidates to be supplied to a using clause. In this section we’ll
look at the given scope, which is all the places that the compiler will look for
given instances, and the special syntax for importing given instances.

The first rule we should know about the given scope is that it starts at the call
site, where the method with a using clause is called, not at the definition site
where themethod is defined. This means the following code does not compile,
because the given instance is not in scope at the call site, even though it is in
scope at the definition site.
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object A {

given a: Int = 1

def whichInt(using int: Int): Int = int

}

A.whichInt

// error:

// No given instance of type Int was found for parameter int of method

whichInt in object A

// A.whichInt

// ^^^^^^^^

The second rule, which we have been relying on in all our examples so far,
is that the given scope includes the lexical scope at the call site. The lexical
scope is where we usually look up the values associated with names (like the
names of method parameters or val declarations). This means the following
code works, as a is defined in a scope that includes the call site.

object A {

given a: Int = 1

object B {

C.whichInt

}

object C {

def whichInt(using int: Int): Int = int

}

}

However, if there are multiple given instances in the same scope the compiler
will not arbitrarily choose one. Instead it fails with an error telling us the choice
is ambiguous.

object A {

given a: Int = 1

given b: Int = 2

def whichInt(using int: Int): Int = int
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whichInt

}

// error:

// Ambiguous given instances: both given instance a in object A and

// given instance b in object A match type Int of parameter int of

// method whichInt in object A

We can import given instances from other scopes, just like we can import
normal declarations, but we must explicitly say we want to import given
instances. The following code does not work because we have not explicitly
imported the given instances.

object A {

given a: Int = 1

def whichInt(using int: Int): Int = int

}

object B {

import A.*

whichInt

}

// error:

// No given instance of type Int was found for parameter int of method

whichInt in object A

//

// Note: given instance a in object A was not considered because it

was not imported with `import given`.

// whichInt

// ^

It works when we do explicitly import them using import A.given.

object A {

given a: Int = 1

def whichInt(using int: Int): Int = int

}

object B {

import A.{given, *}
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whichInt

}

One final wrinkle: the given scope includes the companion objects of any type
involved in the type of the using clause. This is best illustratedwith an example.
We’ll start by defining a type Sound that represents the sound made by its type
variable A, and a method soundOf to access that sound.

trait Sound[A] {

def sound: String

}

def soundOf[A](using s: Sound[A]): String =

s.sound

Now we’ll define some given instances. Notice that they are defined on the
relevant companion objects.

trait Cat

object Cat {

given catSound: Sound[Cat] =

new Sound[Cat]{

def sound: String = "meow"

}

}

trait Dog

object Dog {

given dogSound: Sound[Dog] =

new Sound[Dog]{

def sound: String = "woof"

}

}

Whenwe call soundOfwe don’t have to explicitly bring the instances into scope.
They are automatically in the given scope by virtue of being defined on the
companion objects of the types we use (Cat and Dog). If we had defined these
instances on the Sound companion object theywould also be in the given scope;
when looking for a Sound[A] both the companion objects of Sound and A are in
scope.
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soundOf[Cat]

// res12: String = "meow"

soundOf[Dog]

// res13: String = "woof"

We should almost always be defining given instances on companion objects.
This simple organization scheme means that users do not have to explicitly
import them but can easily find the implementations if they wish to inspect
them.

4.1.3.1 Given Instance Priority

Notice that given instance selection is based entirely on types. We don’t even
pass any values to soundOf! This means given instances are easiest to use
when there is only one instance for each type. In this case we can just put
the instances on a relevant companion object and everything works out.

However, this is not always possible (though it’s often an indication of a bad
design if it is not). For cases where we need multiple instances for a type, we
can use the instance priority rules to select between them. We’ll look at the
three most important rules below.

The first rule is that explicitly passing an instance takes priority over everything
else.

given a: Int = 1

def whichInt(using int: Int): Int = int

whichInt(using 2)

// res15: Int = 2

The second rule is that instances in the lexical scope take priority over
instances in a companion object
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trait Sound[A] {

def sound: String

}

trait Cat

object Cat {

given catSound: Sound[Cat] =

new Sound[Cat]{

def sound: String = "meow"

}

}

def soundOf[A](using s: Sound[A]): String =

s.sound

given purr: Sound[Cat] =

new Sound[Cat]{

def sound: String = "purr"

}

soundOf[Cat]

// res17: String = "purr"

The final rule is that instances in a closer lexical scope take preference over
those further away.

{

given growl: Sound[Cat] =

new Sound[Cat]{

def sound: String = "growl"

}

{

given mew: Sound[Cat] =

new Sound[Cat]{

def sound: String = "mew"

}

soundOf[Cat]

}

}
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// res18: String = "mew"

We’re now seen most of the details of how given instances and using clauses
work. This is a craft level explanation, and it naturally leads to the question:
where would use these tools? This is what we’ll address next, where we look
at type classes and their implementation in Scala.

4.2 Anatomy of a Type Class

Let’s now look at how type classes are implemented. There are three
important components to a type class: the type class itself, which defines an
interface, type class instances, which implement the type class for particular
types, and the methods that use type classes. The table below shows the
language features that correspond to each component.

Type Class Concept Language Feature

Type class trait
Type class instance given instance
Type class use using clause

Let’s see how this works in detail.

4.2.1 The Type Class

A type class is an interface or API that represents some functionality we want
implemented. In Scala a type class is represented by a trait with at least one
type parameter. For example, we can represent generic “serialize to JSON”
behaviour as follows:

// Define a very simple JSON AST

sealed trait Json

final case class JsObject(get: Map[String, Json]) extends Json

final case class JsString(get: String) extends Json

final case class JsNumber(get: Double) extends Json



4.2. ANATOMY OF A TYPE CLASS 99

case object JsNull extends Json

// The "serialize to JSON" behaviour is encoded in this trait

trait JsonWriter[A] {

def write(value: A): Json

}

JsonWriter is our type class in this example, with Json and its subtypes
providing supporting code. When we come to implement instances of
JsonWriter, the type parameter A will be the concrete type of data we are
writing.

4.2.2 Type Class Instances

The instances of a type class provide implementations of the type class for
specific types we care about, which can include types from the Scala standard
library and types from our domain model.

In Scala we create type class instances by defining given instances
implementing the type class.

object JsonWriterInstances {

given stringWriter: JsonWriter[String] =

new JsonWriter[String] {

def write(value: String): Json =

JsString(value)

}

final case class Person(name: String, email: String)

given JsonWriter[Person] with

def write(value: Person): Json =

JsObject(Map(

"name" -> JsString(value.name),

"email" -> JsString(value.email)

))

// etc...

}
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In this example we define two type class instances of JsonWriter, one for
String and one for Person. The definition for String uses the syntax we saw
in the previous section. The definition for Person uses two bits of syntax
that are new in Scala 3. Firstly, writing given JsonWriter[Person] creates an
anonymous given instance. We declare just the type and don’t need to name
the instance. This is fine because we don’t usually need to refer to given
instances by name. The second bit of syntax is the use of with to implement a
trait directly without having to write out new JsonWriter[Person] and so on.

In a real implementation we’d usually want to define the instances on a
companion object: the instance for String on the JsonWriter companion object
(becausewe cannot define it on the String companion object) and the instance
for Person on the Person companion object. I haven’t done this here because I
would need to redeclare JsonWriter, as a type and it’s companion object must
be declared at the same time.

4.2.3 Type Class Use

A type class use is any functionality that requires a type class instance to work.
In Scala this means any method that accepts instances of the type class as part
of a using clause.

We’re going to look at two patterns of type class usage, whichwe call interface
objects and interface syntax. You’ll find these in Cats and other libraries.

4.2.3.1 Interface Objects

The simplest way of creating an interface that uses a type class is to place
methods in a singleton object:

object Json {

def toJson[A](value: A)(using w: JsonWriter[A]): Json =

w.write(value)

}

To use this object, we import any type class instances we care about and call
the relevant method:
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import JsonWriterInstances.{*, given}

Json.toJson(Person("Dave", "dave@example.com"))

// res1: Json = JsObject(

// get = Map(

// "name" -> JsString(get = "Dave"),

// "email" -> JsString(get = "dave@example.com")

// )

// )

The compiler spots that we’ve called the toJson method without providing
the given instances. It tries to fix this by searching for given instances of the
relevant types and inserting them at the call site.

4.2.3.2 Interface Syntax

We can alternatively use extension methods to extend existing types with
interface methods². This is sometimes referred to as as syntax for the type
class, which is the term used by Cats. Scala 2 has an equivalent to extension
methods known as implicit classes.

Here’s an example defining an extension method to add a toJson method to
any type for which we have a JsonWriter instance.

object JsonSyntax {

extension [A](value: A) {

def toJson(using w: JsonWriter[A]): Json =

w.write(value)

}

}

We use interface syntax by importing it alongside the instances for the types
we need:

²You may occasionally see extension methods referred to as “type enrichment” or “pimping”.
These are older terms that we don’t use anymore.
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import JsonWriterInstances.given

import JsonSyntax.*

Person("Dave", "dave@example.com").toJson

// res2: Json = JsObject(

// get = Map(

// "name" -> JsString(get = "Dave"),

// "email" -> JsString(get = "dave@example.com")

// )

// )

Extension Methods on Traits

In Scala 3 we can define extension methods directly on a type class
trait. Since we’re defining toJson as just calling write on JsonWriter, we
could instead define toJson directly on JsonWriter and avoid creating an
separate extension method.

trait JsonWriter[A] {

extension (value: A) def toJson: Json

}

object JsonWriter {

given stringWriter: JsonWriter[String] =

new JsonWriter[String] {

extension (value: String)

def toJson: Json = JsString(value)

}

// etc...

}

We do not advocate this approach, because of a limitation in how Scala
searches for extension methods. The following code fails because Scala
only looks within the String companion object for extension methods,
and consequently does not find the extension method on the instance
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in the JsonWriter companion object.

"A string".toJson

// error:

// value toJson is not a member of String

// "A string".toJson

// ^^^^^^^^^^^^^^^^^

This means that users will have to explicitly import at least the instances
for the built‐in types (for which we cannot modify the companion
objects).

import JsonWriter.given

"A string".toJson

// res5: Json = JsString(get = "A string")

For consistency we recommend separating the syntax from the type
class instances and always explicitly importing it, rather than requiring
explicit imports for only some extension methods.

4.2.3.3 The summonMethod

The Scala standard library provides a generic type class interface called summon.
Its definition is very simple:

def summon[A](using value: A): A =

value

We can use summon to summon any value in the given scope. We provide the
type we want and summon does the rest:

summon[JsonWriter[String]]

// res6: JsonWriter[String] = repl.

MdocSession$MdocApp3$JsonWriter$$anon$7@181fdee9

Most type classes in Cats provide other means to summon instances.
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However, summon is a good fallback for debugging purposes. We can insert
a call to summonwithin the general flow of our code to ensure the compiler can
find an instance of a type class and ensure that there are no ambiguity errors.

4.3 Type Class Composition

So far we’ve seen type classes as a way to get the compiler to pass values
to methods. This is nice but it does seem like we’ve introduced a lot of new
concepts for a small gain. The real power of type classes lies in the compiler’s
ability to combine given instances to construct new given instances. This is
known as type class composition.

Type class composition works by a feature of given instances we have not
yet seen: given instances can themselves have context parameters. However,
before we go into this let’s see a motivational example.

Consider defining a JsonWriter for Option. Wewould need a JsonWriter[Option
[A]] for every A we care about in our application. We could try to brute force
the problem by creating a library of given instances:

given optionIntWriter: JsonWriter[Option[Int]] =

???

given optionPersonWriter: JsonWriter[Option[Person]] =

???

// and so on...

However, this approach clearly doesn’t scale. We end up requiring two given
instances for every type A in our application: one for A and one for Option[A].

Fortunately, we can abstract the code for handling Option[A] into a common
constructor based on the instance for A:

• if the option is Some(aValue), write aValue using the writer for A;

• if the option is None, return JsNull.
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Here is the same code written out using a parameterized given instance:

given optionWriter[A](using writer: JsonWriter[A]): JsonWriter[Option[

A]] =

new JsonWriter[Option[A]] {

def write(option: Option[A]): Json =

option match {

case Some(aValue) => writer.write(aValue)

case None => JsNull

}

}

This method constructs a JsonWriter for Option[A] by relying on a context
parameter to fill in the A‐specific functionality. When the compiler sees an
expression like this:

Json.toJson(Option("A string"))

it searches for an given instance JsonWriter[Option[String]]. It finds the given
instance for JsonWriter[Option[A]]:

Json.toJson(Option("A string"))(using optionWriter[String])

and recursively searches for a JsonWriter[String] to use as the context
parameter to optionWriter:

Json.toJson(Option("A string"))(using optionWriter(using stringWriter)

)

In this way, given instance resolution becomes a search through the space of
possible combinations of given instance, to find a combination that creates a
type class instance of the correct overall type.

4.3.1 Type Class Composition in Scala 2

In Scala 2 we can achieve the same effect with an implicit method with
implicit parameters. Here’s the Scala 2 equivalent of optionWriter above.
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implicit def scala2OptionWriter[A]

(implicit writer: JsonWriter[A]): JsonWriter[Option[A]] =

new JsonWriter[Option[A]] {

def write(option: Option[A]): Json =

option match {

case Some(aValue) => writer.write(aValue)

case None => JsNull

}

}

Make sure you make the method’s parameter implicit! If you don’t, you’ll
end up defining an implicit conversion. Implicit conversion is an older
programming pattern that is frowned upon in modern Scala code. Fortunately,
the compiler will warn you should you do this.

4.4 What Type Classes Are

We’ve have now seen the mechanics of type classes: they are a specific
arrangement of trait, given instances, and using clauses. This is a very craft‐
level explanation. Let’s now raise the level of the explanation with three
different views of type classes.

The first view goes back Chapter 3, where we looked at codata. The type class
itself—the trait—is an example of codata with the usual advantages of codata
(we can easily add implementations) and disadvantages (we cannot easily
change the interface). Given instances and using clauses add the ability to
chose the codata implementation based on the type of the context parameter
and the instances in the given scope, and to compose instances from smaller
components.

Raising the level of abstraction again, we can say that type classes allow us to
implement functionality (the type class instance) separately from the type to
which it applies, so that the implementation only needs to be defined at the
point of the use—the call site—not at the point of declaration.

Raising the level again, we can say type classes allow us to implement ad‐hoc
polymorphism. I find it easiest to understand ad‐hoc polymorphism in contrast
to parametric polymorphism. Parametric polymorphism is what we get with
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type parameters, also known as generic types. It allows us to treat all types
in a uniform way. For example, the following function calculates the length of
any list of an arbitrary type A.

def length[A](list: List[A]): Int =

list match {

case Nil => 0

case x :: xs => 1 + length(xs)

}

Wecan implement length becausewedon’t require any particular functionality
from the values of type A that make up the elements of the list. We don’t
call any methods on them, and indeed we cannot call any methods on them
because we don’t knowwhat concrete type Awill be at the point where length
is defined³.

Ad‐hoc polymorphism allows us to call methods on values with a generic type.
The methods we can call are exactly those defined by the type class. For
example, we can use the Numeric type class from the standard library to write
a method that adds together elements of any type that implements that type
class.

import scala.math.Numeric

def add[A](x: A, y: A)(using n: Numeric[A]): A = {

n.plus(x, y)

}

So parametric polymorphism can be understood as meaning any type, while
ad‐hoc polymorphismmeans any type that also implements this functionality. In

³Parametric polymorphism represents an abstraction boundary. At the point of definition
we don’t know the concrete types that A will take; the concrete types are only known at the
point of use. (Once again we see the distinction between definition site and call site.) This
abstraction boundary allows a kind of reasoning known as free theorems [Wadler 1989]. For
example, if we see a function with type A => A we know it must be the identity function.
This is the only possible function with this type. Unfortunately the JVM allows us to break the
abstraction boundary introduced by parametric polymorphism. We can call equals, hashCode,
and a few other methods on all values, and we can inspect runtime tags that reflect some type
information at run‐time.
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ad‐hoc polymorphism there doesn’t have to be any particular type relationship
between the concrete types that implement the functionality of interest. This
is in contast to object‐oriented style polymorphism (i.e. codata) where all
concrete types must be subtypes of the type that defines the functionality
of interest.

4.5 Exercise: Display Library

Scala provides a toString method to let us convert any value to a String. This
method comes with a few disadvantages:

1. It is implemented for every type in the language. There are situations
where we don’t want to be able to view data. For example, we may
want to ensure we don’t log sensitive information, such as passwords,
in plain text.

2. We can’t customize toString for types we don’t control.

Let’s define a Display type class to work around these problems:

1. Define a type class Display[A] containing a single method display.
display should accept a value of type A and return a String.

2. Create instances of Display for String and Int on the Display companion
object.

3. On the Display companion object create two generic interface
methods:

• display accepts a value of type A and a Display of the
corresponding type. It uses the relevant Display to convert the
A to a String.

• print accepts the same parameters as display and returns Unit. It
prints the displayed A value to the console using println.

See the solution
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4.5.1 Using the Library

The code above forms a general purpose printing library that we can use in
multiple applications. Let’s define an “application” now that uses the library.

First we’ll define a data type to represent a well‐known type of furry animal:

final case class Cat(name: String, age: Int, color: String)

Next we’ll create an implementation of Display for Cat that returns content in
the following format:

NAME is a AGE year-old COLOR cat.

Finally, use the type class on the console or in a short demo app: create a Cat
and print it to the console:

// Define a cat:

val cat = Cat(/* ... */)

// Print the cat!

See the solution

4.5.2 Better Syntax

Let’s make our printing library easier to use by adding extension methods for
its functionality:

1. Create an object DisplaySyntax.

2. Define display and print as extension methods on DisplaySyntax.

3. Use the extension methods to print the example Cat you created in the
previous exercise.

See the solution
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4.6 Type Classes and Variance

In this section we’ll discuss how variance interacts with type class instance
selection. Variance is one of the darker corners of Scala’s type system, so we
start by reviewing it before moving on to its interaction with type classes.

4.6.1 Variance

Variance concerns the relationship between an instance defined on a type and
its subtypes. For example, if we define a JsonWriter[Option[Int]], will the
expression Json.toJson(Some(1)) select this instance? (Remember that Some is
a subtype of Option).

We need two concepts to explain variance: type constructors, and subtyping.

Variance applies to any type constructor, which is the F in a type F[A]. So,
for example, List, Option, and JsonWriter are all type constructors. A type
constructor must have at least one type parameter, and may have more. So
Either, with two type parameters, is also a type constructor.

Subtyping is a relationship between types. We say that B is a subtype of A if
we can use a value of type B anywhere we expect a value of type A. We may
sometimes use the shorthand B <: A to indicate that B is a subtype of A.

Variance concerns the subtyping relationship between types F[A] and F[B],
given a subtyping relationship between A and B. If B is a subtype of A then

1. if F[B] <: F[A] we say F is covariant in A; else
2. if F[B] >: F[A] we say F is contravariant in A; else
3. if there is no subtyping relationship between F[B] and F[A] we say F is
invariant in A.

When we define a type constructor we can also add variance annotations to
its type parameters. For example, we denote covariance with a + symbol:
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trait F[+A] // the "+" means "covariant"

If we don’t add a variance annotation, the type parameter is invariant. Let’s
now look at covariance, contravariance, and invariance in detail.

4.6.2 Covariance

Covariance means that the type F[B] is a subtype of the type F[A] if B is a
subtype of A. This is useful for modelling many types, including collections
like List and Option:

trait List[+A]

trait Option[+A]

The covariance of Scala collections allows us to substitute collections of one
type with a collection of a subtype in our code. For example, we can use a
List[Circle] anywhere we expect a List[Shape] because Circle is a subtype
of Shape:

sealed trait Shape

final case class Circle(radius: Double) extends Shape

val circles: List[Circle] = ???

val shapes: List[Shape] = circles

Generally speaking, covariance is used for outputs: data that we can later get
out of a container type such as List, or otherwise returned by some method.

4.6.3 Contravariance

What about contravariance? We write contravariant type constructors with a
- symbol like this:
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trait F[-A]

Perhaps confusingly, contravariance means that the type F[B] is a subtype of
F[A] if A is a subtype of B. This is useful for modelling types that represent
inputs, like our JsonWriter type class above:

trait JsonWriter[-A] {

def write(value: A): Json

}

Let’s unpack this a bit further. Remember that variance is all about the ability
to substitute one value for another. Consider a scenario where we have two
values, one of type Shape and one of type Circle, and two JsonWriters, one for
Shape and one for Circle:

val shape: Shape = ???

val circle: Circle = ???

val shapeWriter: JsonWriter[Shape] = ???

val circleWriter: JsonWriter[Circle] = ???

def format[A](value: A, writer: JsonWriter[A]): Json =

writer.write(value)

Now ask yourself the question: “Which combinations of value and writer can
I pass to format?” We can write a Circlewith either writer because all Circles
are Shapes. Conversely, we can’t write a Shape with circleWriter because not
all Shapes are Circles.

This relationship is what we formally model using contravariance. JsonWriter[
Shape] is a subtype of JsonWriter[Circle] because Circle is a subtype of Shape.
This means we can use shapeWriter anywhere we expect to see a JsonWriter[
Circle].
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4.6.4 Invariance

Invariance is the easiest situation to describe. It’s what we get when we don’t
write a + or - in a type constructor:

trait F[A]

This means the types F[A] and F[B] are never subtypes of one another, no
matter what the relationship between A and B. This is the default semantics
for Scala type constructors.

4.6.5 Variance and Instance Selection

When the compiler searches for a given instance it looks for one matching the
type or subtype. Thus we can use variance annotations to control type class
instance selection to some extent.

There are two issues that tend to arise. Let’s imagine we have an algebraic
data type like:

enum A {

case B

case C

}

The issues are:

1. Will an instance defined on a supertype be selected if one is available?
For example, can we define an instance for A and have it work for values
of type B and C?

2. Will an instance for a subtype be selected in preference to that of a
supertype. For instance, if we define an instance for A and B, and we
have a value of type B, will the instance for B be selected in preference
to A?
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It turns out we can’t have both at once. The three choices give us behaviour
as follows:

Type Class Variance Invariant Covariant Contravariant

Supertype instance used? No No Yes
More specific type preferred? No Yes No

Let’s see some examples, using the following types to show the subtyping
relationship.

trait Animal

trait Cat extends Animal

trait DomesticShorthair extends Cat

Now we’ll define three different type classes for the three types of variance,
and define an instance of each for the Cat type.

trait Inv[A] {

def result: String

}

object Inv {

given Inv[Cat] with

def result = "Invariant"

def apply[A](using instance: Inv[A]): String =

instance.result

}

trait Co[+A] {

def result: String

}

object Co {

given Co[Cat] with

def result = "Covariant"

def apply[A](using instance: Co[A]): String =

instance.result

}
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trait Contra[-A] {

def result: String

}

object Contra {

given Contra[Cat] with

def result = "Contravariant"

def apply[A](using instance: Contra[A]): String =

instance.result

}

Now the cases that work, all of which select the Cat instance. For the invariant
case we must ask for exactly the Cat type. For the covariant case we can ask
for a supertype of Cat. For contravariance we can ask for a subtype of Cat.

Inv[Cat]

// res1: String = "Invariant"

Co[Animal]

// res2: String = "Covariant"

Co[Cat]

// res3: String = "Covariant"

Contra[DomesticShorthair]

// res4: String = "Contravariant"

Contra[Cat]

// res5: String = "Contravariant"

Now cases that fail. With invariance any type that is not Cat will fail. So the
supertype fails

Inv[Animal]

// error:

// No given instance of type MdocApp0.this.Inv[MdocApp0.this.Animal]

was found for parameter instance of method apply in object Inv

as does the subtype.

Inv[DomesticShorthair]

// error:

// No given instance of type MdocApp0.this.Inv[MdocApp0.this.

DomesticShorthair] was found for parameter instance of method
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apply in object Inv

Covariance fails for any subtype of the type for which the instance is declared.

Co[DomesticShorthair]

// error:

// No given instance of type MdocApp0.this.Co[MdocApp0.this.

DomesticShorthair] was found for parameter instance of method

apply in object Co

Contravariance fails for any supertype of the type for which the instance is
declared.

Contra[Animal]

// error:

// No given instance of type MdocApp0.this.Contra[MdocApp0.this.Animal

] was found for parameter instance of method apply in object

Contra

It’s clear there is no perfect system. The most choice is to use invariant type
classes. This allows us to specify more specific instances for subtypes if we
want. It does mean that if we have, for example, a value of type Some[Int], our
type class instance for Optionwill not be used. We can solve this problemwith
a type annotation like Some(1): Option[Int] or by using “smart constructors”
like the Option.apply, Option.empty, some, and none methods we saw in Section
6.3.3.

4.7 Conclusions

In this chapter we took a first look at type classes. We saw the components
that make up a type class:

• A trait, which is the type class

• Type class instances, which are given instances.

• Type class usage, which uses using clauses.
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We saw that type classes can be composed from components using type class
composition. This is one form of metaprogramming in Scala, where we can
get the compiler to do work for us based on our program’s types.

We can view type classes as marrying codata with tools to select and compose
implementations based on type. We can also view type classes as shifting
implementation from the definition site to the call site. Finally, can see
type classes as a mechanism for ad‐hoc polymorphism, allowing us to define
common functionality for otherwise unrelated types.

Type classes were first described in Kaes [1988] and Wadler and Blott [1989].
Oliveira et al. [2010] details the encoding of type classes in Scala 2, and
compares Scala’s and Haskell’s approach to type classes. Note that type
classes are not restricted to Haskell and Scala. For examples, Rust’s traits are
essentially type classes.

As we have seen, Scala’s support for type classes is based on implicit
parameters (known as using clauses in Scala 3). Implicit parameters [Lewis et
al. 2000] were motivated by a desire to decompose type classes into smaller
orthogonal language features, but they have been shown to be useful for other
tasks. Křikava et al. [2019] surveys different uses of implicits in Scala. See
Oliveira and Gibbons [2010] for a particularly mind‐bending example. We’ll
see some of these different uses in later chapters.

Scala 3 has a few language features related to contextual abstraction that we
haven’t mentioned in this chapter. Context functions [Odersky et al. 2017]
allow functions to have using clauses. They are something the community
is still exploring, and well defined use cases have yet to emerge. Generic
derivation allows us to write code that generates type classes instances.
Although this is extremely useful I think it’s conceptually quite simple and
doesn’t warrant space in this book.
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Chapter 5

Reified Interpreters

The interpreter strategy is perhaps the most important in all of functional
programming. The central idea is to separate description from action. When
we use the interpreter strategy our program consists of two parts: the
description, instructions, or program that describes what we want to do, and
the interpreter that carries the actions in the description. In this chapter we’ll
start exploring the design and implementation of interpreters, focusing on
implementations using algebraic data types.

Interpreters arise whenever there is this distinction between description and
action. You may think an interpreter is a complex piece requiring a lot of
development effort, but I hope to show you this is not the case. You probably
already use lots of interpreters in your daily coding without realizing it. For
example, consider the code belowwhich is taken from aweb framework called
Krop

val route =

Route(

Request.get(Path.root / "user" / Param.int),

Response.ok(Entity.text)

).handle(userId => s"You asked for the user ${userId.toString}")

This defines a route, which matches GET requests for the path "/user/<int

>", and responds with an Ok containing text. This kind of routing library is
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https://github.com/creativescala/krop


120 CHAPTER 5. REIFIED INTERPRETERS

ubiquitous in web frameworks, is simple to write, and yet contains everything
we need for the interpreter strategy.

Interpreters are so important because they are the key to enabling
compositionality and reasoning, particularly while allowing effects. For
example, imagine implementing a graphics library using the interpreter
strategy. A program simply describes what we want to draw on the screen,
but critically it does not draw anything. The interpreter takes this description
and creates the drawing described by it. We can freely compose descriptions
only because they do not carry out any effects. For example, if we have a
description that describes a circle, and one for a square, we can compose
them by saying we should draw the circle next to the square thereby creating
a new description. If we immediately drew pictures there would be nothing
to compose with. Similarly, it’s easier to reason about pictures in this system
because a program describes exactly what will appear on the screen, and there
is no state from prior drawing that we need to worry about.

Throughout this chapter we will explore the interpreter strategy by building
a series of interpreters for regular expressions. We’ve chosen to use regular
expressions because they are already familiar to many and they are simple to
work with. This means we can focus on the details of the interpreter strategy
without getting caught up in problem specific details, but we still end up with
a realistic and useful result.

We’ll start with a basic implementation strategy that uses algebraic data types
and structural recursion. We’ll then look at transformations to turn our
interpreter into a version that avoids using the stack and hence avoids the
possibility of stack overflow.

5.1 Regular Expressions

We’ll start this case study by briefly describing the usual task for regular
expressions—matching text—and then take a more theoretical view. We’ll
then move on to implementation.

We most commonly use regular expressions to determine if a string matches
a particular pattern. The simplest regular expression is one that matches only
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one string. In Scala we can create a regular expression by calling the rmethod
on String. Here’s a regular expression that matches exactly the string "Scala".

val regexp = "Scala".r

We can see that it matches only "Scala" and fails if we give it a shorter or
longer input.

regexp.matches("Scala")

// res0: Boolean = true

regexp.matches("Sca")

// res1: Boolean = false

regexp.matches("Scalaland")

// res2: Boolean = false

Notice we already have a separation between description and action. The
description is the regular expression itself, created by calling the r method,
and the action is calling the matches method on the regular expression.

There are some characters that have a special meaning within the String

describing a regular expression. For example, the character * matches the
preceding character zero or more times.

val regexp = "Scala*".r

regexp.matches("Scal")

// res4: Boolean = true

regexp.matches("Scala")

// res5: Boolean = true

regexp.matches("Scalaaaa")

// res6: Boolean = true

We can also use parentheses to group sequences of characters. For example,
if we wanted to match all the strings like "Scala", "Scalala", "Scalalala" and
so on, we could use the following regular expression.
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val regexp = "Scala(la)*".r

Let’s check it matches what we’re looking for.

regexp.matches("Scala")

// res8: Boolean = true

regexp.matches("Scalalalala")

// res9: Boolean = true

We should also check it fails to match as expected.

regexp.matches("Sca")

// res10: Boolean = false

regexp.matches("Scalal")

// res11: Boolean = false

regexp.matches("Scalaland")

// res12: Boolean = false

That’s all I’m going to say about Scala’s built‐in regular expressions. If you’d like
to learn more there are many resources online. The JDK documentation is one
example, which describes all the features available in the JVM implementation
of regular expressions.

Let’s turn to the theoretical description, such as we might find in a textbook.
A regular expression is:

1. the empty regular expression that matches nothing;
2. a string, which matches exactly that string (including the empty string);
3. the concatenation of two regular expressions, which matches the first
regular expression and then the second;

4. the union of two regular expressions, which matches if either
expression matches; and

5. the repetition of a regular expression (often known as the Kleene star),
which matches zero or more repetitions of the underlying expression.

This kind of description may seem very abstract if you’re not used to it. It
is very useful for our purposes because it defines a minimal API that we can

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html
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easily implement. Let’s walk through the description and see how each part
relates to code.

The empty regular expression is defining a constructor with type ()=> Regexp,
which we can simplify to a value of type Regexp. In Scala we put constructors
on the companion object, so this tells us we need

object Regexp {

val empty: Regexp =

???

}

The second part tells us we need another constructor, this one with type
String => Regexp.

object Regexp {

val empty: Regexp =

???

def apply(string: String): Regexp =

???

}

The other three components all take a regular expression and produce a
regular expression. In Scala these will become methods on the Regexp type.
Let’s model this as a trait for now, and define these methods.

The first method, the concatenation of two regular expressions, is
conventionally called ++ in Scala.

trait Regexp {

def ++(that: Regexp): Regexp

}

Union is conventionally called orElse.
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trait Regexp {

def ++(that: Regexp): Regexp

def orElse(that: Regexp): Regexp

}

Repetition we’ll call repeat, and define an alias * that matches how this
operation is written in conventional regular expressions.

trait Regexp {

def ++(that: Regexp): Regexp

def orElse(that: Regexp): Regexp

def repeat: Regexp

def `*`: Regexp = this.repeat

}

We’re missing one thing: a method to actually match our regular expression
against some input. Let’s call this method matches.

trait Regexp {

def ++(that: Regexp): Regexp

def orElse(that: Regexp): Regexp

def repeat: Regexp

def `*`: Regexp = this.repeat

def matches(input: String): Boolean

}

This completes our API. Now we can turn to implementation. We’re going to
represent Regexp as an algebraic data type, and each method that returns a
Regexp will return an instance of this algebraic data type. What should be the
elements that make up the algebraic data type? There will be one element for
each method, and the constructor arguments will be exactly the parameters
passed to the method including the hidden this parameter for methods on the
trait.

Here’s the resulting code.
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enum Regexp {

def ++(that: Regexp): Regexp =

Append(this, that)

def orElse(that: Regexp): Regexp =

OrElse(this, that)

def repeat: Regexp =

Repeat(this)

def `*`: Regexp = this.repeat

def matches(input: String): Boolean =

???

case Append(left: Regexp, right: Regexp)

case OrElse(first: Regexp, second: Regexp)

case Repeat(source: Regexp)

case Apply(string: String)

case Empty

}

object Regexp {

val empty: Regexp = Empty

def apply(string: String): Regexp =

Apply(string)

}

A quick note about this. We can think of every method on an object as
accepting a hidden parameter that is the object itself. This is this. (If you
have used Python, it makes this explicit as the self parameter.) As we consider
this to be a parameter to a method call, and our implementation strategy is to
capture all the method parameters in a data structure, we must make sure we
capture this when it is available. The only case where we don’t capture this

is when we are defining a constructor on a companion object.

Notice that we haven’t implemented matches. It doesn’t return a Regexp so we
cannot return an element of our algebraic data type. What should we do here?
Regexp is an algebraic data type and matches transforms an algebraic data type
into a Boolean. Therefore we can use structural recursion! Let’s write out the
skeleton, including the recursion rule.
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def matches(input: String): Boolean =

this match {

case Append(left, right) => left.matches(???) ??? right.matches

(???)

case OrElse(first, second) => first.matches(???) ??? second.

matches(???)

case Repeat(source) => source.matches(???) ???

case Apply(string) => ???

case Empty => ???

}

Now we can apply the usual strategies to complete the implementation. Let’s
reason independently by case, starting with the case for Empty. This case is
trivial as it always fails to match, so we just return false.

def matches(input: String): Boolean =

this match {

case Append(left, right) => left.matches(???) ??? right.matches

(???)

case OrElse(first, second) => first.matches(???) ??? second.

matches(???)

case Repeat(source) => source.matches(???) ???

case Apply(string) => ???

case Empty => false

}

Let’s move on to the Append case. This should match if the left regular
expression matches the start of the input, and the right regular expression
matches starting where the left regular expression stopped. This has
uncovered a hidden requirement: we need to keep an index into the input

that tells us where we should start matching from. Using a nested method is
the easiest way to keep around additional information that we need. Here I’ve
created a nested method that returns an Option[Int]. The Int is the new index
to use, and we return an Option to indicate if the regular expression matched
or not.

def matches(input: String): Boolean = {

def loop(regexp: Regexp, idx: Int): Option[Int] =

regexp match {
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case Append(left, right) =>

loop(left, idx).flatMap(idx => loop(right, idx))

case OrElse(first, second) =>

loop(first, idx) ??? loop(second, ???)

case Repeat(source) =>

loop(source, idx) ???

case Apply(string) =>

???

case Empty =>

None

}

// Check we matched the entire input

loop(this, 0).map(idx => idx == input.size).getOrElse(false)

}

Now we can go ahead and complete the implementation.

def matches(input: String): Boolean = {

def loop(regexp: Regexp, idx: Int): Option[Int] =

regexp match {

case Append(left, right) =>

loop(left, idx).flatMap(i => loop(right, i))

case OrElse(first, second) =>

loop(first, idx).orElse(loop(second, idx))

case Repeat(source) =>

loop(source, idx)

.flatMap(i => loop(regexp, i))

.orElse(Some(idx))

case Apply(string) =>

Option.when(input.startsWith(string, idx))(idx + string.size)

}

// Check we matched the entire input

loop(this, 0).map(idx => idx == input.size).getOrElse(false)

}

The implementation for Repeat is a little tricky, so I’ll walk through the code.
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case Repeat(source) =>

loop(source, idx)

.flatMap(i => loop(regexp, i))

.orElse(Some(idx))

The first line (loop(source, index)) is seeing if the source regular expression
matches. If it does we loop again, but on regexp (which is Repeat(source)), not
source. This is because we want to repeat an indefinite number of times. If we
looped on source we would only try twice. Remember that failing to match is
still a success; repeat matches zero or more times. This condition is handled
by the orElse clause.

We should test that our implementation works.

Here’s the example regular expression we started the chapter with.

val regexp = Regexp("Sca") ++ Regexp("la") ++ Regexp("la").repeat

Here are cases that should succeed.

regexp.matches("Scala")

// res14: Boolean = true

regexp.matches("Scalalalala")

// res15: Boolean = true

Here are cases that should fail.

regexp.matches("Sca")

// res16: Boolean = false

regexp.matches("Scalal")

// res17: Boolean = false

regexp.matches("Scalaland")

// res18: Boolean = false

Success! At this point we could add many extensions to our library. For
example, regular expressions usually have a method (by convention denoted
+) that matches one or more times, and one that matches zero or once (usually
denoted ?). These are both conveniences we can build on our existing API.
However, our goal at the moment is to fully understand interpreters and
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the implementation technique we’ve used here. So in the next section we’ll
discuss these in detail.

Regular Expression Semantics

Our regular expression implementation handles union differently to
Scala’s built‐in regular expressions. Look at the following example
comparing the two.

val r1 = "(z|zxy)ab".r

val r2 = Regexp("z").orElse(Regexp("zxy")) ++ Regexp("ab")

r1.matches("zxyab")

// res19: Boolean = true

r2.matches("zxyab")

// res20: Boolean = false

The reason for this difference is that our implementation commits to
the first branch in a union that successfully matches some of the input,
regardless of how that affects later matching. We should instead try
both branches, but doing so makes the implementation more complex.
The semantics of regular expressions are not essential to what we’re
trying to do here; we’re just using them as an example to motivate the
programming strategies we’re learning. I decided the extra complexity
of implementing union in the usual way outweighed the benefits, and
so kept the simpler implementation. Don’t worry, we’ll see how to do it
properly in the next chapter!

5.2 Interpreters and Reification

There are two different programming strategies at play in the regular
expression code we’ve just written:

1. the interpreter strategy; and
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2. the interpreter’s implementation strategy of reification.

Remember the essence of the interpreter strategy is to separate description
and action. Therefore, whenever we use the interpreter strategy we need at
least two things: a description and an interpreter. Descriptions are programs;
things that we want to happen. The interpreter runs the programs, carrying
out the actions described within them.

In the regular expression example, a Regexp value is a program. It is a
description of a patternwe are looking forwithin a String. The matchesmethod
is an interpreter. It carries out the instructions in the description, checking the
pattern matches the entire input. We could have other interpreters, such as
one that matches if at least some part of the input matches the pattern.

5.2.1 The Structure of Interpreters

All uses of the interpreter strategy have a particular structure to their methods.
There are three different kinds of methods:

1. constructors, or introduction forms, with type A => Program. Here A

is any type that isn’t a program, and Program is the type of programs.
Constructors conventionally live on the Program companion object in
Scala. We see that apply is a constructor of Regexp. It has type String =>

Regexp, which matches the pattern A => Program for a constructor. The
other constructor, empty, is just a value of type Regexp. This is equivalent
to a method with type ()=> Regexp and so it also matches the pattern
for a constructor.

2. combinators have at least one program input and a program output.
The type is similar to Program => Program but there are often additional
parameters. All of ++, orElse, and repeat are combinators in our regular
expression example. They all have a Regexp input (the this parameter)
and produce a Regexp. Some of them have additional parameters,
such as ++ or orElse. For both these methods the single additional
parameter is a Regexp, but it is not the case that additional parameters
to a combinator must be of the program type. Conventionally these
methods live on the Program type.
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3. destructors, interpreters, or elimination forms, have type Program => A.
In our regular expression example we have a single interpreter, matches,
but we could easily add more. For example, we often want to extract
elements from the input or find a match at any location in the input.

This structure is often called an algebra or combinator library in the functional
programming world. When we talk about constructors and destructors in
an algebra we’re talking at a more abstract level then when we talk about
constructors and destructors on algebraic data types. A constructor of an
algebra is an abstract concept, at the theory level in my taxonomy, that we
can choose to concretely implement at the craft level with the constructor of
an algebraic data type. There are other possible implementations. We’ll see
one later.

5.2.2 Implementing Interpreters with Reification

Now that we understand the components of an interpreter we can talk more
clearly about the implementation strategy we used. We used a strategy called
reification, defunctionalization, deep embedding, or an initial algebra.

Reification, in an abstract sense, means to make concrete what is abstract.
Concretely, reification in the programming sense means to turn methods or
functions into data. When using reification in the interpreter strategy we
reify all the components that produce the Program type. This means reifying
constructors and combinators.

Here are the rules for reification:

1. We define some type, which we’ll call Program, to represent programs.
2. We implement Program as an algebraic data type.
3. All constructors and combinators become product types within the

Program algebraic data type.
4. Each product type holds exactly the parameters to the constructor or
combinator, including the this parameter for combinators.

Once we’ve defined the Program algebraic data type, the interpreter becomes
a structural recursion on Program.
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Exercise: Arithmetic

Now it’s your turn to practice using reification. Your task is to implement an
interpreter for arithmetic expressions. An expression is:

• a literal number, which takes a Double and produces an Expression;
• an addition of two expressions;
• a substraction of two expressions;
• a multiplication of two expressions; or
• a division of two expressions;

Reify this description as a type Expression.

See the solution

Now implement an interpreter eval that produces a Double. This interpreter
should interpret the expression using the usual rules of arithmetic.

See the solution

Add methods +, - and so on that make your system a bit nicer to use. Then
write some expressions and show that it works as expected.

See the solution

5.3 Tail Recursive Interpreters

Structural recursion, as we have written it, uses the stack. This is not often a
problem, but particularly deep recursions can lead to the stack running out of
space. A solution is to write a tail recursive program. A tail recursive program
does not need to use any stack space, and so is sometimes known as stack
safe. Any program can be turned into a tail recursive version, which does not
use the stack and therefore cannot run out of stack space.
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The Call Stack

Method and function calls are usually implemented using an area of
memory known as the call stack, or just the stack for short. Every
method or function call uses a small amount of memory on the stack,
called a stack frame. When themethod or function returns, thismemory
is freed and becomes available for future calls to use.

A large number of method calls, without corresponding returns, can
require more stack frames than the stack can accommodate. When
there is no more memory available on the stack we say we have
overflowed the stack. In Scala a StackOverflowError is raised when this
happens.

In this section we will discuss tail recursion, converting programs to tail
recursive form, and limitations and workarounds for the Scala’s runtimes.

5.3.1 The Problem of Stack Safety

Let’s start by seeing the problem. In Scala we can create a repeated String

using the * method.

"a" * 4

// res0: String = "aaaa"

We can match such a String with a regular expression and repeat.

Regexp("a").repeat.matches("a" * 4)

// res1: Boolean = true

However, if we make the input very long the interpreter will fail with a stack
overflow exception.

Regexp("a").repeat.matches("a" * 20000)

// java.lang.StackOverflowError
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This is because the interpreter calls loop for each instance of a repeat, without
returning. However, all is not lost. We can rewrite the interpreter in a way
that consumes a fixed amount of stack space, and therefore match input that
is as large as we like.

5.3.2 Tail Calls and Tail Position

Our starting point is tail calls. A tail call is a method call that does not take
any additional stack space. Only method calls that are in tail position are
candidates to be turned into tail calls. Even then, runtime limitations mean
that not all calls in tail position will be converted to tail calls.

A method call in tail position is a call that immediately returns the value
returned by the call. Let’s see an example. Below are two versions of amethod
to calculate the sum of the integers from 0 to count.

def isntTailRecursive(count: Int): Int =

count match {

case 0 => 0

case n => n + isntTailRecursive(n - 1)

}

def isTailRecursive(count: Int): Int = {

def loop(count: Int, accum: Int): Int =

count match {

case 0 => accum

case n => loop(n - 1, accum + n)

}

loop(count, 0)

}

The method call to isntTailRecursive in

case n => n + isntTailRecursive(n - 1)

is not in tail position, because the value returned by the call is then used in the
addition. However, the call to loop in
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case n => loop(n - 1, accum + n)

is in tail position because the value returned by the call to loop is itself
immediately returned. Similarly, the call to loop in

loop(count, 0)

is also in tail position.

A method call in tail position is a candidate to be turned into a tail call.
Limitations of Scala’s runtimes mean that not all calls in tail position can be
made tail calls. Currently, only calls from a method to itself that are also in tail
position will be converted to tail calls. This means

case n => loop(n - 1, accum + n)

is converted to a tail call, because loop is calling itself. However, the call

loop(count, 0)

is not converted to a tail call, because the call is from isTailRecursive to loop.
This will not cause issues with stack consumption, however, because this call
only happens once.

Runtimes and Tail Calls

Scala supports three different platforms: the JVM, Javascript via Scala.js,
and native code via Scala Native. Each platform provides what is known
as a runtime, which is code that supports our Scala code when it is
running. The garbage collector, for example, is part of the runtime.

At the time of writing none of Scala’s runtimes support full tail calls.
However, there is reason to think this may change in the future. Project
Loom should eventually add support for tail calls to the JVM. Scala
Native is likely to support tail calls soon, as part of other work to
implement continuations. Tail calls have been part of the Javascript

https://wiki.openjdk.org/display/loom/Main
https://wiki.openjdk.org/display/loom/Main
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specification for a long time, but remain unimplemented by the majority
of Javascript runtimes. However, WebAssembly does support tail calls
and will probably replace compiling Scala to Javascript in the medium
term.

We can ask the Scala compiler to check that all self calls are in tail position by
adding the @tailrec annotation to a method. The code will fail to compile if
any calls from the method to itself are not in tail position.

import scala.annotation.tailrec

@tailrec

def isntTailRecursive(count: Int): Int =

count match {

case 0 => 0

case n => n + isntTailRecursive(n - 1)

}

// error:

// Cannot rewrite recursive call: it is not in tail position

// case n => n + isntTailRecursive(n - 1)

// ^^^^^^^^^^^^^^^^^^^^^^^^

We can check the tail recursive version is truly tail recursive by passing it a
very large input. The non‐tail recursive version crashes.

isntTailRecursive(100000)

// java.lang.StackOverflowError

The tail recursive version runs just fine.

isTailRecursive(100000)

// res4: Int = 705082704

5.3.3 Continuation‐Passing Style

Now that we know about tail calls, how do we convert the regular
expression interpreter to use them? Any program can be converted to an
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equivalent program with all calls in tail position. This conversion is known as
continuation‐passing style or CPS for short. Our first step to understanding
CPS is to understand continuations.

A continuation is an encapsulation of “what happens next”. Let’s return to our
Regexp example. Here’s the full code for reference.

enum Regexp {

def ++(that: Regexp): Regexp =

Append(this, that)

def orElse(that: Regexp): Regexp =

OrElse(this, that)

def repeat: Regexp =

Repeat(this)

def `*` : Regexp = this.repeat

def matches(input: String): Boolean = {

def loop(regexp: Regexp, idx: Int): Option[Int] =

regexp match {

case Append(left, right) =>

loop(left, idx).flatMap(i => loop(right, i))

case OrElse(first, second) =>

loop(first, idx).orElse(loop(second, idx))

case Repeat(source) =>

loop(source, idx)

.flatMap(i => loop(regexp, i))

.orElse(Some(idx))

case Apply(string) =>

Option.when(input.startsWith(string, idx))(idx + string.size

)

case Empty =>

None

}

// Check we matched the entire input

loop(this, 0).map(idx => idx == input.size).getOrElse(false)

}

case Append(left: Regexp, right: Regexp)
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case OrElse(first: Regexp, second: Regexp)

case Repeat(source: Regexp)

case Apply(string: String)

case Empty

}

object Regexp {

val empty: Regexp = Empty

def apply(string: String): Regexp =

Apply(string)

}

Let’s consider the case for Append in matches.

case Append(left, right) =>

loop(left, idx).flatMap(i => loop(right, i))

What happens next when we call loop(left, idx)? Let’s give the name result
to the value returned by the call to loop. The answer is we run result.flatMap

(i => loop(right, i)). We can represent this as a function, to which we pass
result:

(result: Option[Int]) => result.flatMap(i => loop(right, i))

This is exactly the continuation, reified as a value.

As is often the case, there is a distinction between the concept and the
representation. The concept of continuations always exists in code. A
continuation means “what happens next”. In other words, it is the program’s
control flow. There is always some concept of control flow, even if it is just
“the program halts”. We can represent continuations as functions in code. This
transforms the abstract concept of continuations into concrete values in our
program, and hence reifies them.

Now that we know about continuations, and their reification as functions, we
can move on to continuation‐passing style. In CPS we, as the name suggests,
pass around continuations. Specifically, each function or method takes an
extra parameter that is a continuation. Instead of returning a value it calls that
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continuation with the value. This is another example of duality, in this case
between returning a value and calling a continuation.

Let’s see how this works. We’ll start with a simple example written in the
normal style, also known as direct style.

(1 + 2) * 3

// res5: Int = 9

To rewrite this in CPS style we need to create replacements for + and * with
the extra continuation parameter.

type Continuation = Int => Int

def add(x: Int, y: Int, k: Continuation) = k(x + y)

def mul(x: Int, y: Int, k: Continuation) = k(x * y)

Now we can rewrite our example in CPS. (1 + 2) becomes add(1, 2, k), but
what is k, the continuation? What we do next is multiply the result by 3.
Thus the continuation is a => mul(a, 3, k2). What is the next continuation,
k2? Here the program finishes, so we just return the value with the identity
continuation b => b. Put it all together and we get

add(1, 2, a => mul(a, 3, b => b))

// res6: Int = 9

Notice that every continuation call is in tail position in the CPS code. This
means that code written in CPS can potentially consume no stack space.

Now we can return to the interpreter loop for Regexp. We are going to CPS it,
so we need to add an extra parameter for the continuation. In this case the
contination accepts and returns the result type of loop: Option[Int].

def matches(input: String): Boolean = {

// Define a type alias so we can easily write continuations

type Continuation = Option[Int] => Option[Int]

def loop(regexp: Regexp, idx: Int, cont: Continuation): Option[Int]
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=

// etc...

}

Now we go through each case and convert it to CPS. Each continuation we
construct must call cont as its final step. This is tedious and a bit error‐prone,
so good tests are helpful.

def matches(input: String): Boolean = {

// Define a type alias so we can easily write continuations

type Continuation = Option[Int] => Option[Int]

def loop(

regexp: Regexp,

idx: Int,

cont: Continuation

): Option[Int] =

regexp match {

case Append(left, right) =>

val k: Continuation = _ match {

case None => cont(None)

case Some(i) => loop(right, i, cont)

}

loop(left, idx, k)

case OrElse(first, second) =>

val k: Continuation = _ match {

case None => loop(second, idx, cont)

case some => cont(some)

}

loop(first, idx, k)

case Repeat(source) =>

val k: Continuation =

_ match {

case None => cont(Some(idx))

case Some(i) => loop(regexp, i, cont)

}

loop(source, idx, k)

case Apply(string) =>

cont(Option.when(input.startsWith(string, idx))(idx + string.
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size))

case Empty =>

cont(None)

}

// Check we matched the entire input

loop(this, 0, identity).map(idx => idx == input.size).getOrElse(

false)

}

Every call in this interpreter loop is in tail position. However Scala cannot
convert these to tail calls because the calls go from loop to a continuation
and vice versa. To make the interpreter fully stack safe we need to add
trampolining.

Exercise: CPS Arithmetic

In a previous exercise we wrote an interpreter for arithmetic expressions.
Your task now is to CPS this interpreter. For reference, the definition of an
arithmetic expression is:

• a literal number, which takes a Double and produces an Expression;
• an addition of two expressions;
• a substraction of two expressions;
• a multiplication of two expressions; or
• a division of two expressions;

See the solution

5.3.4 Trampolining

Earlier we said that CPS utilizes the duality between function calls and returns:
instead of returning a value we call a function with a value. This allows us to
transform our code so it only has calls in tail positions. However, we still have
a problem with stack safety. Scala’s runtimes don’t support full tail calls, so
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calls from a continuation to loop or from loop to a continuation will use a stack
frame. We can use this same duality to avoid using the stack by, instead of
making a call, returning a value that reifies the call we want to make. This idea
is the core of trampolining. Let’s see it in action, which will help clear up what
exactly this all means.

Our first step is to reify all the method calls made by the interpreter loop and
the continuations. There are three cases: calls to loop, calls to a continuation,
and, to avoid an infinite loop, the case when we’re done.

type Continuation = Option[Int] => Call

enum Call {

case Loop(regexp: Regexp, index: Int, continuation: Continuation)

case Continue(index: Option[Int], continuation: Continuation)

case Done(index: Option[Int])

}

Now we update loop to return instances of Call instead of making the calls
directly.

def loop(regexp: Regexp, idx: Int, cont: Continuation): Call =

regexp match {

case Append(left, right) =>

val k: Continuation = _ match {

case None => Call.Continue(None, cont)

case Some(i) => Call.Loop(right, i, cont)

}

Call.Loop(left, idx, k)

case OrElse(first, second) =>

val k: Continuation = _ match {

case None => Call.Loop(second, idx, cont)

case some => Call.Continue(some, cont)

}

Call.Loop(first, idx, k)

case Repeat(source) =>

val k: Continuation =

_ match {
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case None => Call.Continue(Some(idx), cont)

case Some(i) => Call.Loop(regexp, i, cont)

}

Call.Loop(source, idx, k)

case Apply(string) =>

Call.Continue(

Option.when(input.startsWith(string, idx))(idx + string.size),

cont

)

case Empty =>

Call.Continue(None, cont)

}

This gives us an interpreter loop that returns values instead of making calls,
and so does not consume stack space. However, we need to actually make
these calls at some point, and doing this is the job of the trampoline. The
trampoline is simply a tail recursive loop that makes calls until it reaches Done.

def trampoline(next: Call): Option[Int] =

next match {

case Call.Loop(regexp, index, continuation) =>

trampoline(loop(regexp, index, continuation))

case Call.Continue(index, continuation) =>

trampoline(continuation(index))

case Call.Done(index) => index

}

Now every call has a corresponding return, so the stack usage is limited. Our
interpreter can handle input of any size, up to the limits of available memory.

Here’s the complete code for reference.

// Define a type alias so we can easily write continuations

type Continuation = Option[Int] => Call

enum Call {

case Loop(regexp: Regexp, index: Int, continuation: Continuation)

case Continue(index: Option[Int], continuation: Continuation)

case Done(index: Option[Int])



144 CHAPTER 5. REIFIED INTERPRETERS

}

enum Regexp {

def ++(that: Regexp): Regexp =

Append(this, that)

def orElse(that: Regexp): Regexp =

OrElse(this, that)

def repeat: Regexp =

Repeat(this)

def `*` : Regexp = this.repeat

def matches(input: String): Boolean = {

def loop(regexp: Regexp, idx: Int, cont: Continuation): Call =

regexp match {

case Append(left, right) =>

val k: Continuation = _ match {

case None => Call.Continue(None, cont)

case Some(i) => Call.Loop(right, i, cont)

}

Call.Loop(left, idx, k)

case OrElse(first, second) =>

val k: Continuation = _ match {

case None => Call.Loop(second, idx, cont)

case some => Call.Continue(some, cont)

}

Call.Loop(first, idx, k)

case Repeat(source) =>

val k: Continuation =

_ match {

case None => Call.Continue(Some(idx), cont)

case Some(i) => Call.Loop(regexp, i, cont)

}

Call.Loop(source, idx, k)

case Apply(string) =>

Call.Continue(

Option.when(input.startsWith(string, idx))(idx + string.

size),
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cont

)

case Empty =>

Call.Continue(None, cont)

}

def trampoline(next: Call): Option[Int] =

next match {

case Call.Loop(regexp, index, continuation) =>

trampoline(loop(regexp, index, continuation))

case Call.Continue(index, continuation) =>

trampoline(continuation(index))

case Call.Done(index) => index

}

// Check we matched the entire input

trampoline(loop(this, 0, opt => Call.Done(opt)))

.map(idx => idx == input.size)

.getOrElse(false)

}

case Append(left: Regexp, right: Regexp)

case OrElse(first: Regexp, second: Regexp)

case Repeat(source: Regexp)

case Apply(string: String)

case Empty

}

object Regexp {

val empty: Regexp = Empty

def apply(string: String): Regexp =

Apply(string)

}

Exericse: Trampolined Arithmetic

Convert the CPSed arithmetic interpreter we wrote earlier to a trampolined
version.

See the solution
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5.3.5 When Tail Recursion is Easy

Doing a full CPS conversion and trampoline can be quite involved. Some
methods can made tail recursive without so large a change. Remember these
examples we looked at earlier?

def isntTailRecursive(count: Int): Int =

count match {

case 0 => 0

case n => n + isntTailRecursive(n - 1)

}

def isTailRecursive(count: Int): Int = {

def loop(count: Int, accum: Int): Int =

count match {

case 0 => accum

case n => loop(n - 1, accum + n)

}

loop(count, 0)

}

The tail recursive version doesn’t seem to involve the complexity of CPS. How
can we relate this to what we’ve just learned, and when can we avoid the work
of CPS and trampolining?

Let’s use substitution to show how the stack is used by each method, for a
small value of count.

isntTailRecursive(2)

// expands to

(2 match {

case 0 => 0

case n => n + isntTailRecursive(n - 1)

})

// expands to

(2 + isntTailRecursive(1))

// expands to

(2 + (1 match {

case 0 => 0

case n => n + isntTailRecursive(n - 1)
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}))

// expands to

(2 + (1 + isntTailRecursive(n - 1)))

// expands to

(2 + (1 + (0 match {

case 0 => 0

case n => n + isntTailRecursive(n - 1)

})))

// expands to

(2 + (1 + (0)))

// expands to

3

Here each set of brackets indicates a newmethod call and hence a stack frame
allocation.

Now let’s do the same for isTailRecursive.

isTailRecursive(2)

// expands to

(loop(2, 0))

// expands to

(2 match {

case 0 => 0

case n => loop(n - 1, 0 + n)

})

// expands to

(loop(1, 2))

// call to loop is a tail call, so no stack frame is allocated

// expands to

(1 match {

case 0 => 2

case n => loop(n - 1, 2 + n)

})

// expands to

(loop(0, 3))

// call to loop is a tail call, so no stack frame is allocated

// expands to

(0 match {

case 0 => 3

case n => loop(n - 1, 3 + n)

})
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// expands to

(3)

// expands to

3

The non‐tail recursive function computes the result (2 + (1 + (0))) If we
look closely, we’ll see that the tail recursive version computes (((2)+ 1)+ 0),
which simply accumulates the result in the reverse order. This works because
addition is associative, meaning (a + b)+ c == a + (b + c). This is our first
criteria for using the “easy” method for converting to a tail recursive form: the
operation that accumulates results must be associative.

This doesn’t explain, though, how we come to realize that addition is the
correct operation to use. The second criteria is that we don’t need any
memory beyond the partial result calculated from the data we’ve already seen.
Some implications of this are that we can stop at any time and have a usable
result, and that we are only applying a single operation to the data. This is
not the case in the regular expression example. For example, we have the
following code in the Append case:

case Append(left, right) =>

loop(left, idx).flatMap(i => loop(right, i))

To compute the result for the Appendwe need to compute and combine results
from both left and right. So when we have computed the result for rightwe
need to remember both the result from left and that we’re combining the two
results using the rule for Append rather than, say, OrElse. It’s remembering this
that is exactly what the continuation does, and what stops us from using the
easy method we saw when summing the elements of a list.

So, in summary, if we are applying only a single associative operation to data
we can use the simple method for writing a tail recursive method:

1. define an structurally recursive loop with an additional parameter that
is the partial result or accumulator;

2. in the base cases return the accumulator; and
3. in the recursive cases update the accumulator and call the loop in tail
position.
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You might be wondering how we handle tree‐shaped data with this technique.
One consequence of an associative operation is that we can transform any
sequence of operations into a list‐shaped sequence. If, for example, we have
an expression tree that suggests we should call operations in the order (1 +

2)+ (3 + 4) (where I’m using + to indicate the operation) we can rewrite that
to (((1 + 2)+ 3)+ 4) via associativity. So we can transform our tree into a list
and then apply the recipe above.

5.4 Conclusions

In this chapter we’ve discussed why we might want to build interpreters, and
seen techniques for building them. To recap, the core of the interpreter
strategy is a separation between description and action. The description is
the program, and the interpreter is the action that carries out the program.
This separation is allows for composition of programs, and managing effects
by delaying them till the time the program is run. We sometimes call this
structure an algebra, with constructs and combinators defining programs and
destructors defining interpreters. Although the name of the strategy focuses
on the interpreter, the design of the program is just as important as it is the
user interface through which the programmer interacts with the system.

Our starting implementation strategy is reification of the algebra’s
constructors and compositional methods as an algebraic data type. The
interpreter is then a structural recursion over this ADT. We saw that the
straightforward implementation is not stack‐safe, and which caused us
to introduction the idea of tail recursion and continuations. We reified
continuations as functions, and saw that we can convert any program into
continuation‐passing style which has every method call in tail position. Due
to Scala runtime limitations not all calls in tail position can be converted to tail
calls, so we reified calls and returns into data structures used by a recursive
loop called a trampoline. Underlying all these strategies in the concept of
duality. We have seen a duality between functions and data, which we utilize
in reification, and a duality between calling functions and returning data,
which we use in continuations and trampolines.

Stack‐safe interpreters are important inmany situations, but the code is harder
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to read than the basic structural recursion. In some contexts a basic interpreter
may be just fine. It’s unlikely to run out of stack space when evaluating
a straightforward expression tree, as in the arithmetic example. The depth
of such a tree grows logarithmically with the number of elements, so only
extremely large trees will have sufficient depth that stack safety becomes
relevant. However, in the regular expression example the stack consumption
is determined not by the depth of the regular expression tree, but by the length
of the input being matched. In this situation stack safety is more important.
There may still be other constraints that allow a simpler implementation. For
example, if we know the library will only used in situations where inputs were
guaranteed to be small. As always, only use coding techniques where they
make sense.

These ideas are classics in programming language theory. Definitional
Interpreters for Higher‐Order Programming Languages [Reynolds 1972] details
defunctionalization, a limited form of reification and continuation passing
style. (If you want to read this paper, I suggest the re‐typeset version from
1998, which is much more readable than the original typewriter version.)
These ideas are expanded on in Defunctionalization at Work [Danvy and
Nielsen 2001]. Continuation‐Passing Style, Defunctionalization, Accumulations,
and Associativity [Gibbons 2022] is a very readable and elegant paper that
highlights the importance of associativity in these transformations.

https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/reynolds-definitional-interpreters-1998.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/reynolds-definitional-interpreters-1998.pdf
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{#sec:part:two}

In this part of the book we move on to type classes. We looked at the
implementation of type classes in Chapter 4. Our focus here is on a handful
of specific type classes, that are both very useful for day‐to‐day programming
tasks and as conceptual models that can drive program design. In this part
we’ll be looking more at their use for day‐to‐day programming, while the case
studies will focus on their role in design.

In Chapter 6 we introduce the Cats library. Cats provides implementation of
the type classes we’re interested in, and so it saves a lot of time and typing to
use it.

TODO: complete description

https://typelevel.org/cats
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Chapter 6

Using Cats

In this Chapter we’ll learn how to use the Cats library. Cats provides two main
things: type classes and their instances, and some useful data structures. Our
focus will mostly be on the type classes, though we will touch on the data
structures where appropriate.

6.1 Quick Start

The easiest, and recommended, way to use Cats is to add the following
imports:

import cats.*

import cats.syntax.all.*

The first import adds all the type classes (and makes their instances available,
as they are found in the companion objects.) The second import adds the
syntax helpers, which makes the type classes easier to work with. Note we
don’t need to import cats.{*, given} as, at the time of writing, Cats is written
in Scala 2 style (using implicits) and these are imported by the wildcard
import.

If we want use some of Cats’ datastructures, we also need to add
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import cats.data.*

6.2 Using Cats

Let’s now see how we work with Cats, using cats.Show as an example.

Show is Cats’ equivalent of the Display type class we defined in Section 4.5.
It provides a mechanism for producing developer‐friendly console output
without using toString. Here’s an abbreviated definition:

package cats

trait Show[A] {

def show(value: A): String

}

The easiest way to use Show is with the wildcard import above. However, we
can also import Show directly from the cats package:

import cats.Show

The companion object of every Cats type class has an apply method that
locates an instance for any type we specify:

val showInt = Show.apply[Int]

Once we have an instance we can call methods on it.

showInt.show(42)

// res0: String = "42"

More common, however, is to use the syntax or extension methods, which
we imported with import cats.syntax.all.*. In the case of Show, an extension
method show is defined.

http://typelevel.org/cats/api/cats/Show.html
http://typelevel.org/cats/api/cats/
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42.show

// res1: String = "42"

If, for some reason, we wanted just the syntax for show, we could import cats
.syntax.show.

import cats.syntax.show.* // for show

6.2.1 Defining Custom Instances

We can define an instance of Show simply by implementing the trait for a given
type:

import java.util.Date

given dateShow: Show[Date] with

def show(date: Date): String =

s"${date.getTime}ms since the epoch."

new Date().show

// res2: String = "1747131114870ms since the epoch."

However, Cats also provides a couple of convenient methods to simplify the
process. There are two constructionmethods on the companion object of Show
that we can use to define instances for our own types:

object Show {

// Convert a function to a `Show` instance:

def show[A](f: A => String): Show[A] =

???

// Create a `Show` instance from a `toString` method:

def fromToString[A]: Show[A] =

???

}

http://typelevel.org/cats/api/cats/syntax/package$$show$
http://typelevel.org/cats/api/cats/syntax/package$$show$
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These allow us to quickly construct instanceswith less ceremony than defining
them from scratch:

given dateShow: Show[Date] =

Show.show(date => s"${date.getTime}ms since the epoch.")

As you can see, the code using construction methods is much terser than the
code without. Many type classes in Cats provide helper methods like these
for constructing instances, either from scratch or by transforming existing
instances for other types.

6.2.1.1 Exercise: Cat Show

Re‐implement the Cat application from Section 4.5.1 using Show instead of
Display.

Using this data type to represent a well‐known type of furry animal:

final case class Cat(name: String, age: Int, color: String)

create an implementation of Display for Cat that returns content in the
following format:

NAME is a AGE year-old COLOR cat.

Then use the type class on the console or in a short demo app: create a Cat

and print it to the console:

// Define a cat:

val cat = Cat(/* ... */)

// Print the cat!

See the solution
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6.3 Example: Eq

We will finish off this chapter by looking at another useful type class: cats.
Eq. Eq is designed to support type‐safe equality and address annoyances using
Scala’s built‐in == operator.

Almost every Scala developer has written code like this before:

List(1, 2, 3).map(Option(_)).filter(item => item == 1)

// warning: Option[Int] and Int are unrelated: they will most likely

never compare equal

// res: List[Option[Int]] = List()

Ok, many of you won’t have made such a simple mistake as this, but the
principle is sound. The predicate in the filter clause always returns false

because it is comparing an Int to an Option[Int].

This is programmer error—we should have compared item to Some(1) instead
of 1. However, it’s not technically a type error because ==works for any pair of
objects, no matter what types we compare. Eq is designed to add some type
safety to equality checks and work around this problem.

6.3.1 Equality, Liberty, and Fraternity

We can use Eq to define type‐safe equality between instances of any given
type:

package cats

trait Eq[A] {

def eqv(a: A, b: A): Boolean

// other concrete methods based on eqv...

}

The interface syntax, defined in cats.syntax.eq, provides two methods for
performing equality checks provided there is an instance Eq[A] in scope:

• === compares two objects for equality;
• =!= compares two objects for inequality.

http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/syntax/package$$eq$
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6.3.2 Comparing Ints

Let’s look at a few examples. First we import the type class:

import cats.*

Now let’s grab an instance for Int:

val eqInt = Eq[Int]

We can use eqInt directly to test for equality:

eqInt.eqv(123, 123)

// res1: Boolean = true

eqInt.eqv(123, 234)

// res2: Boolean = false

Unlike Scala’s ==method, if we try to compare objects of different types using
eqv we get a compile error:

eqInt.eqv(123, "234")

// error:

// Found: ("234" : String)

// Required: Int

// eqInt.eqv(123, "234")

// ^^^^^

We can also import the interface syntax in cats.syntax.eq to use the === and
=!= methods:

import cats.syntax.all.* // for === and =!=

123 === 123

// res4: Boolean = true

123 =!= 234

http://typelevel.org/cats/api/cats/syntax/package$$eq$
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// res5: Boolean = true

Again, comparing values of different types causes a compiler error:

123 === "123"

// error:

// Found: ("123" : String)

// Required: Int

// 123 === "123"

// ^^^^^

6.3.3 Comparing Options

Now for a more interesting example—Option[Int].

Some(1) === None

// error:

// value === is not a member of Some[Int] - did you mean Some[Int].==?

// Some(1) === None

// ^^^^^^^^^^^

We have received an error here because the types don’t quite match up. We
have Eq instances in scope for Int and Option[Int] but the values we are
comparing are of type Some[Int]. To fix the issue we have to re‐type the
arguments as Option[Int]:

(Some(1) : Option[Int]) === (None : Option[Int])

// res8: Boolean = false

We can do this in a friendlier fashion using the Option.apply and Option.empty

methods from the standard library:

Option(1) === Option.empty[Int]

// res9: Boolean = false

or using special syntax from cats.syntax.option:

http://typelevel.org/cats/api/cats/syntax/package$$option$
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1.some === none[Int]

// res10: Boolean = false

1.some =!= none[Int]

// res11: Boolean = true

6.3.4 Comparing Custom Types

We can define our own instances of Eq using the Eq.instance method, which
accepts a function of type (A, A)=> Boolean and returns an Eq[A]:

import java.util.Date

given dateEq: Eq[Date] =

Eq.instance[Date] { (date1, date2) =>

date1.getTime === date2.getTime

}

val x = new Date() // now

val y = new Date() // a bit later than now

x === x

// res12: Boolean = true

x === y

// res13: Boolean = true

6.3.4.1 Exercise: Equality, Liberty, and Felinity

Implement an instance of Eq for our running Cat example:

final case class Cat(name: String, age: Int, color: String)

Use this to compare the following pairs of objects for equality and inequality:
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val cat1 = Cat("Garfield", 38, "orange and black")

val cat2 = Cat("Heathcliff", 33, "orange and black")

val optionCat1 = Option(cat1)

val optionCat2 = Option.empty[Cat]

See the solution
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Chapter 7

Monoids and Semigroups

In this sectionwe explore our first type classes,monoid and semigroup. These
allow us to add or combine values. There are instances for Ints, Strings, Lists
, Options, and many more. Let’s start by looking at a few simple types and
operations to see what common principles we can extract.

7.0.0.1 Integer addition

Addition of Ints is a binary operation that is closed, meaning that adding two
Ints always produces another Int:

2 + 1

// res0: Int = 3

There is also the identity element 0with the property that a + 0 == 0 + a == a

for any Int a:

2 + 0

// res1: Int = 2

0 + 2

// res2: Int = 2
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There are also other properties of addition. For instance, it doesn’t matter in
what order we add elements because we always get the same result. This is a
property known as associativity:

(1 + 2) + 3

// res3: Int = 6

1 + (2 + 3)

// res4: Int = 6

7.0.0.2 Integer multiplication

The same properties for addition also apply for multiplication, provided we
use 1 as the identity instead of 0:

1 * 3

// res5: Int = 3

3 * 1

// res6: Int = 3

Multiplication, like addition, is associative:

(1 * 2) * 3

// res7: Int = 6

1 * (2 * 3)

// res8: Int = 6

7.0.0.3 String and sequence concatenation

We can also add Strings, using string concatenation as our binary operator:

"One" ++ "two"

// res9: String = "Onetwo"

and the empty string as the identity:
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"" ++ "Hello"

// res10: String = "Hello"

"Hello" ++ ""

// res11: String = "Hello"

Once again, concatenation is associative:

("One" ++ "Two") ++ "Three"

// res12: String = "OneTwoThree"

"One" ++ ("Two" ++ "Three")

// res13: String = "OneTwoThree"

Note that we used ++ above instead of the more usual + to suggest a parallel
with sequences. We can do the same with other types of sequence, using
concatenation as the binary operator and the empty sequence as our identity.

7.1 Definition of a Monoid

We’ve seen a number of “addition” scenarios above each with an associative
binary addition and an identity element. It will be no surprise to learn that this
is a monoid. Formally, a monoid for a type A is:

• an operation combine with type (A, A)=> A

• an element empty of type A

This definition translates nicely into Scala code. Here is a simplified version of
the definition from Cats:

trait Monoid[A] {

def combine(x: A, y: A): A

def empty: A

}

In addition to providing the combine and empty operations, monoids must
formally obey several laws. For all values x, y, and z, in A, combine must be
associative and empty must be an identity element:
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def associativeLaw[A](x: A, y: A, z: A)

(using m: Monoid[A]): Boolean = {

m.combine(x, m.combine(y, z)) ==

m.combine(m.combine(x, y), z)

}

def identityLaw[A](x: A)

(using m: Monoid[A]): Boolean = {

(m.combine(x, m.empty) == x) &&

(m.combine(m.empty, x) == x)

}

Integer subtraction, for example, is not a monoid because subtraction is not
associative:

(1 - 2) - 3

// res14: Int = -4

1 - (2 - 3)

// res15: Int = 2

In practice we only need to think about laws when we are writing our own
Monoid instances. Unlawful instances are dangerous because they can yield
unpredictable results when used with the rest of Cats’ machinery. Most of
the time we can rely on the instances provided by Cats and assume the library
authors know what they’re doing.

7.2 Definition of a Semigroup

A semigroup is just the combine part of a monoid, without the empty part. While
many semigroups are also monoids, there are some data types for which we
cannot define an empty element. For example, we have just seen that sequence
concatenation and integer addition are monoids. However, if we restrict
ourselves to non‐empty sequences and positive integers, we are no longer
able to define a sensible empty element. Cats has a NonEmptyList data type that
has an implementation of Semigroup but no implementation of Monoid.

A more accurate (though still simplified) definition of Cats’ Monoid is:

http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
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trait Semigroup[A] {

def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

def empty: A

}

We’ll see this kind of inheritance often when discussing type classes. It
provides modularity and allows us to re‐use behaviour. If we define a Monoid

for a type A, we get a Semigroup for free. Similarly, if a method requires a
parameter of type Semigroup[B], we can pass a Monoid[B] instead.

7.2.0.1 Exercise: The Truth About Monoids

We’ve seen a few examples of monoids but there are plenty more to be found.
Consider Boolean. How many monoids can you define for this type? For each
monoid, define the combine and empty operations and convince yourself that
the monoid laws hold. Use the following definitions as a starting point:

trait Semigroup[A] {

def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

def empty: A

}

object Monoid {

def apply[A](implicit monoid: Monoid[A]) =

monoid

}

See the solution

7.2.0.2 Exercise: All Set for Monoids

What monoids and semigroups are there for sets?
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See the solution

7.3 Monoids in Cats

Now we’ve seen what monoids are, let’s look at their implementation in Cats.
Once again we’ll look at the three main aspects of the implementation: the
type class, the instances, and the interface.

7.3.1 The Monoid Type Class

The monoid type class is cats.kernel.Monoid, which is aliased as cats.Monoid
. Monoid extends cats.kernel.Semigroup, which is aliased as cats.Semigroup.
When using Cats we normally import type classes from the cats package:

import cats.Monoid

import cats.Semigroup

or just

import cats.*

Cats Kernel?

Cats Kernel is a subproject of Cats providing a small set of typeclasses
for libraries that don’t require the full Cats toolbox. While these core
type classes are technically defined in the cats.kernel package, they are
all aliased to the cats package so we rarely need to be aware of the
distinction.

The Cats Kernel type classes covered in this book are Eq, Semigroup, and
Monoid. All the other type classes we cover are part of the main Cats

http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
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project and are defined directly in the cats package.

7.3.2 Monoid Instances

Monoid follows the standard Cats pattern for the user interface: the companion
object has an applymethod that returns the type class instance for a particular
type. For example, if we want the monoid instance for String, and we have
the correct given instances in scope, we can write the following:

import cats.Monoid

Monoid[String].combine("Hi ", "there")

// res1: String = "Hi there"

Monoid[String].empty

// res2: String = ""

which is equivalent to:

Monoid.apply[String].combine("Hi ", "there")

// res3: String = "Hi there"

Monoid.apply[String].empty

// res4: String = ""

As we know, Monoid extends Semigroup. If we don’t need empty we can
equivalently write:

import cats.Semigroup

Semigroup[String].combine("Hi ", "there")

// res5: String = "Hi there"

The standard type class instances for Monoid are all found on the appropriate
companion objects, and so are automatically in the given scopewith no further
imports required.

http://typelevel.org/cats/api/cats/
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7.3.3 Monoid Syntax

Cats provides syntax for the combine method in the form of the |+| operator.
Because combine technically comes from Semigroup, we access the syntax by
importing from cats.syntax.semigroup:

import cats.syntax.semigroup.* // for |+|

val stringResult = "Hi " |+| "there" |+| Monoid[String].empty

// stringResult: String = "Hi there"

val intResult = 1 |+| 2 |+| Monoid[Int].empty

// intResult: Int = 3

As always, unless there is compelling reason not, we recommend importing all
the syntax with

import cats.syntax.all.*

7.3.3.1 Exercise: Adding All The Things

The cutting edge SuperAdder v3.5a‐32 is the world’s first choice for adding
together numbers. The main function in the program has signature def add(

items: List[Int]): Int. In a tragic accident this code is deleted! Rewrite the
method and save the day!

See the solution

Well done! SuperAdder’s market share continues to grow, and now there is
demand for additional functionality. People now want to add List[Option[Int

]]. Change add so this is possible. The SuperAdder code base is of the highest
quality, so make sure there is no code duplication!

See the solution

SuperAdder is entering the POS (point‐of‐sale, not the other POS) market.
Now we want to add up Orders:

http://typelevel.org/cats/api/cats/syntax/package$$semigroup$
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case class Order(totalCost: Double, quantity: Double)

We need to release this code really soon so we can’t make any modifications
to add. Make it so!

See the solution

7.4 Applications of Monoids

We now know what a monoid is—an abstraction of the concept of adding or
combining—but where is it useful? Here are a few big ideas where monoids
play a major role. These are explored in more detail in case studies later in the
book.

7.4.1 Big Data

In big data applications like Spark and Flink we distribute data analysis over
many machines, giving fault tolerance and scalability. This means each
machine will return results over a portion of the data, and we must then
combine these results to get our final result. In the vast majority of cases
this can be viewed as a monoid.

If we want to calculate how many total visitors a web site has received, that
means calculating an Int on each portion of the data. We know the monoid
instance of Int is addition, which is the right way to combine partial results.

If we want to find out how many unique visitors a website has received, that’s
equivalent to building a Set[User] on each portion of the data. We know the
monoid instance for Set is the set union, which is the right way to combine
partial results.

If we want to calculate 99% and 95% response times from our server logs, we
can use a data structure called a QTree for which there is a monoid.

Hopefully you get the idea. Almost every analysis that we might want to do
over a large data set is a monoid, and therefore we can build an expressive
and powerful analytics system around this idea. This is exactly what Twitter’s



174 CHAPTER 7. MONOIDS AND SEMIGROUPS

Algebird and Summingbird projects have done. We explore this idea further
in the map‐reduce case study in Section 18.

7.4.2 Distributed Systems

In a distributed system, different machines may end up with different views of
data. For example, one machine may receive an update that other machines
did not receive. We would like to reconcile these different views, so every
machine has the same data if no more updates arrive. This is called eventual
consistency.

A particular class of data types support this reconciliation. These data types
are called conflict‐free replicated data types (CRDTs). The key operation is
the ability to merge two data instances, with a result that captures all the
information in both instances. This operation relies on having a monoid
instance. We explore this idea further in the CRDT case study.

7.4.3 Monoids in the Small

The two examples above are cases where monoids inform the entire system
architecture. There are also many cases where having a monoid aroundmakes
it easier to write a small code fragment. We’ll see lots of examples in the
remainder of this book.

7.5 Summary

We hit a big milestone in this chapter—we covered our first type classes with
fancy functional programming names:

• a Semigroup represents an addition or combination operation;
• a Monoid extends a Semigroup by adding an identity or “zero” element.

We can use Semigroups and Monoids by importing two things: the type classes
themselves, and the semigroup syntax to give us the |+| operator:
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import cats.Monoid

import cats.syntax.semigroup.* // for |+|

"Scala" |+| " with " |+| "Cats"

// res0: String = "Scala with Cats"

With the correct instances in scope, we can set about adding anything we
want:

Option(1) |+| Option(2)

// res1: Option[Int] = Some(value = 3)

val map1 = Map("a" -> 1, "b" -> 2)

val map2 = Map("b" -> 3, "d" -> 4)

map1 |+| map2

// res2: Map[String, Int] = Map("b" -> 5, "d" -> 4, "a" -> 1)

val tuple1 = ("hello", 123)

val tuple2 = ("world", 321)

tuple1 |+| tuple2

// res3: Tuple2[String, Int] = ("helloworld", 444)

We can also write generic code that works with any type for which we have
an instance of Monoid:

def addAll[A](values: List[A])

(using monoid: Monoid[A]): A =

values.foldRight(monoid.empty)(_ |+| _)
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addAll(List(1, 2, 3))

// res4: Int = 6

addAll(List(None, Some(1), Some(2)))

// res5: Option[Int] = Some(value = 3)

Monoids are a great gateway to Cats. They’re easy to understand and simple to
use. However, they’re just the tip of the iceberg in terms of the abstractions
Cats enables us to make. In the next chapter we’ll look at functors, the type
class personification of the beloved map method. That’s where the fun really
begins!
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Functors

In this chapter we will investigate functors, an abstraction that allows us to
represent sequences of operations within a context such as a List, an Option,
or any one of thousands of other possibilities. Functors on their own aren’t so
useful, but special cases of functors, such asmonads and applicative functors,
are some of the most commonly used abstractions.

8.1 Examples of Functors

Informally, a functor is anything with a map method. You probably know lots
of types that have this: Option, List, and Either, to name a few.

We typically first encounter map when iterating over Lists. However, to
understand functors we need to think of the method in another way. Rather
than traversing the list, we should think of it as transforming all of the values
inside in one go. We specify the function to apply, and map ensures it is applied
to every item. The values change but the structure of the list (the number of
elements and their order) remains the same:

List(1, 2, 3).map(n => n + 1)

// res0: List[Int] = List(2, 3, 4)
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Either[E, A]

map

Either[E, B]A => B

Option[A]

map

Option[B]A => B

List[A]

map

List[B]A => B

Figure 8.1: Type chart: mapping over List, Option, and Either

Similarly, when we map over an Option, we transform the contents but leave
the Some or None context unchanged. The same principle applies to Eitherwith
its Left and Right contexts. This general notion of transformation, along with
the common pattern of type signatures shown in Figure 8.1, is what connects
the behaviour of map across different data types.

Because map leaves the structure of the context unchanged, we can call it
repeatedly to sequence multiple computations on the contents of an initial
data structure:

List(1, 2, 3).

map(n => n + 1).

map(n => n * 2).

map(n => s"${n}!")

// res1: List[String] = List("4!", "6!", "8!")

We should think of map not as an iteration pattern, but as a way of sequencing
computations on values ignoring some complication dictated by the relevant
data type:
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Future[A] Future[B]A => B

map

Figure 8.2: Type chart: mapping over a Future

• Option—the value may or may not be present;
• Either—there may be a value or an error;
• List—there may be zero or more values.

8.2 More Examples of Functors

The mapmethods of List, Option, and Either apply functions eagerly. However,
the idea of sequencing computations is more general than this. Let’s
investigate the behaviour of some other functors that apply the pattern in
different ways.

Futures

Future is a functor that sequences asynchronous computations by queueing
them and applying them as their predecessors complete. The type signature
of its map method, shown in Figure 8.2, has the same shape as the signatures
above. However, the behaviour is very different.

When we work with a Future we have no guarantees about its internal state.
The wrapped computation may be ongoing, complete, or rejected. If the
Future is complete, our mapping function can be called immediately. If not,
some underlying thread pool queues the function call and comes back to it
later. We don’t know when our functions will be called, but we do know what
order they will be called in. In this way, Future provides the same sequencing
behaviour seen in List, Option, and Either:
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import scala.concurrent.{Future, Await}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

val future: Future[String] =

Future(123).

map(n => n + 1).

map(n => n * 2).

map(n => s"${n}!")

Await.result(future, 1.second)

// res2: String = "248!"

Futures and Referential Transparency

Note that Scala’s Futures aren’t a great example of pure functional
programming because they aren’t referentially transparent. Future always
computes and caches a result and there’s no way for us to tweak this
behaviour. This means we can get unpredictable results when we use
Future to wrap side‐effecting computations. For example:
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import scala.util.Random

val future1 = {

// Initialize Random with a fixed seed:

val r = new Random(0L)

// nextInt has the side-effect of moving to

// the next random number in the sequence:

val x = Future(r.nextInt())

for {

a <- x

b <- x

} yield (a, b)

}

val future2 = {

val r = new Random(0L)

for {

a <- Future(r.nextInt())

b <- Future(r.nextInt())

} yield (a, b)

}

val result1 = Await.result(future1, 1.second)

// result1: Tuple2[Int, Int] = (-1155484576, -1155484576)

val result2 = Await.result(future2, 1.second)

// result2: Tuple2[Int, Int] = (-1155484576, -723955400)

Ideally we would like result1 and result2 to contain the same value.
However, the computation for future1 calls nextInt once and the
computation for future2 calls it twice. Because nextInt returns a
different result every time we get a different result in each case.

This kind of discrepancy makes it hard to reason about programs
involving Futures and side‐effects. There also are other problematic
aspects of Future's behaviour, such as the way it always starts
computations immediately rather than allowing the user to dictatewhen
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X => A X => BA => B

map

Figure 8.3: Type chart: mapping over a Function1

the program should run. For more information see this excellent Reddit
answer by Rob Norris.

When we look at Cats Effect we’ll see that the IO type solves these
problems.

If Future isn’t referentially transparent, perhaps we should look at another
similar data‐type that is. You should recognise this one…

Functions (?!)

It turns out that single argument functions are also functors. To see this we
have to tweak the types a little. A function A => B has two type parameters:
the parameter type A and the result type B. To coerce them to the correct
shape we can fix the parameter type and let the result type vary:

• start with X => A;
• supply a function A => B;
• get back X => B.

If we alias X => A as MyFunc[A], we see the same pattern of types we saw with
the other examples in this chapter. We also see this in Figure 8.3:

• start with MyFunc[A];
• supply a function A => B;
• get back MyFunc[B].

In other words, “mapping” over a Function1 is function composition:

https://www.reddit.com/r/scala/comments/3zofjl/why_is_future_totally_unusable/
https://www.reddit.com/r/scala/comments/3zofjl/why_is_future_totally_unusable/
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import cats.syntax.all.* // for map

val func1: Int => Double =

(x: Int) => x.toDouble

val func2: Double => Double =

(y: Double) => y * 2

(func1.map(func2))(1) // composition using map

(func1.andThen(func2))(1) // composition using andThen

// res3: Double = 2.0

func2(func1(1)) // composition written out by hand

// res4: Double = 2.0

How does this relate to our general pattern of sequencing operations? If we
think about it, function composition is sequencing. We start with a function
that performs a single operation and every timewe use mapwe append another
operation to the chain. Calling map doesn’t actually run any of the operations,
but if we can pass an argument to the final function all of the operations are
run in sequence. We can think of this as lazily queueing up operations similar
to Future:

val func =

((x: Int) => x.toDouble).

map(x => x + 1).

map(x => x * 2).

map(x => s"${x}!")

func(123)

// res5: String = "248.0!"

Partial Unification

For the above examples to work, in versions of Scala before 2.13, we
need to add the following compiler option to build.sbt:
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F[A] F[B]A => B

map

Figure 8.4: Type chart: generalised functor map

scalacOptions += "-Ypartial-unification"

otherwise we’ll get a compiler error:

func1.map(func2)

// <console>: error: value map is not a member of Int => Double

// func1.map(func2)

^

We’ll look at why this happens in detail in Section 8.8.

8.3 Definition of a Functor

Every example we’ve looked at so far is a functor: a class that encapsulates
sequencing computations. Formally, a functor is a type F[A]with an operation
map with type (A => B)=> F[B]. The general type chart is shown in Figure 8.4.

Cats encodes Functor as a type class, cats.Functor, so the method looks
a little different. It accepts the initial F[A] as a parameter alongside the
transformation function. Here’s a simplified version of the definition:

package cats

trait Functor[F[_]] {

def map[A, B](fa: F[A])(f: A => B): F[B]

}

If you haven’t seen syntax like F[_] before, it’s time to take a brief detour to

http://typelevel.org/cats/api/cats/Functor.html
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discuss type constructors and higher kinded types.

Functor Laws

Functors guarantee the same semantics whether we sequence many
small operations one by one, or combine them into a larger function
before mapping. To ensure this is the case the following laws must hold:

Identity: calling map with the identity function is the same as doing
nothing:

fa.map(a => a) == fa

Composition: mapping with two functions f and g is the same as mapping
with f and then mapping with g:

fa.map(g(f(_))) == fa.map(f).map(g)

8.4 Aside: Higher Kinds and Type Constructors

Kinds are like types for types. They describe the number of “holes” in a
type. We distinguish between regular types that have no holes and “type
constructors” that have holes we can fill to produce types.

For example, List is a type constructor with one hole. We fill that hole by
specifying a parameter to produce a regular type like List[Int] or List[A]. The
trick is not to confuse type constructors with generic types. List is a type
constructor, List[A] is a type:

List // type constructor, takes one parameter

List[A] // type, produced by applying a type parameter

There’s a close analogy here with functions and values. Functions are “value
constructors”—they produce values when we supply parameters:
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math.abs // function, takes one parameter

math.abs(x) // value, produced by applying a value parameter

In Scala we declare type constructors using underscores. This specifies how
many “holes” the type constructor has. However, to use them we refer to just
the name.

// Declare F using underscores:

def myMethod[F[_]] = {

// Reference F without underscores:

val functor = Functor.apply[F]

// ...

}

This is analogous to specifying function parameter types. When we declare
a parameter we also give its type. However, to use them we refer to just the
name.

// Declare f specifying parameter types

def f(x: Int): Int =

// Reference x without type

x * 2

Armed with this knowledge of type constructors, we can see that the Cats
definition of Functor allows us to create instances for any single‐parameter
type constructor, such as List, Option, Future, or a type alias such as MyFunc.

Language Feature Imports

In versions of Scala before 2.13 we need to “enable” the higher
kinded type language feature, to suppress warnings from the compiler,
wheneverwe declare a type constructorwith A[_] syntax. We can either
do this with a “language import” as above:

import scala.language.higherKinds
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or by adding the following to scalacOptions in build.sbt:

scalacOptions += "-language:higherKinds"

In practice we find the scalacOptions flag to be the simpler of the two
options.

8.5 Functors in Cats

Let’s look at the implementation of functors in Cats. We’ll examine the same
aspects we did for monoids: the type class, the instances, and the syntax.

8.5.1 The Functor Type Class and Instances

The functor type class is cats.Functor. We obtain instances using the standard
Functor.apply method on the companion object. As usual, default instances
are found on companion objects and do not have to be explicity imported:

import cats.*

import cats.syntax.all.*

val list1 = List(1, 2, 3)

// list1: List[Int] = List(1, 2, 3)

val list2 = Functor[List].map(list1)(_ * 2)

// list2: List[Int] = List(2, 4, 6)

val option1 = Option(123)

// option1: Option[Int] = Some(value = 123)

val option2 = Functor[Option].map(option1)(_.toString)

// option2: Option[String] = Some(value = "123")

Functor provides a method called lift, which converts a function of type A =>

B to one that operates over a functor and has type F[A] => F[B]:

http://typelevel.org/cats/api/cats/Functor.html
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val func = (x: Int) => x + 1

// func: Function1[Int, Int] = repl.

MdocSession$MdocApp0$$$Lambda$20217/0x00000008050ef040@1d389b3d

val liftedFunc = Functor[Option].lift(func)

// liftedFunc: Function1[Option[Int], Option[Int]] = cats.

Functor$$Lambda$20218/0x00000008050ea840@2fb812fb

liftedFunc(Option(1))

// res1: Option[Int] = Some(value = 2)

The asmethod is the other method you are likely to use. It replaces with value
inside the Functor with the given value.

Functor[List].as(list1, "As")

// res2: List[String] = List("As", "As", "As")

8.5.2 Functor Syntax

The main method provided by the syntax for Functor is map. It’s difficult to
demonstrate this with Options and Lists as they have their own built‐in map

methods and the Scala compiler will always prefer a built‐in method over an
extension method. We’ll work around this with two examples.

First let’s look at mapping over functions. Scala’s Function1 type doesn’t have
a map method (it’s called andThen instead) so there are no naming conflicts:

val func1 = (a: Int) => a + 1

val func2 = (a: Int) => a * 2

val func3 = (a: Int) => s"${a}!"

val func4 = func1.map(func2).map(func3)

func4(123)

// res3: String = "248!"

Let’s look at another example. This time we’ll abstract over functors so we’re
not working with any particular concrete type. We can write a method that
applies an equation to a number no matter what functor context it’s in:
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def doMath[F[_]](start: F[Int])

(implicit functor: Functor[F]): F[Int] =

start.map(n => n + 1 * 2)

doMath(Option(20))

// res4: Option[Int] = Some(value = 22)

doMath(List(1, 2, 3))

// res5: List[Int] = List(3, 4, 5)

To illustrate how this works, let’s take a look at the definition of the mapmethod
in cats.syntax.functor. Here’s a simplified version of the code:

implicit class FunctorOps[F[_], A](src: F[A]) {

def map[B](func: A => B)

(implicit functor: Functor[F]): F[B] =

functor.map(src)(func)

}

The compiler can use this extension method to insert a map method wherever
no built‐in map is available:

foo.map(value => value + 1)

Assuming foo has no built‐in map method, the compiler detects the potential
error and wraps the expression in a FunctorOps to fix the code:

new FunctorOps(foo).map(value => value + 1)

The mapmethod of FunctorOps requires an implicit Functor as a parameter. This
means this code will only compile if we have a Functor for F in scope. If we
don’t, we get a compiler error:

final case class Box[A](value: A)

val box = Box[Int](123)
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box.map(value => value + 1)

// error:

// value map is not a member of repl.MdocSession.MdocApp0.Box[Int]

// box.map(value => value + 1)

// ^

The as method is also available as syntax.

List(1, 2, 3).as("As")

// res7: List[String] = List("As", "As", "As")

8.5.3 Instances for Custom Types

We can define a functor simply by defining its mapmethod. Here’s an example
of a Functor for Option, even though such a thing already exists in cats.

instances. The implementation is trivial—we simply call Option's map method:

implicit val optionFunctor: Functor[Option] =

new Functor[Option] {

def map[A, B](value: Option[A])(func: A => B): Option[B] =

value.map(func)

}

Sometimes we need to inject dependencies into our instances. For example, if
we had to define a custom Functor for Future (another hypothetical example—
Cats provides one in cats.instances.future) we would need to account for
the implicit ExecutionContext parameter on future.map. We can’t add extra
parameters to functor.map so we have to account for the dependency when
we create the instance:

import scala.concurrent.{Future, ExecutionContext}

implicit def futureFunctor

(implicit ec: ExecutionContext): Functor[Future] =

new Functor[Future] {

def map[A, B](value: Future[A])(func: A => B): Future[B] =

value.map(func)

http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/instances/
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}

Whenever we summon a Functor for Future, either directly using Functor

.apply or indirectly via the map extension method, the compiler will
locate futureFunctor by implicit resolution and recursively search for an
ExecutionContext at the call site. This is what the expansion might look like:

// We write this:

Functor[Future]

// The compiler expands to this first:

Functor[Future](futureFunctor)

// And then to this:

Functor[Future](futureFunctor(executionContext))

8.5.4 Exercise: Branching out with Functors

Write a Functor for the following binary tree data type. Verify that the code
works as expected on instances of Branch and Leaf:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])

extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

See the solution

8.6 Contravariant and Invariant Functors

As we have seen, we can think of Functor's map method as “appending” a
transformation to a chain. We’re now going to look at two other type classes,
one representing prepending operations to a chain, and one representing
building a bidirectional chain of operations. These are called contravariant and
invariant functors respectively.
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F[B] F[A]A => B

contramap

Figure 8.5: Type chart: the contramap method

This Section is Optional!

You don’t need to know about contravariant and invariant functors
to understand monads, which are the most important type class in
this book and the focus of the next chapter. However, contravariant
and invariant do come in handy in our discussion of Semigroupal and
Applicative in Chapter 11.

If you want to move on to monads now, feel free to skip straight to
Chapter 9. Come back here before you read Chapter 11.

8.6.1 Contravariant Functors and the contramapMethod

The first of our type classes, the contravariant functor, provides an operation
called contramap that represents “prepending” an operation to a chain. The
general type signature is shown in Figure 8.5.

The contramap method only makes sense for data types that represent
transformations. For example, we can’t define contramap for an Option because
there is noway of feeding a value in an Option[B] backwards through a function
A => B. However, we can define contramap for the Display type class we
discussed in Section 4.5:

trait Display[A] {

def display(value: A): String

}

A Display[A] represents a transformation from A to String. Its contramap
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method accepts a function func of type B => A and creates a new Display[B

]:

trait Display[A] {

def display(value: A): String

def contramap[B](func: B => A): Display[B] =

???

}

def display[A](value: A)(using p: Display[A]): String =

p.display(value)

8.6.1.1 Exercise: Showing off with Contramap

Implement the contramap method for Display above. Start with the following
code template and replace the ??? with a working method body:

trait Display[A] {

def display(value: A): String

def contramap[B](func: B => A): Display[B] =

new Display[B] {

def display(value: B): String =

???

}

}

If you get stuck, think about the types. You need to turn value, which is of
type B, into a String. What functions and methods do you have available and
in what order do they need to be combined?

See the solution

For testing purposes, let’s define some instances of Display for String and
Boolean:
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given stringDisplay: Display[String] with {

def display(value: String): String =

s"'${value}'"

}

given booleanDisplay: Display[Boolean] with {

def display(value: Boolean): String =

if value then "yes" else "no"

}

display("hello")

// res2: String = "'hello'"

display(true)

// res3: String = "yes"

Now define an instance of Display for the following Box case class. This is an
example of type class composotion as described in Section 4.3:

final case class Box[A](value: A)

Rather than writing out the complete definition from scratch (new Display[Box

] etc…), create your instance from an existing instance using contramap.

Your instance should work as follows:

display(Box("hello world"))

// res4: String = "'hello world'"

display(Box(true))

// res5: String = "yes"

If we don’t have a Display for the type inside the Box, calls to display should
fail to compile:

display(Box(123))

// error:

// No given instance of type repl.MdocSession.MdocApp1.Display[repl.

MdocSession.MdocApp1.Box[Int]] was found for parameter p of

method display in object MdocApp1.

// I found:
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//

// repl.MdocSession.MdocApp1.boxDisplay[A](

// /* missing */summon[repl.MdocSession.MdocApp1.Display[A]])

//

// But no implicit values were found that match type repl.MdocSession.

MdocApp1.Display[A].

// display(Box(123))

// ^

See the solution

8.6.2 Invariant functors and the imapmethod

Invariant functors implement a method called imap that is informally equivalent
to a combination of map and contramap. If map generates new type class
instances by appending a function to a chain, and contramap generates them
by prepending an operation to a chain, imap generates them via a pair of
bidirectional transformations.

The most intuitive examples of this are a type class that represents encoding
and decoding as some data type, such as Circe’s Codec and Play JSON’s Format.
We can build our own Codec by enhancing Display to support encoding and
decoding to/from a String:

trait Codec[A] {

def encode(value: A): String

def decode(value: String): A

def imap[B](dec: A => B, enc: B => A): Codec[B] = ???

}

def encode[A](value: A)(using c: Codec[A]): String =

c.encode(value)

def decode[A](value: String)(using c: Codec[A]): A =

c.decode(value)

The type chart for imap is shown in Figure 8.6. If we have a Codec[A] and a pair
of functions A => B and B => A, the imap method creates a Codec[B]:

https://github.com/circe/circe/blob/series/0.14.x/modules/core/shared/src/main/scala/io/circe/Codec.scala
https://www.playframework.com/documentation/2.6.x/ScalaJsonCombinators#Format
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F[A] F[B]A => B

,

B => A

imap

Figure 8.6: Type chart: the imap method

As an example use case, imagine we have a basic Codec[String], whose encode
and decode methods both simply return the value they are passed:

given stringCodec: Codec[String] with {

def encode(value: String): String = value

def decode(value: String): String = value

}

We can construct many useful Codecs for other types by building off of
stringCodec using imap:

given intCodec: Codec[Int] =

stringCodec.imap(_.toInt, _.toString)

given booleanCodec: Codec[Boolean] =

stringCodec.imap(_.toBoolean, _.toString)

Coping with Failure

Note that the decodemethod of our Codec type class doesn’t account for
failures. If we want to model more sophisticated relationships we can
move beyond functors to look at lenses and optics.

Optics are beyond the scope of this book. However, Julien Truffaut’s
library Monocle provides a great starting point for further investigation.

8.6.2.1 Transformative Thinking with imap

Implement the imap method for Codec above.

https://github.com/optics-dev/Monocle
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See the solution

Demonstrate your imap method works by creating a Codec for Double.

See the solution

Finally, implement a Codec for the following Box type:

final case class Box[A](value: A)

See the solution

Your instances should work as follows:

encode(123.4)

// res11: String = "123.4"

decode[Double]("123.4")

// res12: Double = 123.4

encode(Box(123.4))

// res13: String = "123.4"

decode[Box[Double]]("123.4")

// res14: Box[Double] = Box(value = 123.4)

What’s With the Names?

What’s the relationship between the terms “contravariance”,
“invariance”, and “covariance” and these different kinds of functor?

If you recall from Section 4.6.1, variance affects subtyping, which is
essentially our ability to use a value of one type in place of a value of
another type without breaking the code.

Subtyping can be viewed as a conversion. If B is a subtype of A, we can
always convert a B to an A.

Equivalentlywe could say that B is a subtype of A if there exists a function
B => A. A standard covariant functor captures exactly this. If F is a
covariant functor, wherever we have an F[B] and a conversion B => A

we can always convert to an F[A].
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A contravariant functor captures the opposite case. If F is a
contravariant functor, whenever we have a F[A] and a conversion B => A

we can convert to an F[B].

Finally, invariant functors capture the case where we can convert from
F[A] to F[B] via a function A => B and vice versa via a function B => A.

8.7 Contravariant and Invariant in Cats

Let’s look at the implementation of contravariant and invariant functors in
Cats, provided by the cats.Contravariant and cats.Invariant type classes
respectively. Here’s a simplified version of the code:

trait Contravariant[F[_]] {

def contramap[A, B](fa: F[A])(f: B => A): F[B]

}

trait Invariant[F[_]] {

def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]

}

8.7.1 Contravariant in Cats

We can summon instances of Contravariant using the Contravariant.apply

method. Cats provides instances for data types that consume parameters,
including Eq, Show, and Function1. Here’s an example:

import cats.*

val showString = Show[String]

val showSymbol = Contravariant[Show].

contramap(showString)((sym: Symbol) => s"'${sym.name}")

http://typelevel.org/cats/api/cats/Contravariant.html
http://typelevel.org/cats/api/cats/Invariant.html
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showSymbol.show(Symbol("dave"))

// res1: String = "'dave"

More conveniently, we can use cats.syntax.contravariant, which provides a
contramap extension method:

import cats.syntax.contravariant.* // for contramap

showString

.contramap[Symbol](sym => s"'${sym.name}")

.show(Symbol("dave"))

// res2: String = "'dave"

8.7.2 Invariant in Cats

Among other types, Cats provides an instance of Invariant for Monoid. This is
a little different from the Codec example we introduced in Section 8.6.2. If you
recall, this is what Monoid looks like:

package cats

trait Monoid[A] {

def empty: A

def combine(x: A, y: A): A

}

Imagine we want to produce a Monoid for Scala’s Symbol type. Cats doesn’t
provide a Monoid for Symbol but it does provide a Monoid for a similar type: String
. We can write our new semigroup with an empty method that relies on the
empty String, and a combine method that works as follows:

1. accept two Symbols as parameters;
2. convert the Symbols to Strings;
3. combine the Strings using Monoid[String];
4. convert the result back to a Symbol.

http://typelevel.org/cats/api/cats/syntax/package$$contravariant$
https://www.scala-lang.org/api/3.3.3/scala/Symbol.html
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We can implement combine using imap, passing functions of type String =>

Symbol and Symbol => String as parameters. Here’ the code, written out using
the imap extension method provided by cats.syntax.invariant:

import cats.*

import cats.syntax.invariant.* // for imap

import cats.syntax.semigroup.* // for |+|

given symbolMonoid: Monoid[Symbol] =

Monoid[String].imap(Symbol.apply)(_.name)

Monoid[Symbol].empty

// res3: Symbol = '

Symbol("a") |+| Symbol("few") |+| Symbol("words")

// res4: Symbol = 'afewwords

8.8 Aside: Partial Unification

In Section 8.2 we saw a functor instance for Function1.

import cats.*

import cats.syntax.functor.* // for map

val func1 = (x: Int) => x.toDouble

val func2 = (y: Double) => y * 2

val func3 = func1.map(func2)

// func3: Function1[Int, Double] = cats.instances.

Function1Instances0$$anon$11$$Lambda$20223/0

x00000008050c1040@3c5fdfde

Function1 has two type parameters (the function argument and the result
type):
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trait Function1[-A, +B] {

def apply(arg: A): B

}

However, Functor accepts a type constructor with one parameter:

trait Functor[F[_]] {

def map[A, B](fa: F[A])(func: A => B): F[B]

}

The compiler has to fix one of the two parameters of Function1 to create a
type constructor of the correct kind to pass to Functor. It has two options to
choose from:

type F[A] = Int => A

type F[A] = A => Double

We know that the former of these is the correct choice. However the compiler
doesn’t understand what the code means. Instead it relies on a simple rule,
implementing what is called “partial unification”.

The partial unification in the Scala compiler works by fixing type parameters
from left to right. In the above example, the compiler fixes the Int in Int =>

Double and looks for a Functor for functions of type Int => ?:

type F[A] = Int => A

val functor = Functor[F]

This left‐to‐right elimination works for a wide variety of common scenarios,
including Functors for types such as Function1 and Either:

val either: Either[String, Int] = Right(123)

// either: Either[String, Int] = Right(value = 123)

either.map(_ + 1)

// res0: Either[String, Int] = Right(value = 124)
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Partial unification is the default behaviour in Scala 2.13. In earlier
versions of Scala we need to add the -Ypartial-unification compiler
flag. In sbt we would add the compiler flag in build.sbt:

scalacOptions += "-Ypartial-unification"

The rationale behind this change is discussed in SI‐2712.

8.8.1 Limitations of Partial Unification

There are situations where left‐to‐right elimination is not the correct choice.
One example is the Or type in Scalactic, which is a conventionally left‐biased
equivalent of Either:

type PossibleResult = ActualResult Or Error

Another example is the Contravariant functor for Function1.

While the covariant Functor for Function1 implements andThen‐style left‐to‐
right function composition, the Contravariant functor implements compose‐
style right‐to‐left composition. In other words, the following expressions are
all equivalent:

val func3a: Int => Double =

a => func2(func1(a))

val func3b: Int => Double =

func2.compose(func1)

// Hypothetical example. This won't actually compile:

val func3c: Int => Double =

func2.contramap(func1)

If we try this for real, however, our code won’t compile:

https://issues.scala-lang.org/browse/SI-2712
http://scalactic.org
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A => X B => XB => A

contramap

Figure 8.7: Type chart: contramapping over a Function1

import cats.syntax.contravariant.* // for contramap

val func3c = func2.contramap(func1)

// error:

// value contramap is not a member of Double => Double.

// An extension method was tried, but could not be fully constructed:

//

// cats.syntax.contravariant.toContravariantOps[[R] =>> Double =>

R, A](

// repl.MdocSession.MdocApp.func2)(

// cats.Invariant.catsContravariantForFunction1[R])

// val func3c = func2.contramap(func1)

// ^^^^^^^^^^^^^^^

The problem here is that the Contravariant for Function1 fixes the return type
and leaves the parameter type varying, requiring the compiler to eliminate
type parameters from right to left, as shown below and in Figure 8.7:

type F[A] = A => Double

The compiler fails simply because of its left‐to‐right bias. We can prove this
by creating a type alias that flips the parameters on Function1:

type <=[B, A] = A => B

type F[A] = Double <= A

If we re‐type func2 as an instance of <=, we reset the required order of
elimination and we can call contramap as desired:
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val func2b: Double <= Double = func2

val func3c = func2b.contramap(func1)

// func3c: Function1[Int, Double] = scala.Function1$$Lambda$20329/0

x000000080503a040@1666d48b

The difference between func2 and func2b is purely syntactic—both refer to
the same value and the type aliases are otherwise completely compatible.
Incredibly, however, this simple rephrasing is enough to give the compiler the
hint it needs to solve the problem.

It is rare that we have to do this kind of right‐to‐left elimination. Most multi‐
parameter type constructors are designed to be right‐biased, requiring the left‐
to‐right elimination that is supported by the compiler out of the box. However,
it is useful to know about this quirk of elimination order in case you ever come
across an odd scenario like the one above.

8.9 Summary

Functors represent sequencing behaviours. We covered three types of functor
in this chapter:

• Regular covariant Functors, with their mapmethod, represent the ability
to apply functions to a value in some context. Successive calls to map

apply these functions in sequence, each accepting the result of its
predecessor as a parameter.

• Contravariant functors, with their contramap method, represent the
ability to “prepend” functions to a function‐like context. Successive
calls to contramap sequence these functions in the opposite order to
map.

• Invariant functors, with their imap method, represent bidirectional
transformations.
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Regular Functors are by far the most common of these type classes, but even
then it is rare to use them on their own. Functors form a foundational building
block of several more interesting abstractions that we use all the time. In
the following chapters we will look at two of these abstractions: monads and
applicative functors.

Functors for collections are extremely important, as they transform each
element independently of the rest. This allows us to parallelise or distribute
transformations on large collections, a technique leveraged heavily in “map‐
reduce” frameworks like Hadoop. We will investigate this approach in more
detail in the map‐reduce case study later in Section 18.

The Contravariant and Invariant type classes are less widely applicable but
are still useful for building data types that represent transformations. We will
revisit them to discuss the Semigroupal type class later in Chapter 11.

http://hadoop.apache.org
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Chapter 9

Monads

Monads are one of the most common abstractions in Scala. Many Scala
programmers quickly become intuitively familiarwithmonads, even ifwe don’t
know them by name.

Informally, a monad is anything with a constructor and a flatMap method.
All of the functors we saw in the last chapter are also monads, including
Option, List, and Future. We even have special syntax to support monads:
for comprehensions. However, despite the ubiquity of the concept, the
Scala standard library lacks a concrete type to encompass “things that can
be flatMapped”.

In this chapter we will take a deep dive into monads. We will start by
motivating themwith a few examples. We’ll proceed to their formal definition,
and see how we can create a concrete type as a type class. We’ll then look at
their implementation in Cats. Finally, we’ll tour some interesting monads that
you may not have seen, providing introductions and examples of their use.

9.1 What is a Monad?

This is the question that has been posed in a thousand blog posts, with
explanations and analogies involving concepts as diverse as cats, Mexican

207
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food, space suits full of toxic waste, and monoids in the category of
endofunctors (whatever that means). We’re going to solve the problem of
explaining monads once and for all by stating very simply:

A monad is a mechanism for sequencing computations.

That was easy! Problem solved, right? But then again, last chapter we said
functors were a mechanism for exactly the same thing. Ok, maybe we need
some more discussion…

In Section 8.1 we said that functors allow us to sequence computations
ignoring some complication. However, functors are limited in that they only
allow this complication to occur once at the beginning of the sequence. They
don’t account for further complications at each step in the sequence.

This is where monads come in. A monad’s flatMap method allows us to
specify what happens next, taking into account an intermediate complication.
The flatMap method of Option takes intermediate Options into account. The
flatMap method of List handles intermediate Lists. And so on. In each case,
the function passed to flatMap specifies the application‐specific part of the
computation, and flatMap itself takes care of the complication allowing us to
flatMap again. Let’s ground things by looking at some examples.

9.1.1 Options as Monads

Option allows us to sequence computations that may or may not return values.
Here are some examples:

def parseInt(str: String): Option[Int] =

scala.util.Try(str.toInt).toOption

def divide(a: Int, b: Int): Option[Int] =

if(b == 0) None else Some(a / b)

Each of thesemethodsmay “fail” by returning None. The flatMapmethod allows
us to ignore this when we sequence operations:
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Option[A]

flatMap

Option[B]A => Option[B]

Figure 9.1: Type chart: flatMap for Option

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

parseInt(aStr).flatMap { aNum =>

parseInt(bStr).flatMap { bNum =>

divide(aNum, bNum)

}

}

The semantics are:

• the first call to parseInt returns a None or a Some;
• if it returns a Some, the flatMapmethod calls our function and passes us
the integer aNum;

• the second call to parseInt returns a None or a Some;
• if it returns a Some, the flatMapmethod calls our function and passes us

bNum;
• the call to divide returns a None or a Some, which is our result.

At each step, flatMap chooses whether to call our function, and our function
generates the next computation in the sequence. This is shown in Figure 9.1.

The result of the computation is an Option, allowing us to call flatMap again
and so the sequence continues. This results in the fail‐fast error handling
behaviour that we know and love, where a None at any step results in a None

overall:

stringDivideBy("6", "2")

// res0: Option[Int] = Some(value = 3)

stringDivideBy("6", "0")

// res1: Option[Int] = None

stringDivideBy("6", "foo")
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// res2: Option[Int] = None

stringDivideBy("bar", "2")

// res3: Option[Int] = None

Every monad is also a functor (see below for proof), so we can rely on both
flatMap and map to sequence computations that do and don’t introduce a new
monad. Plus, if we have both flatMap and map we can use for comprehensions
to clarify the sequencing behaviour:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

for {

aNum <- parseInt(aStr)

bNum <- parseInt(bStr)

ans <- divide(aNum, bNum)

} yield ans

9.1.2 Lists as Monads

When we first encounter flatMap as budding Scala developers, we tend to
think of it as a pattern for iterating over Lists. This is reinforced by the syntax
of for comprehensions, which look very much like imperative for loops:

for {

x <- (1 to 3).toList

y <- (4 to 5).toList

} yield (x, y)

// res5: List[Tuple2[Int, Int]] = List(

// (1, 4),

// (1, 5),

// (2, 4),

// (2, 5),

// (3, 4),

// (3, 5)

// )

However, there is another mental model we can apply that highlights the
monadic behaviour of List. If we think of Lists as sets of intermediate results,
flatMap becomes a construct that calculates permutations and combinations.
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For example, in the for comprehension above there are three possible values
of x and two possible values of y. This means there are six possible values of
(x, y). flatMap is generating these combinations from our code, which states
the sequence of operations:

• get x
• get y
• create a tuple (x, y)

9.1.3 Futures as Monads

Future is a monad that sequences computations without worrying that they
may be asynchronous:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

def doSomethingLongRunning: Future[Int] = ???

def doSomethingElseLongRunning: Future[Int] = ???

def doSomethingVeryLongRunning: Future[Int] =

for {

result1 <- doSomethingLongRunning

result2 <- doSomethingElseLongRunning

} yield result1 + result2

Again, we specify the code to run at each step, and flatMap takes care of all
the horrifying underlying complexities of thread pools and schedulers.

If you’ve made extensive use of Future, you’ll know that the code above is
running each operation in sequence. This becomes clearer if we expand out
the for comprehension to show the nested calls to flatMap:

def doSomethingVeryLongRunning: Future[Int] =

doSomethingLongRunning.flatMap { result1 =>

doSomethingElseLongRunning.map { result2 =>

result1 + result2

}
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Future[A] Future[B]A => Future[B]

flatMap

Figure 9.2: Type chart: flatMap for Future

}

Each Future in our sequence is created by a function that receives the result
from a previous Future. In other words, each step in our computation can only
start once the previous step is finished. This is born out by the type chart for
flatMap in Figure 9.2, which shows the function parameter of type A => Future

[B].

We can run futures in parallel, of course, but that is another story and shall be
told another time. Monads are all about sequencing.

9.1.4 Definition of a Monad

While we have only talked about flatMap above, monadic behaviour is formally
captured in two operations:

• pure, of type A => F[A];
• flatMap¹, of type (F[A], A => F[B])=> F[B].

pure abstracts over constructors, providing a way to create a new monadic
context from a plain value. flatMap provides the sequencing step we have
already discussed, extracting the value from a context and generating the next
context in the sequence. Here is a simplified version of the Monad type class in
Cats:

¹In the programming literature and Haskell, pure is referred to as point or return and
flatMap is referred to as bind or >>=. This is purely a difference in terminology. We’ll use the
term flatMap for compatibility with Cats and the Scala standard library.
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trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

}

Monad Laws

pure and flatMap must obey a set of laws that allow us to sequence
operations freely without unintended glitches and side‐effects:

Left identity: calling pure and transforming the result with func is the
same as calling func:

pure(a).flatMap(func) == func(a)

Right identity: passing pure to flatMap is the same as doing nothing:

m.flatMap(pure) == m

Associativity: flatMapping over two functions f and g is the same as
flatMapping over f and then flatMapping over g:

m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

9.1.5 Exercise: Getting Func‐y

Every monad is also a functor. We can define map in the same way for every
monad using the existing methods, flatMap and pure:
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trait Monad[F[_]] {

def pure[A](a: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

???

}

Try defining map yourself now.

See the solution

9.2 Monads in Cats

It’s time to give monads our standard Cats treatment. As usual we’ll look at
the type class, instances, and syntax.

9.2.1 The Monad Type Class

The monad type class is cats.Monad. Monad extends two other type classes:
FlatMap, which provides the flatMap method, and Applicative, which provides
pure. Applicative also extends Functor, which gives every Monad a map method
as we saw in the exercise above. We’ll discuss Applicatives in Chapter 11.

Here are some examples using pure and flatMap, and map directly:

import cats.Monad

val opt1 = Monad[Option].pure(3)

// opt1: Option[Int] = Some(value = 3)

val opt2 = Monad[Option].flatMap(opt1)(a => Some(a + 2))

// opt2: Option[Int] = Some(value = 5)

val opt3 = Monad[Option].map(opt2)(a => 100 * a)

// opt3: Option[Int] = Some(value = 500)

http://typelevel.org/cats/api/cats/Monad.html
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val list1 = Monad[List].pure(3)

// list1: List[Int] = List(3)

val list2 = Monad[List].

flatMap(List(1, 2, 3))(a => List(a, a*10))

// list2: List[Int] = List(1, 10, 2, 20, 3, 30)

val list3 = Monad[List].map(list2)(a => a + 123)

// list3: List[Int] = List(124, 133, 125, 143, 126, 153)

Monad provides many other methods, including all of the methods from Functor.
See the scaladoc for more information.

9.2.2 Default Instances

Cats provides instances for all the monads in the standard library (Option, List,
Vector and so on). Cats also provides a Monad for Future. Unlike the methods
on the Future class itself, the pure and flatMap methods on the monad can’t
accept implicit ExecutionContext parameters (because the parameters aren’t
part of the definitions in the Monad trait). To work around this, Cats requires us
to have an ExecutionContext in scope when we summon a Monad for Future:

import scala.concurrent.*

import scala.concurrent.duration.*

val fm = Monad[Future]

// error:

// No given instance of type cats.Monad[scala.concurrent.Future] was

found for parameter instance of method apply in object Monad.

// I found:

//

// cats.Invariant.catsInstancesForFuture(

// /* missing */summon[scala.concurrent.ExecutionContext])

//

// But no implicit values were found that match type scala.concurrent.

ExecutionContext.

// val fm = Monad[Future]

// ^

http://typelevel.org/cats/api/cats/Monad.html
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Bringing the ExecutionContext into scope fixes the implicit resolution required
to summon the instance:

import scala.concurrent.ExecutionContext.Implicits.global

val fm = Monad[Future]

// fm: Monad[[T >: Nothing <: Any] => Future[T]] = cats.instances.

FutureInstances$$anon$1@1752a8b3

The Monad instance uses the captured ExecutionContext for subsequent calls to
pure and flatMap:

val future = fm.flatMap(fm.pure(1))(x => fm.pure(x + 2))

Await.result(future, 1.second)

// res1: Int = 3

In addition to the above, Cats provides a host of new monads that we don’t
have in the standard library. We’ll familiarise ourselves with some of these in
a moment.

9.2.3 Monad Syntax

The syntax for monads comes from three places:

• cats.syntax.flatMap provides syntax for flatMap;
• cats.syntax.functor provides syntax for map;
• cats.syntax.applicative provides syntax for pure.

In practice it’s often easier to import everything in one go from cats.syntax.

all.**. However, we’ll use the individual imports here for clarity.

We can use pure to construct instances of amonad. We’ll often need to specify
the type parameter to disambiguate the particular instance we want.

http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$applicative$
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import cats.syntax.applicative.* // for pure

1.pure[Option]

// res2: Option[Int] = Some(value = 1)

1.pure[List]

// res3: List[Int] = List(1)

It’s difficult to demonstrate the flatMap and map methods directly on Scala
monads like Option and List, because they define their own explicit versions
of those methods. Instead we’ll write a generic function that performs a
calculation on parameters that come wrapped in a monad of the user’s choice:

import cats.Monad

import cats.syntax.functor.* // for map

import cats.syntax.flatMap.* // for flatMap

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

a.flatMap(x => b.map(y => x*x + y*y))

sumSquare(Option(3), Option(4))

// res4: Option[Int] = Some(value = 25)

sumSquare(List(1, 2, 3), List(4, 5))

// res5: List[Int] = List(17, 26, 20, 29, 25, 34)

We can rewrite this code using for comprehensions. The compiler will “do the
right thing” by rewriting our comprehension in terms of flatMap and map and
inserting the correct conversions to use our Monad:

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

for {

x <- a

y <- b

} yield x*x + y*y
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sumSquare(Option(3), Option(4))

// res7: Option[Int] = Some(value = 25)

sumSquare(List(1, 2, 3), List(4, 5))

// res8: List[Int] = List(17, 26, 20, 29, 25, 34)

That’s more or less everything we need to know about the generalities of
monads in Cats. Now let’s take a look at some useful monad instances that
we haven’t seen in the Scala standard library.

9.3 The Identity Monad

In the previous section we demonstrated Cats’ flatMap and map syntax by
writing a method that abstracted over different monads:

import cats.Monad

import cats.syntax.functor.* // for map

import cats.syntax.flatMap.* // for flatMap

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

for {

x <- a

y <- b

} yield x*x + y*y

This method works well on Options and Lists but we can’t call it passing in
plain values:

sumSquare(3, 4)

// error:

// Found: (3 : Int)

// Required: ([_] =>> Any)[Int]

// Note that implicit conversions were not tried because the result of

an implicit conversion

// must be more specific than ([_] =>> Any)[Int]

// sumSquare(3, 4)

// ^

// error:

// Found: (4 : Int)
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// Required: ([_] =>> Any)[Int]

// Note that implicit conversions were not tried because the result of

an implicit conversion

// must be more specific than ([_] =>> Any)[Int]

// sumSquare(3, 4)

// ^

It would be incredibly useful if we could use sumSquare with parameters that
were either in a monad or not in a monad at all. This would allow us to abstract
over monadic and non‐monadic code. Fortunately, Cats provides the Id type
to bridge the gap:

import cats.Id

sumSquare(3 : Id[Int], 4 : Id[Int])

// res1: Int = 25

Id allows us to call ourmonadicmethod using plain values. However, the exact
semantics are difficult to understand. We cast the parameters to sumSquare as
Id[Int] and received an Id[Int] back as a result!

What’s going on? Here is the definition of Id to explain:

package cats

type Id[A] = A

Id is actually a type alias that turns an atomic type into a single‐parameter type
constructor. We can cast any value of any type to a corresponding Id:

"Dave" : Id[String]

// res2: String = "Dave"

123 : Id[Int]

// res3: Int = 123

List(1, 2, 3) : Id[List[Int]]

// res4: List[Int] = List(1, 2, 3)

Cats provides instances of various type classes for Id, including Functor and
Monad. These let us call map, flatMap, and pure on plain values:
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val a = Monad[Id].pure(3)

// a: Int = 3

val b = Monad[Id].flatMap(a)(_ + 1)

// b: Int = 4

import cats.syntax.functor.* // for map

import cats.syntax.flatMap.* // for flatMap

for {

x <- a

y <- b

} yield x + y

// res5: Int = 7

The ability to abstract over monadic and non‐monadic code is extremely
powerful. For example, we can run code asynchronously in production using
Future and synchronously in test using Id. We’ll see this in our first case study
in Chapter 17.

9.3.1 Exercise: Monadic Secret Identities

Implement pure, map, and flatMap for Id! What interesting discoveries do you
uncover about the implementation?

See the solution

9.4 Either

Let’s look at another useful monad: the Either type from the Scala standard
library. In Scala 2.11 and earlier, many people didn’t consider Either a monad
because it didn’t have map and flatMapmethods. In Scala 2.12, however, Either
became right biased.
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9.4.1 Left and Right Bias

In Scala 2.11, Either had no default map or flatMap method. This made the
Scala 2.11 version of Either inconvenient to use in for comprehensions. We
had to insert calls to .right in every generator clause:

val either1: Either[String, Int] = Right(10)

val either2: Either[String, Int] = Right(32)

for {

a <- either1.right

b <- either2.right

} yield a + b

In Scala 2.12, Either was redesigned. The modern Either makes the decision
that the right side represents the success case and thus supports map and
flatMap directly. This makes for comprehensions much more pleasant:

for {

a <- either1

b <- either2

} yield a + b

// res1: Either[String, Int] = Right(value = 42)

Cats back‐ports this behaviour to Scala 2.11 via the cats.syntax.either import,
allowing us to use right‐biased Either in all supported versions of Scala. In
Scala 2.12+we can either omit this import or leave it in place without breaking
anything:

import cats.syntax.either.* // for map and flatMap

for {

a <- either1

b <- either2

} yield a + b
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9.4.2 Creating Instances

In addition to creating instances of Left and Right directly, we can also import
the asLeft and asRight extension methods from cats.syntax.either:

import cats.syntax.either.* // for asRight

val a = 3.asRight[String]

// a: Either[String, Int] = Right(value = 3)

val b = 4.asRight[String]

// b: Either[String, Int] = Right(value = 4)

for {

x <- a

y <- b

} yield x*x + y*y

// res3: Either[String, Int] = Right(value = 25)

These “smart constructors” have advantages over Left.apply and Right.apply

because they return results of type Either instead of Left and Right. This helps
avoid type inference problems caused by over‐narrowing, like the issue in the
example below:

def countPositive(nums: List[Int]) =

nums.foldLeft(Right(0)) { (accumulator, num) =>

if(num > 0) {

accumulator.map(_ + 1)

} else {

Left("Negative. Stopping!")

}

}

// error:

// Found: Either[Nothing, Int]

// Required: Right[Nothing, Int]

// accumulator.map(_ + 1)

// ^^^^^^^^^^^^^^^^^^^^^^

// error:

// Found: Left[String, Any]

// Required: Right[Nothing, Int]

http://typelevel.org/cats/api/cats/syntax/package$$either$
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// Left("Negative. Stopping!")

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^

This code fails to compile for two reasons:

1. the compiler infers the type of the accumulator as Right instead of
Either;

2. we didn’t specify type parameters for Right.apply so the compiler infers
the left parameter as Nothing.

Switching to asRight avoids both of these problems. asRight has a return type
of Either, and allows us to completely specify the type with only one type
parameter:

def countPositive(nums: List[Int]) =

nums.foldLeft(0.asRight[String]) { (accumulator, num) =>

if(num > 0) {

accumulator.map(_ + 1)

} else {

Left("Negative. Stopping!")

}

}

countPositive(List(1, 2, 3))

// res5: Either[String, Int] = Right(value = 3)

countPositive(List(1, -2, 3))

// res6: Either[String, Int] = Left(value = "Negative. Stopping!")

cats.syntax.either adds some useful extension methods to the Either

companion object. The catchOnly and catchNonFatal methods are great for
capturing Exceptions as instances of Either:

Either.catchOnly[NumberFormatException]("foo".toInt)

// res7: Either[NumberFormatException, Int] = Left(

// value = java.lang.NumberFormatException: For input string: "foo"

// )

Either.catchNonFatal(sys.error("Badness"))

// res8: Either[Throwable, Nothing] = Left(
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// value = java.lang.RuntimeException: Badness

// )

There are also methods for creating an Either from other data types:

Either.fromTry(scala.util.Try("foo".toInt))

// res9: Either[Throwable, Int] = Left(

// value = java.lang.NumberFormatException: For input string: "foo"

// )

Either.fromOption[String, Int](None, "Badness")

// res10: Either[String, Int] = Left(value = "Badness")

9.4.3 Transforming Eithers

cats.syntax.either also adds some useful methods for instances of Either.

Users of Scala 2.11 or 2.12 can use orElse and getOrElse to extract values from
the right side or return a default:

import cats.syntax.either.*

"Error".asLeft[Int].getOrElse(0)

// res11: Int = 0

"Error".asLeft[Int].orElse(2.asRight[String])

// res12: Either[String, Int] = Right(value = 2)

The ensure method allows us to check whether the right‐hand value satisfies
a predicate:

-1.asRight[String].ensure("Must be non-negative!")(_ > 0)

// res13: Either[String, Int] = Left(value = "Must be non-negative!")

The recover and recoverWith methods provide similar error handling to their
namesakes on Future:
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"error".asLeft[Int].recover {

case _: String => -1

}

// res14: Either[String, Int] = Right(value = -1)

"error".asLeft[Int].recoverWith {

case _: String => Right(-1)

}

// res15: Either[String, Int] = Right(value = -1)

There are leftMap and bimap methods to complement map:

"foo".asLeft[Int].leftMap(_.reverse)

// res16: Either[String, Int] = Left(value = "oof")

6.asRight[String].bimap(_.reverse, _ * 7)

// res17: Either[String, Int] = Right(value = 42)

"bar".asLeft[Int].bimap(_.reverse, _ * 7)

// res18: Either[String, Int] = Left(value = "rab")

The swap method lets us exchange left for right:

123.asRight[String]

// res19: Either[String, Int] = Right(value = 123)

123.asRight[String].swap

// res20: Either[Int, String] = Left(value = 123)

Finally, Cats adds a host of conversion methods: toOption, toList, toTry,
toValidated, and so on.

9.4.4 Error Handling

Either is typically used to implement fail‐fast error handling. We sequence
computations using flatMap as usual. If one computation fails, the remaining
computations are not run:

for {

a <- 1.asRight[String]

b <- 0.asRight[String]
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c <- if(b == 0) "DIV0".asLeft[Int]

else (a / b).asRight[String]

} yield c * 100

// res21: Either[String, Int] = Left(value = "DIV0")

When using Either for error handling, we need to determine what type we
want to use to represent errors. We could use Throwable for this:

type Result[A] = Either[Throwable, A]

This gives us similar semantics to scala.util.Try. The problem, however, is
that Throwable is an extremely broad type. We have (almost) no idea about
what type of error occurred.

Another approach is to define an algebraic data type to represent errors that
may occur in our program:

enum LoginError {

case UserNotFound(username: String)

case PasswordIncorrect(username: String)

case UnexpectedError

}

case class User(username: String, password: String)

type LoginResult = Either[LoginError, User]

This approach solves the problems we saw with Throwable. It gives us a
fixed set of expected error types and a catch‐all for anything else that we
didn’t expect. We also get the safety of exhaustivity checking on any pattern
matching we do:

import LoginError.*

// Choose error-handling behaviour based on type:

def handleError(error: LoginError): Unit =
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error match {

case UserNotFound(u) =>

println(s"User not found: $u")

case PasswordIncorrect(u) =>

println(s"Password incorrect: $u")

case UnexpectedError =>

println(s"Unexpected error")

}

val result1: LoginResult = User("dave", "passw0rd").asRight

// result1: Either[LoginError, User] = Right(

// value = User(username = "dave", password = "passw0rd")

// )

val result2: LoginResult = UserNotFound("dave").asLeft

// result2: Either[LoginError, User] = Left(

// value = UserNotFound(username = "dave")

// )

result1.fold(handleError, println)

// User(dave,passw0rd)

result2.fold(handleError, println)

// User not found: dave

9.4.5 Exercise: What is Best?

Is the error handling strategy in the previous examples well suited for all
purposes? What other features might we want from error handling?

See the solution

9.5 Aside: Error Handling and MonadError

Cats provides an additional type class called MonadError that abstracts over
Either‐like data types that are used for error handling. MonadError provides
extra operations for raising and handling errors.
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This Section is Optional!

You won’t need to use MonadError unless you need to abstract over error
handling monads. For example, you can use MonadError to abstract over
Future and Try, or over Either and EitherT (whichwewill meet in Chapter
10).

If you don’t need this kind of abstraction right now, feel free to skip
onwards to Section 9.6.

9.5.1 The MonadError Type Class

Here is a simplified version of the definition of MonadError:

package cats

trait MonadError[F[_], E] extends Monad[F] {

// Lift an error into the `F` context:

def raiseError[A](e: E): F[A]

// Handle an error, potentially recovering from it:

def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]

// Handle all errors, recovering from them:

def handleError[A](fa: F[A])(f: E => A): F[A]

// Test an instance of `F`,

// failing if the predicate is not satisfied:

def ensure[A](fa: F[A])(e: E)(f: A => Boolean): F[A]

}

MonadError is defined in terms of two type parameters:

• F is the type of the monad;
• E is the type of error contained within F.

To demonstrate how these parameters fit together, here’s an example where
we instantiate the type class for Either:
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import cats.MonadError

type ErrorOr[A] = Either[String, A]

val monadError = MonadError[ErrorOr, String]

ApplicativeError

In reality, MonadError extends another type class called ApplicativeError

. However, we won’t encounter Applicatives until Chapter 11. The
semantics are the same for each type class so we can ignore this detail
for now.

9.5.2 Raising and Handling Errors

The two most important methods of MonadError are raiseError and
handleErrorWith. raiseError is like the pure method for Monad except that it
creates an instance representing a failure:

val success = monadError.pure(42)

// success: Either[String, Int] = Right(value = 42)

val failure = monadError.raiseError("Badness")

// failure: Either[String, Nothing] = Left(value = "Badness")

handleErrorWith is the complement of raiseError. It allows us to consume an
error and (possibly) turn it into a success, similar to the recover method of
Future:

monadError.handleErrorWith(failure) {

case "Badness" =>

monadError.pure("It's ok")

case _ =>

monadError.raiseError("It's not ok")

}

// res0: Either[String, String] = Right(value = "It's ok")

If we know we can handle all possible errors we can use handleWith.
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monadError.handleError(failure) {

case "Badness" => 42

case _ => -1

}

// res1: Either[String, Int] = Right(value = 42)

There is another useful method called ensure that implements filter‐like
behaviour. We test the value of a successful monad with a predicate and
specify an error to raise if the predicate returns false:

monadError.ensure(success)("Number too low!")(_ > 1000)

// res2: Either[String, Int] = Left(value = "Number too low!")

Cats provides syntax for raiseError and handleErrorWith via cats.syntax.

applicativeError and ensure via cats.syntax.monadError:

import cats.syntax.applicative.* // for pure

import cats.syntax.applicativeError.* // for raiseError etc

import cats.syntax.monadError.* // for ensure

val success = 42.pure[ErrorOr]

// success: Either[String, Int] = Right(value = 42)

val failure = "Badness".raiseError[ErrorOr, Int]

// failure: Either[String, Int] = Left(value = "Badness")

failure.handleErrorWith{

case "Badness" =>

256.pure

case _ =>

("It's not ok").raiseError

}

// res4: Either[String, Int] = Right(value = 256)

success.ensure("Number to low!")(_ > 1000)

// res5: Either[String, Int] = Left(value = "Number to low!")

There are other useful variants of these methods. See the source of cats.
MonadError and cats.ApplicativeError for more information.

http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$
http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$
http://typelevel.org/cats/api/cats/syntax/package$$monadError$
http://typelevel.org/cats/api/cats/MonadError.html
http://typelevel.org/cats/api/cats/MonadError.html
http://typelevel.org/cats/api/cats/ApplicativeError.html
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9.5.3 Instances of MonadError

Cats provides instances of MonadError for numerous data types including
Either, Future, and Try. The instance for Either is customisable to any error
type, whereas the instances for Future and Try always represent errors as
Throwables:

import scala.util.Try

val exn: Throwable =

new RuntimeException("It's all gone wrong")

exn.raiseError[Try, Int]

// res6: Try[Int] = Failure(

// exception = java.lang.RuntimeException: It's all gone wrong

// )

9.5.4 Exercise: Abstracting

Implement a method validateAdult with the following signature

def validateAdult[F[_]](age: Int)(implicit me: MonadError[F, Throwable

]): F[Int] =

???

When passed an age greater than or equal to 18 it should return that
value as a success. Otherwise it should return a error represented as an
IllegalArgumentException.

Here are some examples of use.

validateAdult[Try](18)

// res7: Try[Int] = Success(value = 18)

validateAdult[Try](8)

// res8: Try[Int] = Failure(

// exception = java.lang.IllegalArgumentException: Age must be

greater than or equal to 18
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// )

type ExceptionOr[A] = Either[Throwable, A]

validateAdult[ExceptionOr](-1)

// res9: Either[Throwable, Int] = Left(

// value = java.lang.IllegalArgumentException: Age must be greater

than or equal to 18

// )

See the solution

9.6 The Eval Monad

cats.Eval is a monad that allows us to abstract over different models of
evaluation. We typically talk of two such models: eager and lazy, also called
call‐by‐value and call‐by‐name respectively. Eval also allows for a result to be
memoized, which gives us call‐by‐need evaluation.

Eval is also stack‐safe, which means we can use it in very deep recursions
without blowing up the stack.

9.6.1 Eager, Lazy, Memoized, Oh My!

What do these terms for models of evaluationmean? Let’s see some examples.

Let’s first look at Scala vals. We can see the evaluation model using a
computation with a visible side‐effect. In the following example, the code
to compute the value of x happens at place where it is defined rather than on
access. Accessing x recalls the stored value without re‐running the code.

val x = {

println("Computing X")

math.random()

}

// Computing X

// x: Double = 0.5792767091094089

x // first access

http://typelevel.org/cats/api/cats/Eval.html
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// res0: Double = 0.5792767091094089

x // second access

// res1: Double = 0.5792767091094089

This is an example of call‐by‐value evaluation:

• the computation is evaluated at point where it is defined (eager); and
• the computation is evaluated once (memoized).

Let’s look at an example using a def. The code to compute y below is not run
until we use it, and is re‐run on every access:

def y = {

println("Computing Y")

math.random()

}

y // first access

// Computing Y

// res2: Double = 0.5795917038882374

y // second access

// Computing Y

// res3: Double = 0.5358221540864636

These are the properties of call‐by‐name evaluation:

• the computation is evaluated at the point of use (lazy); and
• the computation is evaluated each time it is used (not memoized).

Last but not least, lazy vals are an example of call‐by‐need evaluation. The
code to compute z below is not run until we use it for the first time (lazy). The
result is then cached and re‐used on subsequent accesses (memoized):

lazy val z = {

println("Computing Z")

math.random()

}

z // first access
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// Computing Z

// res4: Double = 0.4908591565434778

z // second access

// res5: Double = 0.4908591565434778

Let’s summarize. There are two properties of interest:

• evaluation at the point of definition (eager) versus at the point of use
(lazy); and

• values are saved once evaluated (memoized) or not (not memoized).

There are three possible combinations of these properties:

• call‐by‐value which is eager and memoized;
• call‐by‐name which is lazy and not memoized; and
• call‐by‐need which is lazy and memoized.

The final combination, eager and not memoized, is not possible.

9.6.2 Eval’s Models of Evaluation

Eval has three subtypes: Now, Always, and Later. They correspond to call‐by‐
value, call‐by‐name, and call‐by‐need respectively. We construct these with
three constructor methods, which create instances of the three classes and
return them typed as Eval:

import cats.Eval

val now = Eval.now(math.random() + 1000)

// now: Eval[Double] = Now(value = 1000.6640380862943)

val always = Eval.always(math.random() + 3000)

// always: Eval[Double] = cats.Always@443b71

val later = Eval.later(math.random() + 2000)

// later: Eval[Double] = cats.Later@f9a4ace
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We can extract the result of an Eval using its value method:

now.value

// res6: Double = 1000.6640380862943

always.value

// res7: Double = 3000.961091994659

later.value

// res8: Double = 2000.73816245745

Each type of Eval calculates its result using one of the evaluation models
defined above. Eval.now captures a value right now. Its semantics are similar
to a val—eager and memoized:

val x = Eval.now{

println("Computing X")

math.random()

}

// Computing X

// x: Eval[Double] = Now(value = 0.24752348384946177)

x.value // first access

// res10: Double = 0.24752348384946177

x.value // second access

// res11: Double = 0.24752348384946177

Eval.always captures a lazy computation, similar to a def:

val y = Eval.always{

println("Computing Y")

math.random()

}

// y: Eval[Double] = cats.Always@5b8a8b7f

y.value // first access

// Computing Y

// res12: Double = 0.5572796866993928

y.value // second access
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// Computing Y

// res13: Double = 0.7542338094572812

Finally, Eval.later captures a lazy, memoized computation, similar to a lazy

val:

val z = Eval.later{

println("Computing Z")

math.random()

}

// z: Eval[Double] = cats.Later@4447adec

z.value // first access

// Computing Z

// res14: Double = 0.46307146265616594

z.value // second access

// res15: Double = 0.46307146265616594

The three behaviours are summarized below:

Scala Cats Properties

val Now eager, memoized
def Always lazy, not memoized
lazy val Later lazy, memoized

9.6.3 Eval as a Monad

Like all monads, Eval's map and flatMapmethods add computations to a chain.
In this case, however, the chain is stored explicitly as a list of functions. The
functions aren’t run until we call Eval's value method to request a result:

val greeting = Eval

.always{ println("Step 1"); "Hello" }

.map{ str => println("Step 2"); s"$str world" }

// greeting: Eval[String] = cats.Eval$$anon$4@2c84a9f8

greeting.value
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// Step 1

// Step 2

// res16: String = "Hello world"

Note that, while the semantics of the originating Eval instances aremaintained,
mapping functions are always called lazily on demand (def semantics):

val ans = for {

a <- Eval.now{ println("Calculating A"); 40 }

b <- Eval.always{ println("Calculating B"); 2 }

} yield {

println("Adding A and B")

a + b

}

// Calculating A

// ans: Eval[Int] = cats.Eval$$anon$4@25852eae

ans.value // first access

// Calculating B

// Adding A and B

// res17: Int = 42

ans.value // second access

// Calculating B

// Adding A and B

// res18: Int = 42

Eval has a memoizemethod that allows us to memoize a chain of computations.
The result of the chain up to the call to memoize is cached, whereas calculations
after the call retain their original semantics:

val saying = Eval

.always{ println("Step 1"); "The cat" }

.map{ str => println("Step 2"); s"$str sat on" }

.memoize

.map{ str => println("Step 3"); s"$str the mat" }

// saying: Eval[String] = cats.Eval$$anon$4@29cebc14

saying.value // first access

// Step 1

// Step 2

// Step 3
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// res19: String = "The cat sat on the mat"

saying.value // second access

// Step 3

// res20: String = "The cat sat on the mat"

9.6.4 Trampolining and Eval.defer

One useful property of Eval is that its map and flatMapmethods are trampolined.
This means we can nest calls to map and flatMap arbitrarily without consuming
stack frames. We call this property “stack safety”.

For example, consider this function for calculating factorials:

def factorial(n: BigInt): BigInt =

if(n == 1) n else n * factorial(n - 1)

It is relatively easy to make this method stack overflow:

factorial(50000)

// java.lang.StackOverflowError

// ...

We can rewrite the method using Eval to make it stack safe:

def factorial(n: BigInt): Eval[BigInt] =

if(n == 1) {

Eval.now(n)

} else {

factorial(n - 1).map(_ * n)

}

factorial(50000).value

// java.lang.StackOverflowError

// ...

Oops! That didn’t work—our stack still blew up! This is because we’re still
making all the recursive calls to factorial before we start working with Eval

's map method. We can work around this using Eval.defer, which takes an
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existing instance of Eval and defers its evaluation. The defer method is
trampolined like map and flatMap, so we can use it as a quick way to make
an existing operation stack safe:

def factorial(n: BigInt): Eval[BigInt] =

if(n == 1) {

Eval.now(n)

} else {

Eval.defer(factorial(n - 1).map(_ * n))

}

factorial(50000).value

// res: A very big value

Eval is a useful tool to enforce stack safety when working on very large
computations and data structures. However, we must bear in mind that
trampolining is not free. It avoids consuming stack by creating a chain of
function objects on the heap. There are still limits on how deeply we can
nest computations, but they are bounded by the size of the heap rather than
the stack.

9.6.5 Exercise: Safer Folding using Eval

The naive implementation of foldRight below is not stack safe. Make it so
using Eval:

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =

as match {

case head :: tail =>

fn(head, foldRight(tail, acc)(fn))

case Nil =>

acc

}

See the solution
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9.7 The Writer Monad

cats.data.Writer is a monad that lets us carry a log along with a computation.
We can use it to record messages, errors, or additional data about a
computation, and extract the log alongside the final result.

One commonuse for Writers is recording sequences of steps inmulti‐threaded
computations where standard imperative logging techniques can result in
interleaved messages from different contexts. With Writer the log for the
computation is tied to the result, so we can run concurrent computations
without mixing logs.

Cats Data Types

Writer is the first data type we’ve seen from the cats.data package.
This package provides instances of various type classes that produce
useful semantics. Other examples from cats.data include the monad
transformers that wewill see in the next chapter, and the Validated type
we will encounter in Chapter 11.

9.7.1 Creating and Unpacking Writers

A Writer[W, A] carries two values: a log of type W and a result of type A. We
can create a Writer from values of each type as follows:

import cats.data.Writer

import cats.instances.vector._ // for Monoid

Writer(Vector(

"It was the best of times",

"it was the worst of times"

), 1859)

// res0: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("It was the best of times", "it was the worst of

times"), 1859)

// )

http://typelevel.org/cats/api/cats/data/#Writer%5BS,A%5D=cats.data.WriterT%5Bcats.Eval,S,A%5D
http://typelevel.org/cats/api/cats/data/
http://typelevel.org/cats/api/cats/data/Validated.html
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Notice that the type reported on the console is actually WriterT[Id, Vector[

String], Int] instead of Writer[Vector[String], Int] as we might expect. In
the spirit of code reuse, Cats implements Writer in terms of another type,
WriterT. WriterT is an example of a new concept called a monad transformer,
which we will cover in the next chapter.

Let’s try to ignore this detail for now. Writer is a type alias for WriterT, so we
can read types like WriterT[Id, W, A] as Writer[W, A]:

type Writer[W, A] = WriterT[Id, W, A]

For convenience, Cats provides a way of creating Writers specifying only the
log or the result. If we only have a result we can use the standard pure syntax.
To do this we must have a Monoid[W] in scope so Cats knows how to produce
an empty log:

import cats.instances.vector._ // for Monoid

import cats.syntax.applicative._ // for pure

type Logged[A] = Writer[Vector[String], A]

123.pure[Logged]

// res1: WriterT[Id, Vector[String], Int] = WriterT(run = (Vector(),

123))

If we have a log and no result we can create a Writer[Unit] using the tell

syntax from cats.syntax.writer:

import cats.syntax.writer._ // for tell

Vector("msg1", "msg2", "msg3").tell

// res2: WriterT[Id, Vector[String], Unit] = WriterT(

// run = (Vector("msg1", "msg2", "msg3"), ())

// )

If we have both a result and a log, we can either use Writer.apply or we can
use the writer syntax from cats.syntax.writer:

http://typelevel.org/cats/api/cats/syntax/package$$writer$
http://typelevel.org/cats/api/cats/syntax/package$$writer$
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import cats.syntax.writer._ // for writer

val a = Writer(Vector("msg1", "msg2", "msg3"), 123)

// a: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("msg1", "msg2", "msg3"), 123)

// )

val b = 123.writer(Vector("msg1", "msg2", "msg3"))

// b: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("msg1", "msg2", "msg3"), 123)

// )

We can extract the result and log from a Writer using the value and written

methods respectively:

val aResult: Int =

a.value

// aResult: Int = 123

val aLog: Vector[String] =

a.written

// aLog: Vector[String] = Vector("msg1", "msg2", "msg3")

We can extract both values at the same time using the run method:

val (log, result) = b.run

// log: Vector[String] = Vector("msg1", "msg2", "msg3")

// result: Int = 123

9.7.2 Composing and Transforming Writers

The log in a Writer is preserved when we map or flatMap over it. flatMap

appends the logs from the source Writer and the result of the user’s
sequencing function. For this reason it’s good practice to use a log type that
has an efficient append and concatenate operations, such as a Vector:
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val writer1 = for {

a <- 10.pure[Logged]

_ <- Vector("a", "b", "c").tell

b <- 32.writer(Vector("x", "y", "z"))

} yield a + b

// writer1: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("a", "b", "c", "x", "y", "z"), 42)

// )

writer1.run

// res3: Tuple2[Vector[String], Int] = (

// Vector("a", "b", "c", "x", "y", "z"),

// 42

// )

In addition to transforming the result with map and flatMap, we can transform
the log in a Writer with the mapWritten method:

val writer2 = writer1.mapWritten(_.map(_.toUpperCase))

// writer2: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("A", "B", "C", "X", "Y", "Z"), 42)

// )

writer2.run

// res4: Tuple2[Vector[String], Int] = (

// Vector("A", "B", "C", "X", "Y", "Z"),

// 42

// )

We can transform both log and result simultaneously using bimap or mapBoth.
bimap takes two function parameters, one for the log and one for the result.
mapBoth takes a single function that accepts two parameters:

val writer3 = writer1.bimap(

log => log.map(_.toUpperCase),

res => res * 100

)

// writer3: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("A", "B", "C", "X", "Y", "Z"), 4200)

// )
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writer3.run

// res5: Tuple2[Vector[String], Int] = (

// Vector("A", "B", "C", "X", "Y", "Z"),

// 4200

// )

val writer4 = writer1.mapBoth { (log, res) =>

val log2 = log.map(_ + "!")

val res2 = res * 1000

(log2, res2)

}

// writer4: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("a!", "b!", "c!", "x!", "y!", "z!"), 42000)

// )

writer4.run

// res6: Tuple2[Vector[String], Int] = (

// Vector("a!", "b!", "c!", "x!", "y!", "z!"),

// 42000

// )

Finally, we can clear the log with the reset method and swap log and result
with the swap method:

val writer5 = writer1.reset

// writer5: WriterT[Id, Vector[String], Int] = WriterT(run = (Vector()

, 42))

writer5.run

// res7: Tuple2[Vector[String], Int] = (Vector(), 42)

val writer6 = writer1.swap

// writer6: WriterT[Id, Int, Vector[String]] = WriterT(

// run = (42, Vector("a", "b", "c", "x", "y", "z"))

// )

writer6.run

// res8: Tuple2[Int, Vector[String]] = (

// 42,

// Vector("a", "b", "c", "x", "y", "z")

// )
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9.7.3 Exercise: Show Your Working

Writers are useful for logging operations inmulti‐threaded environments. Let’s
confirm this by computing (and logging) some factorials.

The factorial function below computes a factorial and prints out the
intermediate steps as it runs. The slowly helper function ensures this takes
a while to run, even on the very small examples below:

def slowly[A](body: => A) =

try body finally Thread.sleep(100)

def factorial(n: Int): Int = {

val ans = slowly(if(n == 0) 1 else n * factorial(n - 1))

println(s"fact $n $ans")

ans

}

Here’s the output—a sequence of monotonically increasing values:

factorial(5)

// fact 0 1

// fact 1 1

// fact 2 2

// fact 3 6

// fact 4 24

// fact 5 120

// res9: Int = 120

If we start several factorials in parallel, the log messages can become
interleaved on standard out. This makes it difficult to see which messages
come from which computation:

import scala.concurrent._

import scala.concurrent.ExecutionContext.Implicits._

import scala.concurrent.duration._

Await.result(Future.sequence(Vector(

Future(factorial(5)),

Future(factorial(5))
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)), 5.seconds)

// fact 0 1

// fact 0 1

// fact 1 1

// fact 1 1

// fact 2 2

// fact 2 2

// fact 3 6

// fact 3 6

// fact 4 24

// fact 4 24

// fact 5 120

// fact 5 120

// res: scala.collection.immutable.Vector[Int] =

// Vector(120, 120)

Rewrite factorial so it captures the log messages in a Writer. Demonstrate
that this allows us to reliably separate the logs for concurrent computations.

See the solution

9.8 The Reader Monad

cats.data.Reader is a monad that allows us to sequence operations that
depend on some input. Instances of Readerwrap up functions of one argument,
providing us with useful methods for composing them.

One common use for Readers is dependency injection. If we have a number
of operations that all depend on some external configuration, we can chain
them together using a Reader to produce one large operation that accepts the
configuration as a parameter and runs our program in the order specified.

9.8.1 Creating and Unpacking Readers

We can create a Reader[A, B] from a function A => B using the Reader.apply

constructor:

http://typelevel.org/cats/api/cats/data/?search=reader#Reader%5BA,B%5D=cats.data.package.ReaderT%5Bcats.Id,A,B%5D
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import cats.data.Reader

final case class Cat(name: String, favoriteFood: String)

val catName: Reader[Cat, String] =

Reader(cat => cat.name)

// catName: Kleisli[Id, Cat, String] = Kleisli(

// run = repl.MdocSession$MdocApp0$$$Lambda$21158/0

x00000008052e1040@18d3ebcb

// )

We can extract the function again using the Reader's run method and call it
using apply as usual:

catName.run(Cat("Garfield", "lasagne"))

// res1: String = "Garfield"

So far so simple, but what advantage do Readers give us over the raw
functions?

9.8.2 Composing Readers

The power of Readers comes from their map and flatMap methods, which
represent different kinds of function composition. We typically create a set
of Readers that accept the same type of configuration, combine them with map

and flatMap, and then call run to inject the config at the end.

The map method simply extends the computation in the Reader by passing its
result through a function:

val greetKitty: Reader[Cat, String] =

catName.map(name => s"Hello ${name}")
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greetKitty.run(Cat("Heathcliff", "junk food"))

// res2: String = "Hello Heathcliff"

The flatMap method is more interesting. It allows us to combine readers that
depend on the same input type. To illustrate this, let’s extend our greeting
example to also feed the cat:

val feedKitty: Reader[Cat, String] =

Reader(cat => s"Have a nice bowl of ${cat.favoriteFood}")

val greetAndFeed: Reader[Cat, String] =

for {

greet <- greetKitty

feed <- feedKitty

} yield s"$greet. $feed."

greetAndFeed(Cat("Garfield", "lasagne"))

// res3: String = "Hello Garfield. Have a nice bowl of lasagne."

greetAndFeed(Cat("Heathcliff", "junk food"))

// res4: String = "Hello Heathcliff. Have a nice bowl of junk food."

9.8.3 Exercise: Hacking on Readers

The classic use of Readers is to build programs that accept a configuration as a
parameter. Let’s ground this with a complete example of a simple login system.
Our configuration will consist of two databases: a list of valid users and a list
of their passwords:

final case class Db(

usernames: Map[Int, String],

passwords: Map[String, String]

)

Start by creating a type alias DbReader for a Reader that consumes a Db as input.
This will make the rest of our code shorter.

See the solution



9.8. THE READER MONAD 249

Now create methods that generate DbReaders to look up the username for
an Int user ID, and look up the password for a String username. The type
signatures should be as follows:

def findUsername(userId: Int): DbReader[Option[String]] =

???

def checkPassword(

username: String,

password: String): DbReader[Boolean] =

???

See the solution

Finally create a checkLogin method to check the password for a given user ID.
The type signature should be as follows:

def checkLogin(

userId: Int,

password: String): DbReader[Boolean] =

???

See the solution

You should be able to use checkLogin as follows:

val users = Map(

1 -> "dade",

2 -> "kate",

3 -> "margo"

)

val passwords = Map(

"dade" -> "zerocool",

"kate" -> "acidburn",

"margo" -> "secret"

)

val db = Db(users, passwords)
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checkLogin(1, "zerocool").run(db)

// res7: Boolean = true

checkLogin(4, "davinci").run(db)

// res8: Boolean = false

9.8.4 When to Use Readers?

Readers provide a tool for doing dependency injection. We write steps of our
program as instances of Reader, chain them together with map and flatMap, and
build a function that accepts the dependency as input.

There are many ways of implementing dependency injection in Scala, from
simple techniques like methods with multiple parameter lists, through implicit
parameters and type classes, to complex techniques like the cake pattern and
DI frameworks.

Readers are most useful in situations where:

• we are constructing a program that can easily be represented by a
function;

• we need to defer injection of a known parameter or set of parameters;

• we want to be able to test parts of the program in isolation.

By representing the steps of our program as Readerswe can test them as easily
as pure functions, plus we gain access to the map and flatMap combinators.

For more complicated problems where we have lots of dependencies, or
where a program isn’t easily represented as a pure function, other dependency
injection techniques tend to be more appropriate.

Kleisli Arrows

You may have noticed from console output that Reader is implemented
in terms of another type called Kleisli. Kleisli arrows provide a more
general form of Reader that generalise over the type constructor of the
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result type. We will encounter Kleislis again in Chapter 10.

9.9 The State Monad

cats.data.State allows us to pass additional state around as part of a
computation. We define State instances representing atomic state operations
and thread them together using map and flatMap. In this way we can model
mutable state in a purely functional way, without using actual mutation.

9.9.1 Creating and Unpacking State

Boiled down to their simplest form, instances of State[S, A] represent
functions of type S => (S, A). S is the type of the state and A is the type of
the result.

import cats.data.State

val a = State[Int, String]{ state =>

(state, s"The state is $state")

}

In other words, an instance of State is a function that does two things:

• transforms an input state to an output state;
• computes a result.

We can “run” our monad by supplying an initial state. State provides three
methods—run, runS, and runA—that return different combinations of state and
result. Each method returns an instance of Eval, which State uses to maintain
stack safety. We call the value method as usual to extract the actual result:

http://typelevel.org/cats/api/cats/data/#State%5BS,A%5D=cats.data.StateT%5Bcats.Eval,S,A%5D
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// Get the state and the result:

val (state, result) = a.run(10).value

// state: Int = 10

// result: String = "The state is 10"

// Get the state, ignore the result:

val justTheState = a.runS(10).value

// justTheState: Int = 10

// Get the result, ignore the state:

val justTheResult = a.runA(10).value

// justTheResult: String = "The state is 10"

9.9.2 Composing and Transforming State

As we’ve seen with Reader and Writer, the power of the State monad comes
from combining instances. The map and flatMap methods thread the state
from one instance to another. Each individual instance represents an atomic
state transformation, and their combination represents a complete sequence
of changes:

val step1 = State[Int, String]{ num =>

val ans = num + 1

(ans, s"Result of step1: $ans")

}

val step2 = State[Int, String]{ num =>

val ans = num * 2

(ans, s"Result of step2: $ans")

}

val both = for {

a <- step1

b <- step2

} yield (a, b)

val (state, result) = both.run(20).value

// state: Int = 42
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// result: Tuple2[String, String] = (

// "Result of step1: 21",

// "Result of step2: 42"

// )

As you can see, in this example the final state is the result of applying both
transformations in sequence. State is threaded from step to step even though
we don’t interact with it in the for comprehension.

The general model for using the State monad is to represent each step of
a computation as an instance and compose the steps using the standard
monad operators. Cats provides several convenience constructors for creating
primitive steps:

• get extracts the state as the result;
• set updates the state and returns unit as the result;
• pure ignores the state and returns a supplied result;
• inspect extracts the state via a transformation function;
• modify updates the state using an update function.

val getDemo = State.get[Int]

// getDemo: IndexedStateT[[A >: Nothing <: Any] => Eval[A], Int, Int,

Int] = cats.data.IndexedStateT@cb2c857

getDemo.run(10).value

// res1: Tuple2[Int, Int] = (10, 10)

val setDemo = State.set[Int](30)

// setDemo: IndexedStateT[[A >: Nothing <: Any] => Eval[A], Int, Int,

Unit] = cats.data.IndexedStateT@3e09b0ba

setDemo.run(10).value

// res2: Tuple2[Int, Unit] = (30, ())

val pureDemo = State.pure[Int, String]("Result")

// pureDemo: IndexedStateT[[A >: Nothing <: Any] => Eval[A], Int, Int,

String] = cats.data.IndexedStateT@2141f33b

pureDemo.run(10).value

// res3: Tuple2[Int, String] = (10, "Result")

val inspectDemo = State.inspect[Int, String](x => s"${x}!")
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// inspectDemo: IndexedStateT[[A >: Nothing <: Any] => Eval[A], Int,

Int, String] = cats.data.IndexedStateT@159696df

inspectDemo.run(10).value

// res4: Tuple2[Int, String] = (10, "10!")

val modifyDemo = State.modify[Int](_ + 1)

// modifyDemo: IndexedStateT[[A >: Nothing <: Any] => Eval[A], Int,

Int, Unit] = cats.data.IndexedStateT@5ea720dc

modifyDemo.run(10).value

// res5: Tuple2[Int, Unit] = (11, ())

We can assemble these building blocks using a for comprehension. We
typically ignore the result of intermediate stages that only represent
transformations on the state:

import cats.data.State

import State._

val program: State[Int, (Int, Int, Int)] = for {

a <- get[Int]

_ <- set[Int](a + 1)

b <- get[Int]

_ <- modify[Int](_ + 1)

c <- inspect[Int, Int](_ * 1000)

} yield (a, b, c)

// program: IndexedStateT[[A >: Nothing <: Any] => Eval[A], Int, Int,

Tuple3[Int, Int, Int]] = cats.data.IndexedStateT@4898772f

val (state, result) = program.run(1).value

// state: Int = 3

// result: Tuple3[Int, Int, Int] = (1, 2, 3000)

9.9.3 Exercise: Post‐Order Calculator

The State monad allows us to implement simple interpreters for complex
expressions, passing the values of mutable registers along with the result. We
can see a simple example of this by implementing a calculator for post‐order
integer arithmetic expressions.
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In case you haven’t heard of post‐order expressions before (don’t worry if you
haven’t), they are a mathematical notation where we write the operator after
its operands. So, for example, instead of writing 1 + 2 we would write:

1 2 +

Although post‐order expressions are difficult for humans to read, they are easy
to evaluate in code. All we need to do is traverse the symbols from left to right,
carrying a stack of operands with us as we go:

• when we see a number, we push it onto the stack;

• when we see an operator, we pop two operands off the stack, operate
on them, and push the result in their place.

This allows us to evaluate complex expressionswithout using parentheses. For
example, we can evaluate (1 + 2)* 3) as follows:

1 2 + 3 * // see 1, push onto stack

2 + 3 * // see 2, push onto stack

+ 3 * // see +, pop 1 and 2 off of stack,

// push (1 + 2) = 3 in their place

3 3 * // see 3, push onto stack

3 * // see 3, push onto stack

* // see *, pop 3 and 3 off of stack,

// push (3 * 3) = 9 in their place

Let’s write an interpreter for these expressions. We can parse each symbol
into a State instance representing a transformation on the stack and an
intermediate result. The State instances can be threaded together using
flatMap to produce an interpreter for any sequence of symbols.

Start by writing a function evalOne that parses a single symbol into an instance
of State. Use the code below as a template. Don’t worry about error handling
for now—if the stack is in the wrong configuration, it’s OK to throw an
exception.



256 CHAPTER 9. MONADS

import cats.data.State

type CalcState[A] = State[List[Int], A]

def evalOne(sym: String): CalcState[Int] = ???

If this seems difficult, think about the basic form of the State instances you’re
returning. Each instance represents a functional transformation from a stack
to a pair of a stack and a result. You can ignore any wider context and focus
on just that one step:

State[List[Int], Int] { oldStack =>

val newStack = someTransformation(oldStack)

val result = someCalculation

(newStack, result)

}

Feel free to write your Stack instances in this form or as sequences of the
convenience constructors we saw above.

See the solution

evalOne allows us to evaluate single‐symbol expressions as follows. We call
runA supplying Nil as an initial stack, and call value to unpack the resulting
Eval instance:

evalOne("42").runA(Nil).value

// res10: Int = 42

We can represent more complex programs using evalOne, map, and flatMap.
Note that most of the work is happening on the stack, so we ignore the results
of the intermediate steps for evalOne("1") and evalOne("2"):

val program = for {

_ <- evalOne("1")

_ <- evalOne("2")

ans <- evalOne("+")

} yield ans

// program: IndexedStateT[[A >: Nothing <: Any] => Eval[A], List[Int],
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List[Int], Int] = cats.data.IndexedStateT@68c4e73c

program.runA(Nil).value

// res11: Int = 3

Generalise this example by writing an evalAll method that computes the
result of a List[String]. Use evalOne to process each symbol, and thread the
resulting Statemonads together using flatMap. Your function should have the
following signature:

def evalAll(input: List[String]): CalcState[Int] =

???

See the solution

We can use evalAll to conveniently evaluate multi‐stage expressions:

val multistageProgram = evalAll(List("1", "2", "+", "3", "*"))

// multistageProgram: IndexedStateT[[A >: Nothing <: Any] => Eval[A],

List[Int], List[Int], Int] = cats.data.IndexedStateT@24744766

multistageProgram.runA(Nil).value

// res13: Int = 9

Because evalOne and evalAll both return instances of State, we can thread
these results together using flatMap. evalOne produces a simple stack
transformation and evalAll produces a complex one, but they’re both pure
functions and we can use them in any order as many times as we like:

val biggerProgram = for {

_ <- evalAll(List("1", "2", "+"))

_ <- evalAll(List("3", "4", "+"))

ans <- evalOne("*")

} yield ans

// biggerProgram: IndexedStateT[[A >: Nothing <: Any] => Eval[A], List

[Int], List[Int], Int] = cats.data.IndexedStateT@36e9d685
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biggerProgram.runA(Nil).value

// res14: Int = 21

Complete the exercise by implementing an evalInput function that splits an
input String into symbols, calls evalAll, and runs the result with an initial stack.

See the solution

9.10 Defining CustomMonads

Wecan define a Monad for a custom type by providing implementations of three
methods: flatMap, pure, and a method we haven’t seen yet called tailRecM.
Here is an implementation of Monad for Option as an example:

import cats.Monad

import scala.annotation.tailrec

val optionMonad = new Monad[Option] {

def flatMap[A, B](opt: Option[A])

(fn: A => Option[B]): Option[B] =

opt.flatMap(fn)

def pure[A](opt: A): Option[A] =

Some(opt)

@tailrec

def tailRecM[A, B](a: A)(fn: A => Option[Either[A, B]]): Option[B] =

{

fn(a) match {

case None => None

case Some(Left(a1)) => tailRecM(a1)(fn)

case Some(Right(b)) => Some(b)

}

}

}

The tailRecM method is an optimisation used in Cats to limit the amount
of stack space consumed by nested calls to flatMap. The technique comes
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from a 2015 paper by PureScript creator Phil Freeman. The method should
recursively call itself until the result of fn returns a Right.

To motivate its use let’s use the following example: Suppose we want to write
a method that calls a function until the function indicates it should stop. The
function will return a monad instance because, as we know, monads represent
sequencing and many monads have some notion of stopping.

We can write this method in terms of flatMap.

import cats.syntax.flatMap._ // For flatMap

def retry[F[_]: Monad, A](start: A)(f: A => F[A]): F[A] =

f(start).flatMap{ a =>

retry(a)(f)

}

Unfortunately it is not stack‐safe. It works for small input.

import cats.instances.option._

retry(100)(a => if(a == 0) None else Some(a - 1))

// res1: Option[Int] = None

but if we try large input we get a StackOverflowError.

retry(100000)(a => if(a == 0) None else Some(a - 1))

// KABLOOIE!!!!

We can instead rewrite this method using tailRecM.

import cats.syntax.functor._ // for map

def retryTailRecM[F[_]: Monad, A](start: A)(f: A => F[A]): F[A] =

Monad[F].tailRecM(start){ a =>

f(a).map(a2 => Left(a2))

}

Now it runs successfully no matter how many time we recurse.

http://functorial.com/stack-safety-for-free/index.pdf
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retryTailRecM(100000)(a => if(a == 0) None else Some(a - 1))

// res2: Option[Int] = None

It’s important to note that we have to explicitly call tailRecM. There isn’t a code
transformation thatwill convert non‐tail recursive code into tail recursive code
that uses tailRecM. However there are several utilities provided by the Monad

type class that makes these kinds of methods easier to write. For example, we
can rewrite retry in terms of iterateWhileM and we don’t have to explicitly call
tailRecM.

import cats.syntax.monad._ // for iterateWhileM

def retryM[F[_]: Monad, A](start: A)(f: A => F[A]): F[A] =

start.iterateWhileM(f)(a => true)

retryM(100000)(a => if(a == 0) None else Some(a - 1))

// res3: Option[Int] = None

We’ll see more methods that use tailRecM in Section 12.1.

All of the built‐in monads in Cats have tail‐recursive implementations of
tailRecM, although writing one for custom monads can be a challenge… as we
shall see.

9.10.1 Exercise: Branching out Further with Monads

Let’s write a Monad for our Tree data type from last chapter. Here’s the type
again:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])

extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =
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Branch(left, right)

def leaf[A](value: A): Tree[A] =

Leaf(value)

Verify that the code works on instances of Branch and Leaf, and that the Monad
provides Functor‐like behaviour for free.

Also verify that having a Monad in scope allows us to use for comprehensions,
despite the fact that we haven’t directly implemented flatMap or map on Tree.

Don’t feel you have to make tailRecM tail‐recursive. Doing so is quite difficult.
We’ve included both tail‐recursive and non‐tail‐recursive implementations in
the solutions so you can check your work.

See the solution

9.11 Summary

In this chapter we’ve seen monads up‐close. We saw that flatMap can
be viewed as an operator for sequencing computations, dictating the order
in which operations must happen. From this viewpoint, Option represents
a computation that can fail without an error message, Either represents
computations that can fail with a message, List represents multiple possible
results, and Future represents a computation thatmay produce a value at some
point in the future.

We’ve also seen some of the custom types and data structures that Cats
provides, including Id, Reader, Writer, and State. These cover a wide range
of use cases.

Finally, in the unlikely event thatwe have to implement a custommonad, we’ve
learned about defining our own instance using tailRecM. tailRecM is an odd
wrinkle that is a concession to building a functional programming library that
is stack‐safe by default. We don’t need to understand tailRecM to understand
monads, but having it around gives us benefits of which we can be grateful
when writing monadic code.
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Chapter 10

Monad Transformers

Monads are like burritos, which means that once you acquire a taste, you’ll
find yourself returning to them again and again. This is not without issues. As
burritos can bloat the waist, monads can bloat the code base through nested
for‐comprehensions.

Imagine we are interacting with a database. We want to look up a user record.
The user may or may not be present, so we return an Option[User]. Our
communication with the database could fail for many reasons (network issues,
authentication problems, and so on), so this result is wrapped up in an Either,
giving us a final result of Either[Error, Option[User]].

To use this value we must nest flatMap calls (or equivalently, for‐
comprehensions):

def lookupUserName(id: Long): Either[Error, Option[String]] =

for {

optUser <- lookupUser(id)

} yield {

for { user <- optUser } yield user.name

}

This quickly becomes very tedious.

263

http://blog.plover.com/prog/burritos.html
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10.1 Exercise: Composing Monads

A question arises. Given two arbitrary monads, can we combine them in some
way to make a single monad? That is, do monads compose? We can try to
write the code but we soon hit problems:

import cats.syntax.applicative._ // for pure

// Hypothetical example. This won't actually compile:

def compose[M1[_]: Monad, M2[_]: Monad] = {

type Composed[A] = M1[M2[A]]

new Monad[Composed] {

def pure[A](a: A): Composed[A] =

a.pure[M2].pure[M1]

def flatMap[A, B](fa: Composed[A])

(f: A => Composed[B]): Composed[B] =

// Problem! How do we write flatMap?

???

}

}

It is impossible to write a general definition of flatMap without knowing
something about M1 or M2. However, if we do know something about one or
other monad, we can typically complete this code. For example, if we fix M2

above to be Option, a definition of flatMap comes to light:

def flatMap[A, B](fa: Composed[A])

(f: A => Composed[B]): Composed[B] =

fa.flatMap(_.fold[Composed[B]](None.pure[M1])(f))

Notice that the definition abovemakes use of None—an Option‐specific concept
that doesn’t appear in the general Monad interface. We need this extra detail
to combine Option with other monads. Similarly, there are things about other
monads that help us write composed flatMap methods for them. This is the
idea behind monad transformers: Cats defines transformers for a variety of
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monads, each providing the extra knowledgewe need to compose that monad
with others. Let’s look at some examples.

10.2 A Transformative Example

Cats provides transformers for many monads, each named with a T suffix:
EitherT composes Either with other monads, OptionT composes Option, and
so on.

Here’s an example that uses OptionT to compose List and Option. We can
use OptionT[List, A], aliased to ListOption[A] for convenience, to transform
a List[Option[A]] into a single monad:

import cats.data.OptionT

type ListOption[A] = OptionT[List, A]

Note how we build ListOption from the inside out: we pass List, the type
of the outer monad, as a parameter to OptionT, the transformer for the inner
monad.

We can create instances of ListOption using the OptionT constructor, or more
conveniently using pure:

import cats.instances.list._ // for Monad

import cats.syntax.applicative._ // for pure

val result1: ListOption[Int] = OptionT(List(Option(10)))

// result1: OptionT[List, Int] = OptionT(value = List(Some(value = 10)

))

val result2: ListOption[Int] = 32.pure[ListOption]

// result2: OptionT[List, Int] = OptionT(value = List(Some(value = 32)

))

The map and flatMapmethods combine the corresponding methods of List and
Option into single operations:
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result1.flatMap { (x: Int) =>

result2.map { (y: Int) =>

x + y

}

}

// res1: OptionT[List, Int] = OptionT(value = List(Some(value = 42)))

This is the basis of all monad transformers. The combined map and flatMap

methods allow us to use both component monads without having to
recursively unpack and repack values at each stage in the computation. Now
let’s look at the API in more depth.

Complexity of Imports

The imports in the code samples above hint at how everything bolts
together.

We import cats.syntax.applicative to get the pure syntax. pure requires
an implicit parameter of type Applicative[ListOption]. We haven’t met
Applicatives yet, but all Monads are also Applicatives so we can ignore
that difference for now.

In order to generate our Applicative[ListOption] we need instances
of Applicative for List and OptionT. OptionT is a Cats data type so its
instance is provided by its companion object. The instance for List
comes from cats.instances.list.

Notice we’re not importing cats.syntax.functor or cats.syntax.flatMap.
This is because OptionT is a concrete data type with its own explicit map
and flatMap methods. It wouldn’t cause problems if we imported the
syntax—the compiler would ignore it in favour of the explicit methods.

Remember that we’re subjecting ourselves to these shenanigans
because we’re stubbornly refusing to use the universal Cats import, cats
.implicits. If we did use that import, all of the instances and syntax we
needed would be in scope and everything would just work.

http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/implicits$.html
http://typelevel.org/cats/api/cats/implicits$.html
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10.3 Monad Transformers in Cats

Each monad transformer is a data type, defined in cats.data, that allows us
to wrap stacks of monads to produce new monads. We use the monads
we’ve built via the Monad type class. The main concepts we have to cover to
understand monad transformers are:

• the available transformer classes;
• how to build stacks of monads using transformers;
• how to construct instances of a monad stack; and
• how to pull apart a stack to access the wrapped monads.

10.3.1 The Monad Transformer Classes

By convention, in Cats a monad Foo will have a transformer class called FooT.
In fact, many monads in Cats are defined by combining a monad transformer
with the Id monad. Concretely, some of the available instances are:

• cats.data.OptionT for Option;
• cats.data.EitherT for Either;
• cats.data.ReaderT for Reader;
• cats.data.WriterT for Writer;
• cats.data.StateT for State;
• cats.data.IdT for the Id monad.

Kleisli Arrows

In Section 9.8 wementioned that the Readermonad was a specialisation
of a more general concept called a “kleisli arrow”, represented in Cats as
cats.data.Kleisli.

We can now reveal that Kleisli and ReaderT are, in fact, the same thing!
ReaderT is actually a type alias for Kleisli. Hence, we were creating
Readers last chapter and seeing Kleislis on the console.

http://typelevel.org/cats/api/cats/data/
http://typelevel.org/cats/api/cats/data/OptionT.html
http://typelevel.org/cats/api/cats/data/EitherT.html
http://typelevel.org/cats/api/cats/data/?search=reader#ReaderT%5BF%5B_%5D,A,B%5D=cats.data.Kleisli%5BF,A,B%5D
http://typelevel.org/cats/api/cats/data/WriterT.html
http://typelevel.org/cats/api/cats/data/StateT.html
http://typelevel.org/cats/api/cats/data/IdT.html
http://typelevel.org/cats/api/cats/Id.html
http://typelevel.org/cats/api/cats/data/Kleisli.html
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10.3.2 Building Monad Stacks

All of these monad transformers follow the same convention. The transformer
itself represents the inner monad in a stack, while the first type parameter
specifies the outermonad. The remaining type parameters are the typeswe’ve
used to form the corresponding monads.

For example, our ListOption type above is an alias for OptionT[List, A] but the
result is effectively a List[Option[A]]. In other words, we build monad stacks
from the inside out:

type ListOption[A] = OptionT[List, A]

Many monads and all transformers have at least two type parameters, so we
often have to define type aliases for intermediate stages.

For example, suppose we want to wrap Either around Option. Option is the
innermost type so we want to use the OptionT monad transformer. We need
to use Either as the first type parameter. However, Either itself has two type
parameters and monads only have one. We need a type alias to convert the
type constructor to the correct shape:

// Alias Either to a type constructor with one parameter:

type ErrorOr[A] = Either[String, A]

// Build our final monad stack using OptionT:

type ErrorOrOption[A] = OptionT[ErrorOr, A]

ErrorOrOption is a monad, just like ListOption. We can use pure, map, and
flatMap as usual to create and transform instances:

import cats.instances.either._ // for Monad

val a = 10.pure[ErrorOrOption]

// a: OptionT[ErrorOr, Int] = OptionT(value = Right(value = Some(value

= 10)))

val b = 32.pure[ErrorOrOption]
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// b: OptionT[ErrorOr, Int] = OptionT(value = Right(value = Some(value

= 32)))

val c = a.flatMap(x => b.map(y => x + y))

// c: OptionT[ErrorOr, Int] = OptionT(value = Right(value = Some(value

= 42)))

Things become even more confusing when we want to stack three or more
monads.

For example, let’s create a Future of an Either of Option. Once again we build
this from the inside out with an OptionT of an EitherT of Future. However, we
can’t define this in one line because EitherT has three type parameters:

case class EitherT[F[_], E, A](stack: F[Either[E, A]]) {

// etc...

}

The three type parameters are as follows:

• F[_] is the outer monad in the stack (Either is the inner);
• E is the error type for the Either;
• A is the result type for the Either.

This time we create an alias for EitherT that fixes Future and Error and allows
A to vary:

import scala.concurrent.Future

import cats.data.{EitherT, OptionT}

type FutureEither[A] = EitherT[Future, String, A]

type FutureEitherOption[A] = OptionT[FutureEither, A]

Our mammoth stack now composes three monads and our map and flatMap

methods cut through three layers of abstraction:
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import cats.instances.future._ // for Monad

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

val futureEitherOr: FutureEitherOption[Int] =

for {

a <- 10.pure[FutureEitherOption]

b <- 32.pure[FutureEitherOption]

} yield a + b

Kind Projector

If you frequently find yourself defining multiple type aliases when
building monad stacks, you may want to try the Kind Projector compiler
plugin. Kind Projector enhances Scala’s type syntax to make it easier to
define partially applied type constructors. For example:

import cats.instances.option._ // for Monad

123.pure[EitherT[Option, String, _]]

// res3: EitherT[[A >: Nothing <: Any] => Option[A], String, Int

] = EitherT(

// value = Some(value = Right(value = 123))

// )

Kind Projector can’t simplify all type declarations down to a single line,
but it can reduce the number of intermediate type definitions needed
to keep our code readable.

10.3.3 Constructing and Unpacking Instances

As we saw above, we can create transformed monad stacks using the relevant
monad transformer’s apply method or the usual pure syntax¹:

¹Cats provides an instance of MonadError for EitherT, allowing us to create instances
using raiseError as well as pure.

https://github.com/typelevel/kind-projector
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// Create using apply:

val errorStack1 = OptionT[ErrorOr, Int](Right(Some(10)))

// errorStack1: OptionT[ErrorOr, Int] = OptionT(

// value = Right(value = Some(value = 10))

// )

// Create using pure:

val errorStack2 = 32.pure[ErrorOrOption]

// errorStack2: OptionT[ErrorOr, Int] = OptionT(

// value = Right(value = Some(value = 32))

// )

Once we’ve finished with a monad transformer stack, we can unpack it
using its value method. This returns the untransformed stack. We can then
manipulate the individual monads in the usual way:

// Extracting the untransformed monad stack:

errorStack1.value

// res4: Either[String, Option[Int]] = Right(value = Some(value = 10))

// Mapping over the Either in the stack:

errorStack2.value.map(_.getOrElse(-1))

// res5: Either[String, Int] = Right(value = 32)

Each call to value unpacks a single monad transformer. We may need more
than one call to completely unpack a large stack. For example, to Await the
FutureEitherOption stack above, we need to call value twice:

futureEitherOr

// res6: OptionT[FutureEither, Int] = OptionT(

// value = EitherT(value = Future(Success(Right(Some(42)))))

// )

val intermediate = futureEitherOr.value

// intermediate: EitherT[[T >: Nothing <: Any] => Future[T], String,

Option[Int]] = EitherT(

// value = Future(Success(Right(Some(42))))

// )

val stack = intermediate.value
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// stack: Future[Either[String, Option[Int]]] = Future(Success(Right(

Some(42))))

Await.result(stack, 1.second)

// res7: Either[String, Option[Int]] = Right(value = Some(value = 42))

10.3.4 Default Instances

Many monads in Cats are defined using the corresponding transformer and
the Id monad. This is reassuring as it confirms that the APIs for monads and
transformers are identical. Reader, Writer, and State are all defined in this way:

type Reader[E, A] = ReaderT[Id, E, A] // = Kleisli[Id, E, A]

type Writer[W, A] = WriterT[Id, W, A]

type State[S, A] = StateT[Id, S, A]

In other cases monad transformers are defined separately to their
corresponding monads. In these cases, the methods of the transformer tend
to mirror the methods on the monad. For example, OptionT defines getOrElse,
and EitherT defines fold, bimap, swap, and other useful methods.

10.3.5 Usage Patterns

Widespread use of monad transformers is sometimes difficult because they
fuse monads together in predefined ways. Without careful thought, we can
end up having to unpack and repack monads in different configurations to
operate on them in different contexts.

We can cope with this in multiple ways. One approach involves creating a
single “super stack” and sticking to it throughout our code base. This works
if the code is simple and largely uniform in nature. For example, in a web
application, we could decide that all request handlers are asynchronous and
all can fail with the same set of HTTP error codes. We could design a custom
ADT representing the errors and use a fusion Future and Either everywhere in
our code:
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sealed abstract class HttpError

final case class NotFound(item: String) extends HttpError

final case class BadRequest(msg: String) extends HttpError

// etc...

type FutureEither[A] = EitherT[Future, HttpError, A]

The “super stack” approach starts to fail in larger, more heterogeneous code
bases where different stacks make sense in different contexts. Another design
pattern that makes more sense in these contexts uses monad transformers as
local “glue code”. We expose untransformed stacks at module boundaries,
transform them to operate on them locally, and untransform them before
passing them on. This allows each module of code to make its own decisions
about which transformers to use:

import cats.data.Writer

type Logged[A] = Writer[List[String], A]

// Methods generally return untransformed stacks:

def parseNumber(str: String): Logged[Option[Int]] =

util.Try(str.toInt).toOption match {

case Some(num) => Writer(List(s"Read $str"), Some(num))

case None => Writer(List(s"Failed on $str"), None)

}

// Consumers use monad transformers locally to simplify composition:

def addAll(a: String, b: String, c: String): Logged[Option[Int]] = {

import cats.data.OptionT

val result = for {

a <- OptionT(parseNumber(a))

b <- OptionT(parseNumber(b))

c <- OptionT(parseNumber(c))

} yield a + b + c

result.value

}
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// This approach doesn't force OptionT on other users' code:

val result1 = addAll("1", "2", "3")

// result1: WriterT[Id, List[String], Option[Int]] = WriterT(

// run = (List("Read 1", "Read 2", "Read 3"), Some(value = 6))

// )

val result2 = addAll("1", "a", "3")

// result2: WriterT[Id, List[String], Option[Int]] = WriterT(

// run = (List("Read 1", "Failed on a"), None)

// )

Unfortunately, there aren’t one‐size‐fits‐all approaches to working with
monad transformers. The best approach for you may depend on a lot of
factors: the size and experience of your team, the complexity of your code
base, and so on. You may need to experiment and gather feedback from
colleagues to determine whether monad transformers are a good fit.

10.4 Exercise: Monads: Transform and Roll Out

TheAutobots, well‐known robots in disguise, frequently sendmessages during
battle requesting the power levels of their team mates. This helps them
coordinate strategies and launch devastating attacks. The message sending
method looks like this:

def getPowerLevel(autobot: String): Response[Int] =

???

Transmissions take time in Earth’s viscous atmosphere, and messages
are occasionally lost due to satellite malfunction or sabotage by pesky
Decepticons². Responses are therefore represented as a stack of monads:

type Response[A] = Future[Either[String, A]]

Optimus Prime is getting tired of the nested for comprehensions in his neural
matrix. Help him by rewriting Response using a monad transformer.

²It is a well known fact that Autobot neural nets are implemented in Scala. Decepticon
brains are, of course, dynamically typed.
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See the solution

Now test the code by implementing getPowerLevel to retrieve data from a set
of imaginary allies. Here’s the data we’ll use:

val powerLevels = Map(

"Jazz" -> 6,

"Bumblebee" -> 8,

"Hot Rod" -> 10

)

If an Autobot isn’t in the powerLevels map, return an error message reporting
that they were unreachable. Include the name in the message for good effect.

See the solution

Two autobots can perform a special move if their combined power level is
greater than 15. Write a second method, canSpecialMove, that accepts the
names of two allies and checks whether a special move is possible. If either
ally is unavailable, fail with an appropriate error message:

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =

???

See the solution

Finally, write a method tacticalReport that takes two ally names and prints a
message saying whether they can perform a special move:

def tacticalReport(ally1: String, ally2: String): String =

???

See the solution

You should be able to use report as follows:

tacticalReport("Jazz", "Bumblebee")

// res13: String = "Jazz and Bumblebee need a recharge."

tacticalReport("Bumblebee", "Hot Rod")

// res14: String = "Bumblebee and Hot Rod are ready to roll out!"
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tacticalReport("Jazz", "Ironhide")

// res15: String = "Comms error: Ironhide unreachable"

10.5 Summary

In this chapter we introduced monad transformers, which eliminate the need
for nested for comprehensions and pattern matching when working with
“stacks” of nested monads.

Each monad transformer, such as FutureT, OptionT or EitherT, provides the
code needed to merge its related monad with other monads. The transformer
is a data structure that wraps a monad stack, equipping it with map and flatMap

methods that unpack and repack the whole stack.

The type signatures of monad transformers are written from the inside out, so
an EitherT[Option, String, A] is a wrapper for an Option[Either[String, A]].
It is often useful to use type aliases when writing transformer types for deeply
nested monads.

With this look at monad transformers, we have now covered everything
we need to know about monads and the sequencing of computations using
flatMap. In the next chapter we will switch tack and discuss two new type
classes, Semigroupal and Applicative, that support new kinds of operation such
as zipping independent values within a context.
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Semigroupal and Applicative

In previous chapters we saw how functors and monads let us sequence
operations using map and flatMap. While functors and monads are both
immensely useful abstractions, there are certain types of program flow that
they cannot represent.

One such example is form validation. When we validate a form we want to
return all the errors to the user, not stop on the first error we encounter. If we
model this with a monad like Either, we fail fast and lose errors. For example,
the code below fails on the first call to parseInt and doesn’t go any further:

import cats.syntax.either._ // for catchOnly

def parseInt(str: String): Either[String, Int] =

Either.catchOnly[NumberFormatException](str.toInt).

leftMap(_ => s"Couldn't read $str")

for {

a <- parseInt("a")

b <- parseInt("b")

c <- parseInt("c")

} yield (a + b + c)

// res0: Either[String, Int] = Left(value = "Couldn't read a")

277
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Another example is the concurrent evaluation of Futures. If we have several
long‐running independent tasks, it makes sense to execute them concurrently.
However, monadic comprehension only allows us to run them in sequence.
map and flatMap aren’t quite capable of capturing what we want because they
make the assumption that each computation is dependent on the previous one:

// context2 is dependent on value1:

context1.flatMap(value1 => context2)

The calls to parseInt and Future.apply above are independent of one another,
but map and flatMap can’t exploit this. We need a weaker construct—one that
doesn’t guarantee sequencing—to achieve the result we want. In this chapter
we will look at three type classes that support this pattern:

• Semigroupal encompasses the notion of composing pairs of contexts.
Cats provides a cats.syntax.apply module that makes use of
Semigroupal and Functor to allow users to sequence functions with
multiple arguments.

• Parallel converts types with a Monad instance to a related type with a
Semigroupal instance.

• Applicative extends Semigroupal and Functor. It provides a way of
applying functions to parameters within a context. Applicative is the
source of the pure method we introduced in Chapter 9.

Applicatives are often formulated in terms of function application, instead
of the semigroupal formulation that is emphasised in Cats. This alternative
formulation provides a link to other libraries and languages such as Scalaz and
Haskell. We’ll take a look at different formulations of Applicative, aswell as the
relationships between Semigroupal, Functor, Applicative, and Monad, towards
the end of the chapter.

http://typelevel.org/cats/api/cats/syntax/package$$semigroupal$
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11.1 Semigroupal

cats.Semigroupal is a type class that allows us to combine contexts¹. If we
have two objects of type F[A] and F[B], a Semigroupal[F] allows us to combine
them to form an F[(A, B)]. Its definition in Cats is:

trait Semigroupal[F[_]] {

def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]

}

As we discussed at the beginning of this chapter, the parameters fa and fb

are independent of one another: we can compute them in either order before
passing them to product. This is in contrast to flatMap, which imposes a strict
order on its parameters. This gives us more freedom when defining instances
of Semigroupal than we get when defining Monads.

11.1.1 Joining Two Contexts

While Semigroup allows us to join values, Semigroupal allows us to join contexts.
Let’s join some Options as an example:

import cats.Semigroupal

import cats.instances.option._ // for Semigroupal

Semigroupal[Option].product(Some(123), Some("abc"))

// res1: Option[Tuple2[Int, String]] = Some(value = (123, "abc"))

If both parameters are instances of Some, we end up with a tuple of the values
within. If either parameter evaluates to None, the entire result is None:

¹It is also the winner of Underscore’s 2017 award for the most difficult functional
programming term to work into a coherent English sentence.

http://typelevel.org/cats/api/cats/Semigroupal.html
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Semigroupal[Option].product(None, Some("abc"))

// res2: Option[Tuple2[Nothing, String]] = None

Semigroupal[Option].product(Some(123), None)

// res3: Option[Tuple2[Int, Nothing]] = None

11.1.2 Joining Three or More Contexts

The companion object for Semigroupal defines a set of methods on top of
product. For example, the methods tuple2 through tuple22 generalise product

to different arities:

import cats.instances.option._ // for Semigroupal

Semigroupal.tuple3(Option(1), Option(2), Option(3))

// res4: Option[Tuple3[Int, Int, Int]] = Some(value = (1, 2, 3))

Semigroupal.tuple3(Option(1), Option(2), Option.empty[Int])

// res5: Option[Tuple3[Int, Int, Int]] = None

The methods map2 through map22 apply a user‐specified function to the values
inside 2 to 22 contexts:

Semigroupal.map3(Option(1), Option(2), Option(3))(_ + _ + _)

// res6: Option[Int] = Some(value = 6)

Semigroupal.map2(Option(1), Option.empty[Int])(_ + _)

// res7: Option[Int] = None

There are also methods contramap2 through contramap22 and imap2 through
imap22, that require instances of Contravariant and Invariant respectively.

11.1.3 Semigroupal Laws

There is only one law for Semigroupal: the productmethod must be associative.



11.2. APPLY SYNTAX 281

product(a, product(b, c)) == product(product(a, b), c)

11.2 Apply Syntax

Cats provides a convenient apply syntax that provides a shorthand for the
methods described above. We import the syntax from cats.syntax.apply.
Here’s an example:

import cats.instances.option._ // for Semigroupal

import cats.syntax.apply._ // for tupled and mapN

The tupled method is implicitly added to the tuple of Options. It uses the
Semigroupal for Option to zip the values inside the Options, creating a single
Option of a tuple:

(Option(123), Option("abc")).tupled

// res8: Option[Tuple2[Int, String]] = Some(value = (123, "abc"))

Wecan use the same trick on tuples of up to 22 values. Cats defines a separate
tupled method for each arity:

(Option(123), Option("abc"), Option(true)).tupled

// res9: Option[Tuple3[Int, String, Boolean]] = Some(

// value = (123, "abc", true)

// )

In addition to tupled, Cats’ apply syntax provides a method called mapN that
accepts an implicit Functor and a function of the correct arity to combine the
values.

final case class Cat(name: String, born: Int, color: String)

http://typelevel.org/cats/api/cats/syntax/package$$semigroupal$
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(

Option("Garfield"),

Option(1978),

Option("Orange & black")

).mapN(Cat.apply)

// res10: Option[Cat] = Some(

// value = Cat(name = "Garfield", born = 1978, color = "Orange &

black")

// )

Of all the methods mentioned here, it is most common to use mapN.

Internally mapN uses the Semigroupal to extract the values from the Option and
the Functor to apply the values to the function.

It’s nice to see that this syntax is type checked. If we supply a function that
accepts the wrong number or types of parameters, we get a compile error:

val add: (Int, Int) => Int = (a, b) => a + b

// add: Function2[Int, Int, Int] = repl.

MdocSession$MdocApp0$$$Lambda$18724/0x0000000804cff040@518e803d

(Option(1), Option(2), Option(3)).mapN(add)

// error:

// ':' expected, but '(' found

// error:

// ':' expected, but '(' found

// error:

// ':' expected, but '(' found

// error:

// end of statement expected but '.' found

// error:

// Found: (repl.MdocSession.MdocApp0.add : (Int, Int) => Int)

// Required: (Int, Int, Int) => Any

(Option("cats"), Option(true)).mapN(add)

// error:

// ':' expected, but '(' found

// error:
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// ':' expected, but '(' found

// error:

// ':' expected, but '(' found

// error:

// end of statement expected but '.' found

// error:

// Found: (repl.MdocSession.MdocApp0.add : (Int, Int) => Int)

// Required: (String, Boolean) => Any

// (Option("cats"), Option(true)).mapN(add)

// ^^^

11.2.1 Fancy Functors and Apply Syntax

Apply syntax also has contramapN and imapNmethods that accept Contravariant
and Invariant functors (Section 8.6). For example, we can combine Monoids

using Invariant. Here’s an example:

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.instances.invariant._ // for Semigroupal

import cats.instances.list._ // for Monoid

import cats.instances.string._ // for Monoid

import cats.syntax.apply._ // for imapN

final case class Cat(

name: String,

yearOfBirth: Int,

favoriteFoods: List[String]

)

val tupleToCat: (String, Int, List[String]) => Cat =

Cat.apply _

val catToTuple: Cat => (String, Int, List[String]) =

cat => (cat.name, cat.yearOfBirth, cat.favoriteFoods)

implicit val catMonoid: Monoid[Cat] = (

Monoid[String],

Monoid[Int],

Monoid[List[String]]

).imapN(tupleToCat)(catToTuple)
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Our Monoid allows us to create “empty” Cats, and add Cats together using the
syntax from Chapter 7:

import cats.syntax.semigroup._ // for |+|

val garfield = Cat("Garfield", 1978, List("Lasagne"))

val heathcliff = Cat("Heathcliff", 1988, List("Junk Food"))

garfield |+| heathcliff

// res14: Cat = Cat(

// name = "GarfieldHeathcliff",

// yearOfBirth = 3966,

// favoriteFoods = List("Lasagne", "Junk Food")

// )

11.3 Semigroupal Applied to Different Types

Semigroupal doesn’t always provide the behaviour we expect, particularly for
types that also have instances of Monad. We have seen the behaviour of the
Semigroupal for Option. Let’s look at some examples for other types.

Future

The semantics for Future provide parallel as opposed to sequential execution:

import cats.Semigroupal

import cats.instances.future._ // for Semigroupal

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

val futurePair = Semigroupal[Future].

product(Future("Hello"), Future(123))

Await.result(futurePair, 1.second)

// res0: Tuple2[String, Int] = ("Hello", 123)
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The two Futures start executing the moment we create them, so they are
already calculating results by the timewe call product. We can use apply syntax
to zip fixed numbers of Futures:

import cats.syntax.apply._ // for mapN

case class Cat(

name: String,

yearOfBirth: Int,

favoriteFoods: List[String]

)

val futureCat = (

Future("Garfield"),

Future(1978),

Future(List("Lasagne"))

).mapN(Cat.apply)

Await.result(futureCat, 1.second)

// res1: Cat = Cat(

// name = "Garfield",

// yearOfBirth = 1978,

// favoriteFoods = List("Lasagne")

// )

List

Combining Lists with Semigroupal produces some potentially unexpected
results. Wemight expect code like the following to zip the lists, but we actually
get the cartesian product of their elements:

import cats.Semigroupal

import cats.instances.list._ // for Semigroupal

Semigroupal[List].product(List(1, 2), List(3, 4))

// res2: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3), (2, 4))

This is perhaps surprising. Zipping lists tends to be a more common operation.
We’ll see why we get this behaviour in a moment.
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Either

We opened this chapter with a discussion of fail‐fast versus accumulating
error‐handling. We might expect product applied to Either to accumulate
errors instead of fail fast. Again, perhaps surprisingly, we find that product
implements the same fail‐fast behaviour as flatMap:

import cats.instances.either._ // for Semigroupal

type ErrorOr[A] = Either[Vector[String], A]

Semigroupal[ErrorOr].product(

Left(Vector("Error 1")),

Left(Vector("Error 2"))

)

// res3: Either[Vector[String], Tuple2[Nothing, Nothing]] = Left(

// value = Vector("Error 1")

// )

In this example product sees the first failure and stops, even though it is
possible to examine the second parameter and see that it is also a failure.

11.3.1 Semigroupal Applied to Monads

The reason for the surprising results for List and Either is that they are both
monads. If we have a monad we can implement product as follows.

import cats.Monad

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatmap

def product[F[_]: Monad, A, B](fa: F[A], fb: F[B]): F[(A,B)] =

fa.flatMap(a =>

fb.map(b =>

(a, b)

)

)
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It would be very strange if we had different semantics for product depending
on howwe implemented it. To ensure consistent semantics, Cats’ Monad (which
extends Semigroupal) provides a standard definition of product in terms of map
and flatMap as we showed above.

Even our results for Future are a trick of the light. flatMap provides sequential
ordering, so product provides the same. The parallel execution we observe
occurs because our constituent Futures start running before we call product.
This is equivalent to the classic create‐then‐flatMap pattern:

val a = Future("Future 1")

val b = Future("Future 2")

for {

x <- a

y <- b

} yield (x, y)

Sowhy bother with Semigroupal at all? The answer is that we can create useful
data types that have instances of Semigroupal (and Applicative) but not Monad.
This frees us to implement product in differentways. We’ll examine this further
in a moment when we look at an alternative data type for error handling.

11.3.1.1 Exercise: The Product of Lists

Why does product for List produce the Cartesian product? We saw an
example above. Here it is again.

Semigroupal[List].product(List(1, 2), List(3, 4))

// res5: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3), (2, 4))

We can also write this in terms of tupled.

(List(1, 2), List(3, 4)).tupled

// res6: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3), (2, 4))

See the solution
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11.4 Parallel

In the previous section we saw that when call product on a type that has a
Monad instance we get sequential semantics. This makes sense from the point‐
of‐view of keeping consistency with implementations of product in terms of
flatMap and map. However it’s not always what we want. The Parallel type
class, and its associated syntax, allows us to access alternate semantics for
certain monads.

We’ve seen how the product method on Either stops at the first error.

import cats.Semigroupal

import cats.instances.either._ // for Semigroupal

type ErrorOr[A] = Either[Vector[String], A]

val error1: ErrorOr[Int] = Left(Vector("Error 1"))

val error2: ErrorOr[Int] = Left(Vector("Error 2"))

Semigroupal[ErrorOr].product(error1, error2)

// res0: Either[Vector[String], Tuple2[Int, Int]] = Left(

// value = Vector("Error 1")

// )

We can also write this using tupled as a short‐cut.

import cats.syntax.apply._ // for tupled

import cats.instances.vector._ // for Semigroup on Vector

(error1, error2).tupled

// res1: Either[Vector[String], Tuple2[Int, Int]] = Left(

// value = Vector("Error 1")

// )

To collect all the errors we simply replace tupled with its “parallel” version
called parTupled.



11.4. PARALLEL 289

import cats.syntax.parallel._ // for parTupled

(error1, error2).parTupled

// res2: Either[Vector[String], Tuple2[Int, Int]] = Left(

// value = Vector("Error 1", "Error 2")

// )

Notice that both errors are returned! This behaviour is not special to using
Vector as the error type. Any type that has a Semigroup instance will work. For
example, here we use List instead.

import cats.instances.list._ // for Semigroup on List

type ErrorOrList[A] = Either[List[String], A]

val errStr1: ErrorOrList[Int] = Left(List("error 1"))

val errStr2: ErrorOrList[Int] = Left(List("error 2"))

(errStr1, errStr2).parTupled

// res3: Either[List[String], Tuple2[Int, Int]] = Left(

// value = List("error 1", "error 2")

// )

There are many syntax methods provided by Parallel for methods on
Semigroupal and related types, but the most commonly used is parMapN. Here’s
an example of parMapN in an error handling situation.

val success1: ErrorOr[Int] = Right(1)

val success2: ErrorOr[Int] = Right(2)

val addTwo = (x: Int, y: Int) => x + y

(error1, error2).parMapN(addTwo)

(success1, success2).parMapN(addTwo)

// res4: Either[Vector[String], Int] = Right(value = 3)

Let’s dig into how Parallelworks. The definition below is the core of Parallel.
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trait Parallel[M[_]] {

type F[_]

def applicative: Applicative[F]

def monad: Monad[M]

def parallel: ~>[M, F]

}

This tells us if there is a Parallel instance for some type constructor M then:

• there must be a Monad instance for M;
• there is a related type constructor F that has an Applicative instance;
and

• we can convert M to F.

We haven’t seen ~> before. It’s a type alias for FunctionK and is what performs
the conversion from M to F. A normal function A => B converts values of type
A to values of type B. Remember that M and F are not types; they are type
constructors. A FunctionK M ~> F is a function from a value with type M[A] to
a value with type F[A]. Let’s see a quick example by defining a FunctionK that
converts an Option to a List.

import cats.arrow.FunctionK

object optionToList extends FunctionK[Option, List] {

def apply[A](fa: Option[A]): List[A] =

fa match {

case None => List.empty[A]

case Some(a) => List(a)

}

}

optionToList(Some(1))

// res5: List[Int] = List(1)

optionToList(None)

// res6: List[Nothing] = List()

http://typelevel.org/cats/api/cats/arrow/FunctionK.html
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As the type parameter A is generic a FunctionK cannot inspect any values
contained with the type constructor M. The conversion must be performed
purely in terms of the structure of the type constructors M and F. We can see
in optionToList above this is indeed the case.

So in summary, Parallel allows us to take a type that has amonad instance and
convert it to some related type that instead has an applicative (or semigroupal)
instance. This related type will have some useful alternate semantics. We’ve
seen the case above where the related applicative for Either allows for
accumulation of errors instead of fail‐fast semantics.

Now we’ve seen Parallel it’s time to finally learn about Applicative.

11.4.0.1 Exercise: Parallel List

Does List have a Parallel instance? If so, what does the Parallel instance
do?

See the solution

11.5 Apply and Applicative

Semigroupals aren’t mentioned frequently in the wider functional
programming literature. They provide a subset of the functionality of a
related type class called an applicative functor (“applicative” for short).

Semigroupal and Applicative effectively provide alternative encodings of the
same notion of joining contexts. Both encodings are introduced in the same
2008 paper by Conor McBride and Ross Paterson².

Cats models applicatives using two type classes. The first, cats.Apply, extends
Semigroupal and Functor and adds an ap method that applies a parameter to a
function within a context. The second, cats.Applicative, extends Apply and
adds the pure method introduced in Chapter 9. Here’s a simplified definition
in code:

²Semigroupal is referred to as “monoidal” in the paper.

http://www.staff.city.ac.uk/~ross/papers/Applicative.html
http://www.staff.city.ac.uk/~ross/papers/Applicative.html
http://typelevel.org/cats/api/cats/Apply.html
http://typelevel.org/cats/api/cats/Applicative.html
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trait Apply[F[_]] extends Semigroupal[F] with Functor[F] {

def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]

def product[A, B](fa: F[A], fb: F[B]): F[(A, B)] =

ap(map(fa)(a => (b: B) => (a, b)))(fb)

}

trait Applicative[F[_]] extends Apply[F] {

def pure[A](a: A): F[A]

}

Breaking this down, the ap method applies a parameter fa to a function ff

within a context F[_]. The product method from Semigroupal is defined in
terms of ap and map.

Don’t worry too much about the implementation of product—it’s difficult to
read and the details aren’t particuarly important. The main point is that there
is a tight relationship between product, ap, and map that allows any one of them
to be defined in terms of the other two.

Applicative also introduces the pure method. This is the same pure we saw in
Monad. It constructs a new applicative instance from an unwrapped value. In
this sense, Applicative is related to Apply as Monoid is related to Semigroup.

11.5.1 The Hierarchy of Sequencing Type Classes

With the introduction of Apply and Applicative, we can zoom out and see
a whole family of type classes that concern themselves with sequencing
computations in different ways. Figure 11.1 shows the relationship between
the type classes covered in this book³.

Each type class in the hierarchy represents a particular set of sequencing
semantics, introduces a set of characteristic methods, and defines the
functionality of its supertypes in terms of them:

• every monad is an applicative;
• every applicative a semigroupal;

³See Rob Norris’ infographic for a the complete picture.

https://github.com/tpolecat/cats-infographic
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Figure 11.1: Monad type class hierarchy

• and so on.

Because of the lawful nature of the relationships between the type classes,
the inheritance relationships are constant across all instances of a type class.
Apply defines product in terms of ap and map; Monad defines product, ap, and map,
in terms of pure and flatMap.

To illustrate this let’s consider two hypothetical data types:

• Foo is a monad. It has an instance of the Monad type class that
implements pure and flatMap and inherits standard definitions of
product, map, and ap;

• Bar is an applicative functor. It has an instance of Applicative that
implements pure and ap and inherits standard definitions of product and
map.

What can we say about these two data types without knowing more about
their implementation?

We know strictly more about Foo than Bar: Monad is a subtype of Applicative, so
we can guarantee properties of Foo (namely flatMap) that we cannot guarantee
with Bar. Conversely, we know that Barmay have a wider range of behaviours
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than Foo. It has fewer laws to obey (no flatMap), so it can implement behaviours
that Foo cannot.

This demonstrates the classic trade‐off of power (in the mathematical sense)
versus constraint. The more constraints we place on a data type, the more
guarantees we have about its behaviour, but the fewer behaviours we can
model.

Monads happen to be a sweet spot in this trade‐off. They are flexible enough
to model a wide range of behaviours and restrictive enough to give strong
guarantees about those behaviours. However, there are situations where
monads aren’t the right tool for the job. Sometimes we want Thai food, and
burritos just won’t satisfy.

Whereas monads impose a strict sequencing on the computations they model,
applicatives and semigroupals impose no such restriction. This puts them in a
different sweet spot in the hierarchy. We can use them to represent classes
of parallel / independent computations that monads cannot.

We choose our semantics by choosing our data structures. If we choose a
monad, we get strict sequencing. If we choose an applicative, we lose the
ability to flatMap. This is the trade‐off enforced by the consistency laws. So
choose your types carefully!

11.6 Summary

While monads and functors are the most widely used sequencing data types
we’ve covered in this book, semigroupals and applicatives are themost general.
These type classes provide a generic mechanism to combine values and apply
functions within a context, from which we can fashion monads and a variety
of other combinators.

Semigroupal and Applicative aremost commonly used as ameans of combining
independent values such as the results of validation rules. Cats provides
the Validated type for this specific purpose, along with apply syntax as a
convenient way to express the combination of rules.

We have almost covered all of the functional programming concepts on our
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agenda for this book. The next chapter covers Traverse and Foldable, two
powerful type classes for converting between data types. After that we’ll look
at several case studies that bring together all of the concepts from Part I.
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Chapter 12

Foldable and Traverse

In this chapter we’ll look at two type classes that capture iteration over
collections:

• Foldable abstracts the familiar foldLeft and foldRight operations;
• Traverse is a higher‐level abstraction that uses Applicatives to iterate
with less pain than folding.

We’ll start by looking at Foldable, and then examine cases where folding
becomes complex and Traverse becomes convenient.

12.1 Foldable

The Foldable type class captures the foldLeft and foldRight methods we’re
used to in sequences like Lists, Vectors, and Streams. Using Foldable, we can
write generic folds that work with a variety of sequence types. We can also
invent new sequences and plug them into our code. Foldable gives us great
use cases for Monoids and the Eval monad.

297
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12.1.1 Folds and Folding

Let’s start with a quick recap of the general concept of folding. We supply an
accumulator value and a binary function to combine it with each item in the
sequence:

def show[A](list: List[A]): String =

list.foldLeft("nil")((accum, item) => s"$item then $accum")

show(Nil)

// res0: String = "nil"

show(List(1, 2, 3))

// res1: String = "3 then 2 then 1 then nil"

The foldLeft method works recursively down the sequence. Our binary
function is called repeatedly for each item, the result of each call becoming
the accumulator for the next. When we reach the end of the sequence, the
final accumulator becomes our final result.

Depending on the operation we’re performing, the order in which we fold may
be important. Because of this there are two standard variants of fold:

• foldLeft traverses from “left” to “right” (start to finish);
• foldRight traverses from “right” to “left” (finish to start).

Figure 12.1 illustrates each direction.

foldLeft and foldRight are equivalent if our binary operation is associative.
For example, we can sum a List[Int] by folding in either direction, using 0 as
our accumulator and addition as our operation:

List(1, 2, 3).foldLeft(0)(_ + _)

// res2: Int = 6

List(1, 2, 3).foldRight(0)(_ + _)

// res3: Int = 6
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Figure 12.1: Illustration of foldLeft and foldRight

If we provide a non‐associative operator the order of evaluation makes a
difference. For example, if we fold using subtraction, we get different results
in each direction:

List(1, 2, 3).foldLeft(0)(_ - _)

// res4: Int = -6

List(1, 2, 3).foldRight(0)(_ - _)

// res5: Int = 2

12.1.2 Exercise: Reflecting on Folds

Try using foldLeft and foldRight with an empty list as the accumulator and ::

as the binary operator. What results do you get in each case?

See the solution

12.1.3 Exercise: Scaf‐fold‐ing Other Methods

foldLeft and foldRight are very general methods. We can use them to
implement many of the other high‐level sequence operations we know. Prove
this to yourself by implementing substitutes for List's map, flatMap, filter, and
sum methods in terms of foldRight.

See the solution
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12.1.4 Foldable in Cats

Cats’ Foldable abstracts foldLeft and foldRight into a type class. Instances
of Foldable define these two methods and inherit a host of derived methods.
Cats provides out‐of‐the‐box instances of Foldable for a handful of Scala data
types: List, Vector, LazyList, and Option.

We can summon instances as usual using Foldable.apply and call their
implementations of foldLeft directly. Here is an example using List:

import cats.Foldable

import cats.instances.list._ // for Foldable

val ints = List(1, 2, 3)

Foldable[List].foldLeft(ints, 0)(_ + _)

// res0: Int = 6

Other sequences like Vector and LazyList work in the same way. Here is an
example using Option, which is treated like a sequence of zero or one elements:

import cats.instances.option._ // for Foldable

val maybeInt = Option(123)

Foldable[Option].foldLeft(maybeInt, 10)(_ * _)

// res1: Int = 1230

12.1.4.1 Folding Right

Foldable defines foldRight differently to foldLeft, in terms of the Evalmonad:

def foldRight[A, B](fa: F[A], lb: Eval[B])

(f: (A, Eval[B]) => Eval[B]): Eval[B]
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Using Eval means folding is always stack safe, even when the collection’s
default definition of foldRight is not. For example, the default implementation
of foldRight for LazyList is not stack safe. The longer the lazy list, the larger
the stack requirements for the fold. A sufficiently large lazy list will trigger a
StackOverflowError:

import cats.Eval

import cats.Foldable

def bigData = (1 to 100000).to(LazyList)

bigData.foldRight(0L)(_ + _)

// java.lang.StackOverflowError ...

Using Foldable forces us to use stack safe operations, which fixes the overflow
exception:

import cats.instances.lazyList._ // for Foldable

val eval: Eval[Long] =

Foldable[LazyList].

foldRight(bigData, Eval.now(0L)) { (num, eval) =>

eval.map(_ + num)

}

eval.value

// res3: Long = 5000050000L

Stack Safety in the Standard Library

Stack safety isn’t typically an issue when using the standard library. The
most commonly used collection types, such as List and Vector, provide
stack safe implementations of foldRight:
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(1 to 100000).toList.foldRight(0L)(_ + _)

(1 to 100000).toVector.foldRight(0L)(_ + _)

// res4: Long = 5000050000L

We’ve called out Stream because it is an exception to this rule. Whatever
data type we’re using, though, it’s useful to know that Eval has our back.

12.1.4.2 Folding with Monoids

Foldable provides us with a host of useful methods defined on top of foldLeft
. Many of these are facsimiles of familiar methods from the standard library:
find, exists, forall, toList, isEmpty, nonEmpty, and so on:

Foldable[Option].nonEmpty(Option(42))

// res5: Boolean = true

Foldable[List].find(List(1, 2, 3))(_ % 2 == 0)

// res6: Option[Int] = Some(value = 2)

In addition to these familiar methods, Cats provides two methods that make
use of Monoids:

• combineAll (and its alias fold) combines all elements in the sequence
using their Monoid;

• foldMapmaps a user‐supplied function over the sequence and combines
the results using a Monoid.

For example, we can use combineAll to sum over a List[Int]:

import cats.instances.int._ // for Monoid

Foldable[List].combineAll(List(1, 2, 3))

// res7: Int = 6
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Alternatively, we can use foldMap to convert each Int to a String and
concatenate them:

import cats.instances.string._ // for Monoid

Foldable[List].foldMap(List(1, 2, 3))(_.toString)

// res8: String = "123"

Finally, we can compose Foldables to support deep traversal of nested
sequences:

import cats.instances.vector._ // for Monoid

val ints = List(Vector(1, 2, 3), Vector(4, 5, 6))

(Foldable[List] compose Foldable[Vector]).combineAll(ints)

// res10: Int = 21

12.1.4.3 Syntax for Foldable

Every method in Foldable is available in syntax form via cats.syntax.foldable
. In each case, the first argument to the method on Foldable becomes the
receiver of the method call:

import cats.syntax.foldable._ // for combineAll and foldMap

List(1, 2, 3).combineAll

// res11: Int = 6

List(1, 2, 3).foldMap(_.toString)

// res12: String = "123"

http://typelevel.org/cats/api/cats/syntax/package$$foldable$
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Explicits over Implicits

Remember that Scala will only use an instance of Foldable if the method
isn’t explicitly available on the receiver. For example, the following code
will use the version of foldLeft defined on List:

List(1, 2, 3).foldLeft(0)(_ + _)

// res13: Int = 6

whereas the following generic code will use Foldable:

def sum[F[_]: Foldable](values: F[Int]): Int =

values.foldLeft(0)(_ + _)

We typically don’t need to worry about this distinction. It’s a feature!
We call the method we want and the compiler uses a Foldable when
needed to ensure our code works as expected. If we need a stack‐safe
implementation of foldRight, using Eval as the accumulator is enough
to force the compiler to select the method from Cats.

12.2 Traverse

foldLeft and foldRight are flexible iteration methods but they require us to do
a lot of work to define accumulators and combinator functions. The Traverse

type class is a higher level tool that leverages Applicatives to provide a more
convenient, more lawful, pattern for iteration.

12.2.1 Traversing with Futures

We can demonstrate Traverse using the Future.traverse and Future.sequence

methods in the Scala standard library. These methods provide Future‐specific
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implementations of the traverse pattern. As an example, suppose we have a
list of server hostnames and a method to poll a host for its uptime:

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

val hostnames = List(

"alpha.example.com",

"beta.example.com",

"gamma.demo.com"

)

def getUptime(hostname: String): Future[Int] =

Future(hostname.length * 60) // just for demonstration

Now, suppose we want to poll all of the hosts and collect all of their uptimes.
We can’t simply map over hostnames because the result—a List[Future[Int]]—
would contain more than one Future. We need to reduce the results to a single
Future to get something we can block on. Let’s start by doing this manually
using a fold:

val allUptimes: Future[List[Int]] =

hostnames.foldLeft(Future(List.empty[Int])) {

(accum, host) =>

val uptime = getUptime(host)

for {

accum <- accum

uptime <- uptime

} yield accum :+ uptime

}

Await.result(allUptimes, 1.second)

// res0: List[Int] = List(1020, 960, 840)

Intuitively, we iterate over hostnames, call func for each item, and combine the
results into a list. This sounds simple, but the code is fairly unwieldy because
of the need to create and combine Futures at every iteration. We can improve
on things greatly using Future.traverse, which is tailor‐made for this pattern:
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val allUptimes: Future[List[Int]] =

Future.traverse(hostnames)(getUptime)

Await.result(allUptimes, 1.second)

// res2: List[Int] = List(1020, 960, 840)

This is much clearer and more concise—let’s see how it works. If we ignore
distractions like CanBuildFrom and ExecutionContext, the implementation of
Future.traverse in the standard library looks like this:

def traverse[A, B](values: List[A])

(func: A => Future[B]): Future[List[B]] =

values.foldLeft(Future(List.empty[B])) { (accum, host) =>

val item = func(host)

for {

accum <- accum

item <- item

} yield accum :+ item

}

This is essentially the same as our example code above. Future.traverse

is abstracting away the pain of folding and defining accumulators and
combination functions. It gives us a clean high‐level interface to do what we
want:

• start with a List[A];
• provide a function A => Future[B];
• end up with a Future[List[B]].

The standard library also provides another method, Future.sequence, that
assumes we’re starting with a List[Future[B]] and don’t need to provide an
identity function:
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object Future {

def sequence[B](futures: List[Future[B]]): Future[List[B]] =

traverse(futures)(identity)

// etc...

}

In this case the intuitive understanding is even simpler:

• start with a List[Future[A]];
• end up with a Future[List[A]].

Future.traverse and Future.sequence solve a very specific problem: they allow
us to iterate over a sequence of Futures and accumulate a result. The simplified
examples above only work with Lists, but the real Future.traverse and Future

.sequence work with any standard Scala collection.

Cats’ Traverse type class generalises these patterns to work with any type of
Applicative: Future, Option, Validated, and so on. We’ll approach Traverse

in the next sections in two steps: first we’ll generalise over the Applicative,
then we’ll generalise over the sequence type. We’ll end up with an extremely
valuable tool that trivialises many operations involving sequences and other
data types.

12.2.2 Traversing with Applicatives

If we squint, we’ll see that we can rewrite traverse in terms of an Applicative.
Our accumulator from the example above:

Future(List.empty[Int])

is equivalent to Applicative.pure:

import cats.Applicative

import cats.instances.future._ // for Applicative

import cats.syntax.applicative._ // for pure
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List.empty[Int].pure[Future]

Our combinator, which used to be this:

def oldCombine(

accum : Future[List[Int]],

host : String

): Future[List[Int]] = {

val uptime = getUptime(host)

for {

accum <- accum

uptime <- uptime

} yield accum :+ uptime

}

is now equivalent to Semigroupal.combine:

import cats.syntax.apply._ // for mapN

// Combining accumulator and hostname using an Applicative:

def newCombine(accum: Future[List[Int]],

host: String): Future[List[Int]] =

(accum, getUptime(host)).mapN(_ :+ _)

By substituting these snippets back into the definition of traverse we can
generalise it to to work with any Applicative:

def listTraverse[F[_]: Applicative, A, B]

(list: List[A])(func: A => F[B]): F[List[B]] =

list.foldLeft(List.empty[B].pure[F]) { (accum, item) =>

(accum, func(item)).mapN(_ :+ _)

}

def listSequence[F[_]: Applicative, B]

(list: List[F[B]]): F[List[B]] =

listTraverse(list)(identity)

We can use listTraverse to re‐implement our uptime example:
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val totalUptime = listTraverse(hostnames)(getUptime)

Await.result(totalUptime, 1.second)

// res5: List[Int] = List(1020, 960, 840)

or we can use it with other Applicative data types as shown in the following
exercises.

12.2.2.1 Exercise: Traversing with Vectors

What is the result of the following?

import cats.instances.vector._ // for Applicative

listSequence(List(Vector(1, 2), Vector(3, 4)))

See the solution

What about a list of three parameters?

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

See the solution

12.2.2.2 Exercise: Traversing with Options

Here’s an example that uses Options:

import cats.instances.option._ // for Applicative

def process(inputs: List[Int]) =

listTraverse(inputs)(n => if(n % 2 == 0) Some(n) else None)

What is the return type of thismethod? What does it produce for the following
inputs?
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process(List(2, 4, 6))

process(List(1, 2, 3))

See the solution

12.2.2.3 Exercise: Traversing with Validated

Finally, here is an example that uses Validated:

import cats.data.Validated

import cats.instances.list._ // for Monoid

type ErrorsOr[A] = Validated[List[String], A]

def process(inputs: List[Int]): ErrorsOr[List[Int]] =

listTraverse(inputs) { n =>

if(n % 2 == 0) {

Validated.valid(n)

} else {

Validated.invalid(List(s"$n is not even"))

}

}

What does this method produce for the following inputs?

process(List(2, 4, 6))

process(List(1, 2, 3))

See the solution

12.2.3 Traverse in Cats

Our listTraverse and listSequencemethodsworkwith any type of Applicative
, but they only work with one type of sequence: List. We can generalise over
different sequence types using a type class, which brings us to Cats’ Traverse.
Here’s the abbreviated definition:
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package cats

trait Traverse[F[_]] {

def traverse[G[_]: Applicative, A, B]

(inputs: F[A])(func: A => G[B]): G[F[B]]

def sequence[G[_]: Applicative, B]

(inputs: F[G[B]]): G[F[B]] =

traverse(inputs)(identity)

}

Cats provides instances of Traverse for List, Vector, Stream, Option, Either, and
a variety of other types. We can summon instances as usual using Traverse.

apply and use the traverse and sequencemethods as described in the previous
section:

import cats.Traverse

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

val totalUptime: Future[List[Int]] =

Traverse[List].traverse(hostnames)(getUptime)

Await.result(totalUptime, 1.second)

// res0: List[Int] = List(1020, 960, 840)

val numbers = List(Future(1), Future(2), Future(3))

val numbers2: Future[List[Int]] =

Traverse[List].sequence(numbers)

Await.result(numbers2, 1.second)

// res1: List[Int] = List(1, 2, 3)

There are also syntax versions of the methods, imported via cats.syntax.

traverse:

http://typelevel.org/cats/api/cats/syntax/package$$traverse$
http://typelevel.org/cats/api/cats/syntax/package$$traverse$
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import cats.syntax.traverse._ // for sequence and traverse

val numbers3 = hostnames.traverse(getUptime)

// numbers3: Future[List[Int]] = Future(Success(List(1020, 960, 840)))

val numbers4 = numbers.sequence

// numbers4: Future[List[Int]] = Future(Success(List(1, 2, 3)))

Await.result(numbers3, 1.second)

// res2: List[Int] = List(1020, 960, 840)

Await.result(numbers4, 1.second)

// res3: List[Int] = List(1, 2, 3)

As you can see, this is much more compact and readable than the foldLeft

code we started with earlier this chapter!

12.3 Summary

In this chapter we were introduced to Foldable and Traverse, two type classes
for iterating over sequences.

Foldable abstracts the foldLeft and foldRight methods we know from
collections in the standard library. It adds stack‐safe implementations of these
methods to a handful of extra data types, and defines a host of situationally
useful additions. That said, Foldable doesn’t introduce much that we didn’t
already know.

The real power comes from Traverse, which abstracts and generalises the
traverse and sequence methods we know from Future. Using these methods
we can turn an F[G[A]] into a G[F[A]] for any F with an instance of Traverse
and any G with an instance of Applicative. In terms of the reduction we get in
lines of code, Traverse is one of the most powerful patterns in this book. We
can reduce folds of many lines down to a single foo.traverse.
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…and with that, we’ve finished all of the theory in this book. There’s plenty
more to come, though, as we put everything we’ve learned into practice in a
series of in‐depth case studies in Part II!
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Chapter 13

Indexed Types

In this chapter we look at indexed types. An indexed type is a type constructor,
so a type like F[_], along with a set of types that can fill in the constructor’s
type parameters. Let’s say this set of types is Int, String, and Option[Double].
Then, for a type constructor F we can construct an indexed type from the set
F[Int], F[String], and F[Option[Double]]. The types Int, String, and Option

[Double] act as indices into the set F[Int], F[String], and F[Option[Double]],
hence the name. The type constructor F can be either data and codata.

The description above is very abstract, and doesn’t help us understand how
indexed types are useful. We’ll see a lot of details and examples in this chapter,
but let’s start with a more useful high‐level overview. We can think of indexed
types as working with proofs that a type parameter is equal to a particular
element from the set of indices. Indexed data provides this evidence when
we destructure it, while indexed codata requires this evidence when we call
methods. Remember the definition of algebras we gave in Section 5.2, where
we said an algebra consists of three different kinds of methods: constructors,
combinators, and interpreters. Indexed types allows us to do two things:

• We can restrict where constructors and combinators can be used. We
can think of representing some state using a type parameter of F, and
we can only call particular methods when we are in the correct state.
In this case we are working with indexed codata.
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• We restrict the types produced by interpreters, enabling us to create
type‐safe interpreters that guarantee they only encounter particular
states when they run. Again these constraints are represented using
type parameters. In this case we are working with indexed data.

Indexed data are more usually known as generalized algebraic data types.
Indexed codata are sometimes known as typestate. Both can make use of
what is known as phantom types. Indeed, an early name for indexed data was
first‐class phantom types. As you might expect, indexed data and indexed
codata are dual to one another.

13.1 Phantom Types

Phantom types are a basic building block of indexed types, so we’ll start with
an example of them. A phantom type is simply a type parameter that doesn’t
correspond to any value. In the example below, the type parameter A is a
phantom type, because there is no value of type A, while B is not because
there is a value of that type.

final case class PhantomExample[A, B](value: B)

Phantom types are used to shift constraints to compile time. A simple example
involves units ofmeasurement. Most of theworld has standardized on SI units,
such as metres and litres. However, other measuring systems, such as Imperial
units, remain in use some countries or in some niches within countries that
otherwise use metric. Differences between different measurement systems
can cause problems. A dramatic example is the loss of theMars orbiter, caused
by two software components using incompatible measurements (one using
metric, and one using US customary measurements.)

With phantom types we can annotate measurements with their units, which in
turn can prevent us ever using incompatible units. Let’s work with just length,
which is sufficient to show the idea. We’ll start by defining a length type with a
phantom type recording the unit, and a method that allows us to add together
lengths.

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
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final case class Length[Unit](value: Double) {

def +(that: Length[Unit]): Length[Unit] =

Length[Unit](this.value + that.value)

}

We’ll need to define a few unit types to use this, and some Lengths using these
units.

trait Metres

trait Feet

val threeMetres = Length[Metres](3)

val threeFeetAndRising = Length[Feet](3)

Now we can add Lengths together if they have the same unit.

threeMetres + threeMetres

// res0: Length[Metres] = Length(value = 6.0)

However if we try to add Lengthswith different units the code will not compile.

threeMetres + threeFeetAndRising

// error:

// Found: (repl.MdocSession.MdocApp.threeFeetAndRising :

// repl.MdocSession.MdocApp.Length[repl.MdocSession.MdocApp.Feet])

// Required: repl.MdocSession.MdocApp.Length[repl.MdocSession.MdocApp.

Metres]

// threeMetres + threeFeetAndRising

// ^^^^^^^^^^^^^^^^^^

There is one big problem with phantom types on their own: there is no way
to use the information stored in the phantom type in further processing. For
example, force times length gives torque (with the SI unit of newton metres).
However we cannot define a *method on Length that can only be called if the
Unit is Metre using just the tool of phantom types. Similarly, we cannot define,
say, a toStringmethod that uses the Unit type to appropriately print the result.
Solving these problems leads us to indexed codata, so let’s now look at that.
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13.2 Indexed Codata

The basic idea of indexed codata is to prevent methods being called unless
certain conditions, encoded in types, are met. More precisely, methods are
guarded by type equalities that callers must prove they satisfy to call a method.
The contextual abstraction features, given instances and using clauses, are
used to implement this in Scala.

We’ll start our exploration of indexed codata with a very simple example. We
are going to define a switch that can only be turned on when it is off, and off
when it is on. Since this is codata, we start with an interface.

trait Switch {

def on: Switch

def off: Switch

}

There are no constraints on this interface as defined; we can turn any switch
on, even if it is already on, and vice versa. The first step to implement such a
constraint is to add a type parameter, which will hold the state of the Switch.
This type parameter doesn’t correspond to any data we store in Switch, so it
is a phantom type.

trait Switch[A] {

def on: Switch[A]

def off: Switch[A]

}

We are now going to add constraints that say we can only call certain methods
when this type parameter corresponds to particular concrete types. It is in this
way that indexed codata goes beyond what phantom types alone can do: we
can inspect, at compile‐time, the type of a type parameter and make decisions
based on this type.

Implementing these constraints has two parts. The first is defining types to
represent on and off.
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trait On

trait Off

The second step is to add the constraints to the relevant methods on Switch.
Here is how we do it.

trait Switch[A] {

def on(using ev: A =:= Off): Switch[On]

def off(using ev: A =:= On): Switch[Off]

}

We can create an implementation to show it really works.

final case class SimpleSwitch[A]() extends Switch[A] {

def on(using ev: A =:= Off): Switch[On] =

SimpleSwitch()

def off(using ev: A =:= On): Switch[Off] =

SimpleSwitch()

}

object SimpleSwitch {

val on: Switch[On] = SimpleSwitch()

val off: Switch[Off] = SimpleSwitch()

}

Here are some examples of using it correctly

SimpleSwitch.on.off

// res2: Switch[Off] = SimpleSwitch()

SimpleSwitch.off.on

// res3: Switch[On] = SimpleSwitch()

Incorrect uses fail to compile.

SimpleSwitch.on.on

// error:

// Cannot prove that MdocApp1.this.On =:= MdocApp1.this.Off.

The constraint is made of two parts: using clauses, which we learned about in
Section 4, and the A =:= B construction, which is new. =:= represents a type

https://www.scala-lang.org/api/current/scala/=:=.html
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equality. If a given instance A =:= B exists, then the type A is equal to the type
B. (Note we can write this with the more familiar prefix notation =:=[A, B] if
we prefer.) We never create these instances ourselves; instead the compiler
creates them for us. In the method onwe are asking the compiler to construct
an instance A =:= Off, which can only be done if A is Off. This in turn means
we can only call the method when the Switch is Off. This is the core idea
of indexed codata: we raise states into types, and restrict method calls to a
subset of states.

This is a different use of contextual abstraction to type classes. Type classes
associate operations with types. What we’re doing here is proving some
property of a type with respect to another type. More precisely we’re proving
that a type parameter is equal to a particular type. The given instance only
exists when the compiler can prove this is the case. Hence these given
instances are sometimes called evidence or witnesses. This different view
subsumes type classes, as we can think of type classes as evidence that a type
implements a certain interface.

Exercise: Torque

In Section 13.1 we saw we could use phantom types to represent units. We
also ran into a limitation: we had no way to inspect the phantom types and
hence make decisions based on them. Now, with indexed codata, we can do
solve this problem.

Below if the definition of Length we previously used. Your mission is to:

1. implement a type Force, parameterized by a phantom type that
represents the units of force;

2. implement a type Torque, parameterized by a phantom type that
represents the units of torque;

3. define types Newtons and NewtonMetres to represent force in SI units;
4. implement a method * on Force that accepts a Length and returns a

Torque. It can only be called if the Force is in Newtons and the Length

is in Metres. In this case the Torque is in NewtonMetres. (Torque is force
times length.)
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On Off
off

on

Figure 13.1: The switch API protocol

final case class Length[Unit](value: Double) {

def +(that: Length[Unit]): Length[Unit] =

Length[Unit](this.value + that.value)

}

See the solution

13.2.1 API Protocols

An API protocol defines the order in which methods must be called. The
protocol in the case of Switch is that we can only call off after calling on and
vice versa. This protocol is a simple finite state machine, and illustrated in
Figure 13.1. Many common types have similar protocols. For example, files
can only be read once they are opened and cannot be read once they have
been closed.

Indexed codata allows us to enforce API protocols at compile‐time. Often
these protocols are finite‐state machines. We can represent these protocols
with a single type parameter that represents the state, as we did with Switch.
We can also use multiple type parameters if that makes for a more convenient
representation.

Let’s see an example using multiple type parameters. We’re going to build an
API that represents a very limited subset of HTML, the language the defines

https://html.spec.whatwg.org/multipage/
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web pages. An example of HTML is below.

<!DOCTYPE html>

<html>

<head><title>Our Amazing Web Page</title></head>

<body>

<h1>This Is Our Amazing Web Page</h1>

<p>Please be in awe of its <strong>amazingness</strong></p>

</body>

</html>

In HTML the content of the page is marked up with tags, like <h1>, that give
it meaning. For example, <h1> means a heading at level one, and <p> means a
paragraph. An opening tag is closed by a corresponding closing tag, such as
</h1> for <h1> and </p> for <p>.

There are several rules for valid HTML¹. We’re going to focus on the following:

1. Within the html tag there can only be a head and a body tag, in that order.
2. Within the head tag there must be exactly one title, and there can be
any other number of allowed tags (of which we’re only going to model
link).

3. Within the body there can be any number of allowed tags (of which we
are only going to model h1 and p).

We’re going to use a Church‐encoded representation for HTML, so tags
are created by method calls. Figure 13.2 shows the finite state machine
representation of the API protocol. I find it easier to read as a regular
expression, which we can write down as

head link∗ title link∗ body (h1 | p)∗

As the code is fairly repetitive I will just present all the code and then discuss
the important parts. Here’s the implementation.

¹The HTML specification allows for very lenient parsing of HTML. For example, if we don’t
define the head tag it will usually be inferred. However we aren’t going to allow that kind of
leniency in our API.
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Head

Link

Title

Link

Body

H1 P

Figure 13.2: The HTML API protocol

sealed trait StructureState

trait Empty extends StructureState

trait InHead extends StructureState

trait InBody extends StructureState

sealed trait TitleState

trait WithoutTitle extends TitleState

trait WithTitle extends TitleState

// Not a case class so external users cannot copy it

// and break invariants

final class Html[S <: StructureState, T <: TitleState](

head: Vector[String],

body: Vector[String]

) {

// Head tags ---------------------------------------------

def head(using S =:= Empty): Html[InHead, WithoutTitle] =

Html(head, body)

def title(

text: String

)(using S =:= InHead, T =:= WithoutTitle): Html[InHead, WithTitle] =

Html(head :+ s"<title>$text</title>", this.body)

def link(rel: String, href: String)(using S =:= InHead): Html[InHead

, T] =

Html(head :+ s"<link rel=\"$rel\" href=\"$href\"/>", body)
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// Body tags ---------------------------------------------

def body(using S =:= InHead, T =:= WithTitle): Html[InBody,

WithTitle] =

Html(head, body)

def h1(text: String)(using S =:= InBody): Html[InBody, T] =

Html(head, body :+ s"<h1>$text</h1>")

def p(text: String)(using S =:= InBody): Html[InBody, T] =

Html(head, body :+ s"<p>$text</p>")

// Interpreter ------------------------------------------

override def toString(): String = {

val h = head.mkString(" <head>\n ", "\n ", "\n </head>")

val b = body.mkString(" <body>\n ", "\n ", "\n </body>")

s"\n<html>\n$h\n$b\n</html>"

}

}

object Html {

val empty: Html[Empty, WithoutTitle] = Html(Vector.empty, Vector.

empty)

}

The key point is that we factor the state into two components. StructureState
represents where in the overall structure we are (inside the head, inside the
body, or inside neither). TitleState represents the state when defining the
elements inside the head, specifically whether we have a title element or
not. We could certainly represent this with one state type variable, but I
find the factored representation both easier to work with and easier for other
developers to understand.

Here’s an example in use.

Html.empty.head

.link("stylesheet", "styles.css")

.title("Our Amazing Webpage")

.body

.h1("Where Amazing Exists")
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.p("Right here")

.toString

// res6: String = """

// <html>

// <head>

// <link rel="stylesheet" href="styles.css"/>

// <title>Our Amazing Webpage</title>

// </head>

// <body>

// <h1>Where Amazing Exists</h1>

// <p>Right here</p>

// </body>

// </html>"""

Here’s an example of the type system preventing an invalid construction, in
this case the lack of a title.

Html.empty.head

.link("stylesheet", "styles.css")

.body

.h1("This Shouldn't Work")

// error:

// Cannot prove that MdocApp2.this.WithoutTitle =:= MdocApp2.this.

WithTitle.

These error messages are not great. We’ll address this in Chapter 16.

We can implement more complex protocols, such as those that can be
represented by context‐free or even context‐sensitive grammars, using the
same technique.

Exercise: HTML API Design

I don’t particularly like the HTML API we developed above, as the flat method
call structure doesn’t match the nesting in the HTML structure we’re creating.
I would prefer to write the following.
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Html.empty

.head(_.title("Our Amazing Webpage"))

.body(_.h1("Where Amazing Happens").p("Right here"))

.toString

We still require the head is specified before the body, but now the nesting of
the method calls matches the nesting of the structure. Notice we’re still using
a Church‐encoded representation.

Can you think of how to implement this? You’ll need to use indexed codata,
and perhaps a bit of inspiration. This is a very open ended question, so don’t
worry if you struggle with it!

See the solution

13.2.2 Beyond Equality Constraints

Indexed data is all about equality constraints: proofs that some type parameter
is equal to some type. However we can go beyond equality constraints
with contextual abstraction. We can use <:< for evidence of a subtyping
relationship, and NotGiven for evidence that no given instance exists (with
which we can test that types are not equal, for example). Beyond that, we
can view any given instance as evidence.

Let’s return to our example of length, force, and torque to see how this is useful.
In the exercise where we defined torque as force times length, we fixed the
computation to have SI units. The example code is below.

final case class Force[Unit](value: Double) {

def *[L](length: Length[L])(using Unit =:= Newtons, L =:= Metres):

Torque[NewtonMetres] =

Torque(this.value * length.value)

}

This is a reasonable thing to do, as other units are insane, but there are a lot
of insane people out there. To accommodate other unit types we can create
given instances that represent the result types of operations of interest. In
this case we want to represent the result of multiplying a length unit by the
force unit. In code we can write the following.

https://www.scala-lang.org/api/current/scala/%3C:%3C.html
https://www.scala-lang.org/api/current/scala/util/NotGiven.html
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// Weird units

trait Feet

trait Pounds

trait PoundsFeet

// An instance exists if A * B = C

trait Multiply[A, B, C]

object Multiply {

given Multiply[Metres, Newtons, NewtonMetres] = new Multiply {}

given Multiply[Feet, Pounds, PoundsFeet] = new Multiply {}

}

Now we can define * methods on Length and Force in terms of Multiply.

final case class Length[L](value: Double) {

def *[F, T](that: Force[F])(using Multiply[L, F, T]): Torque[T] =

Torque(this.value * that.value)

}

final case class Force[F](value: Double) {

def *[L, T](that: Length[L])(using Multiply[F, L, T]): Torque[T] =

Torque(this.value * that.value)

}

Here’s an example showing it works.

Length[Metres](3) * Force[Newtons](4)

// res11: Torque[NewtonMetres] = Torque(value = 12.0)

Length[Feet](3) * Force[Pounds](4)

// res12: Torque[PoundsFeet] = Torque(value = 12.0)

Note that’s it hard to think of Multiply as a type class, as it does not provide
any methods. Viewing it as evidence, however, does make sense.

Exercise: Commutivitiy

In the example abovewe defined a Multiply type class to represent thatmetres
times newtons gives newton metres. Multiplication is commutative. If A ×
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B = C , thenB × A = C . However we have not represented this, and if we
try newtons times metres, as in the example below, the code will fail.

Force[Newtons](3) * Length[Metres](4)

// error:

// No given instance of type MdocApp4.this.Multiply[MdocApp4.this.

Newtons, MdocApp4.this.Metres, Any] was found for parameter x$2

of method * in class Force

// Force[Newtons](3) * Length[Metres](4)

// ^

Add evidence to Multiply that if Multiply[A, B, C] exists, then so does
Multiply[B, A, C], and show that it solves this problem.

See the solution

Now that we have learned about indexed codata, we’ll turn to its dual, indexed
data.

13.3 Indexed Data

The key idea of indexed data is to encode type equalities in data. When
we come to inspect the data (usually, via structural recursion) we discover
these equalities, which in turn limit what values we can produce. Notice,
again, the duality with codata. Indexed codata limits methods we can call.
Indexed data limits values we can produce. Also, remember that indexed data
is often known as generalized algebraic data types. We are using the simpler
term indexed data to emphasise the relationship to indexed codata, and also
because it’s much easier to type!

Concretely, indexed data in Scala occurs when:

1. we define a sum type with at least one type parameter; and
2. cases within the sum instantiate that type parameter with a concrete
type.

Let’s see an example. Imagine we are implementing a programming language.
We need some representation of values within the language. Suppose our
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language supports strings, integers, and doubles, which we will represent with
the corresponding Scala types. The code below shows howwe can implement
this as a standard algebraic data type.

enum Value {

case VString(value: String)

case VInt(value: Int)

case VDouble(value: Double)

}

Using indexed data we can use the alternate implementation below.

enum Value[A] {

case VString(value: String) extends Value[String]

case VInt(value: Int) extends Value[Int]

case VDouble(value: Double) extends Value[Double]

}

This is indexed data, as it meets the criteria above: we have a type parameter A
that is instantiated with a concrete type in the cases VString, VInt, and VDouble.
It’s quite easy to use indexed data in Scala, and people often do so not knowing
that it is anything special. The natural next question is why is this useful? It
will take a more involved example to show why, so let us now dive into one
that makes good use of indexed data.

13.3.1 The Probability Monad

For our case study of indexed data wewill create a probability monad. This is a
composable abstraction for defining probability distributions. The probability
monad has a lot of uses. The most relevant to most developers is generating
data for property‐based tests, so we’ll focus on this use case. However, it can
also be used, for example, for statistical inference or for creating generative
art. See the conclusions (Section 13.4) for some pointers to these uses.

Let’s start with an example of generating randomdata. Doodle is a Scala library
for graphics and visualization. A core part of the library is representing colors.
Doodle has two different representations of colors, RGB and OkLCH, with

https://www.creativescala.org/doodle/
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conversions between the two. These conversions involve some somewhat
tricky mathematics. Testing these conversions is an excellent use of property‐
based testing. If we can generate many, say, random RGB colors, we can test
the conversion by checking the roundrip from RGB to OkLCH and back results
in the original color².

To create an RGB color we need three unsigned bytes, so our first task is
to define how we generate a random byte. Doodle happens to have an
implementation of the probability monad that we will use. Here is how we
can do it.

import cats.syntax.all.*

import doodle.core.Color

import doodle.core.UnsignedByte

import doodle.random.{*, given}

val randomByte: Random[UnsignedByte] =

Random.int(0, 255).map(UnsignedByte.clip)

Note that once again we see the interpreter strategy. A Random[A] is a value
representing a program that will generate a random value of type A when it
runs.

With three random unsigned bytes we can create a random RGB color.

val randomRGB: Random[Color] =

(randomByte, randomByte, randomByte)

.mapN((r, g, b) => Color.rgb(r, g, b))

We might want to check our code by generating a few random values.

randomRGB.replicateA(2).run

// res1: List[Color] = List(

// Rgb(

// r = UnsignedByte(value = -25),

// g = UnsignedByte(value = 22),

// b = UnsignedByte(value = 43),

²Due to numeric issues there may be small differences between the colors that we should
ignore.
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// a = Normalized(get = 1.0)

// ),

// Rgb(

// r = UnsignedByte(value = 89),

// g = UnsignedByte(value = -123),

// b = UnsignedByte(value = 110),

// a = Normalized(get = 1.0)

// )

// )

It seems to be working.

Once we have a source of random data we can write tests using it. We can
easily generate more data than is feasible for a programmer to write by hand,
and therefore have a higher degree of certainty that our code is correct than
we would get with manual testing. The details of writing the tests are not
important to us here, so let’s move on.

We have seen is an illustration of using the probability monad to generate
random data. The probability monad works the same way as every other
algebra: we have constructors (Random.int), combinators (map, and mapN), and
interpreters (run). Being a monad means the algebra has some specific
structure. For example, it tells us that we have pure and flatMap available,
from which we can derive mapN.

Let’s sketch an plausible interface for our probability monad.

trait Random[A] {

def flatMap[B](f: A => Random[B]): Random[B]

}

object Random {

def pure[A](value: A): Random[A] = ???

// Generate a uniformly distributed random Double greater

// than or equal to zero and less than one.

val double: Random[Double] = ???

// Generate a uniformly distributed random Int

val int: Random[Int] = ???

}

The interface has the minimum requirements to be a monad, and a few other
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constructors. We can make progress on the implementation by applying the
reification strategy, introduced in Section 5.2.

enum Random[A] {

def flatMap[B](f: A => Random[B]): Random[B] =

RFlatMap(this, f)

case RFlatMap[A, B](source: Random[A], f: A => Random[B])

extends Random[B]

case RPure(value: A)

case RDouble extends Random[Double]

case RInt extends Random[Int]

}

object Random {

import Random.{RPure, RDouble, RInt}

def pure[A](value: A): Random[A] = RPure(value)

// Generate a uniformly distributed random Double greater

// than or equal to zero and less than one.

val double: Random[Double] = RDouble

// Generate a uniformly distributed random Int

val int: Random[Int] = RInt

}

The next step is to implement an interpreter, which is a standard structural
recursion. The interpreter has a parameter that provides a source of random
numbers.

def run(rng: scala.util.Random = scala.util.Random): A =

this match {

case RFlatMap(source, f) => f(source.run(rng)).run(rng)

case RPure(value) => value

case RDouble => rng.nextDouble()

case RInt => rng.nextInt()

}

This is an example of indexed data, as the cases RDouble and RInt provide a
concrete type for the type parameter A. This means that these cases in the
interpreter can produce values of that concrete type. If we did not use indexed
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data we could only generate values of type A, which the programmer would
have to supply to use like in the RPure case.

To finish this implementation we should implement the Monad type class, which
would give us mapN and other methods for free. However, this is outside the
scope of this case study, which is focused on indexed data. I encourage you
to do this yourself if you feel you would benefit from the practice.

Note that indexed data can mix concrete and generic types. Let’s say we add
a product method to Random.

enum Random[A] {

// ...

def product[B](that: Random[B]): Random[(A, B)] =

RProduct(this, that)

case RProduct[A, B](left: Random[A], right: Random[B]) extends

Random[(A, B)]

// .. other cases here

}

The right‐hand side of the RProduct case instantiates the type parameter to
(A, B), which mixes the concrete tuple type with the generic types A and B

There are a few tricks to using indexed data that are essential in Scala 2, and
can sometimes be useful in Scala 3. Take the following translation of the
probability monad into Scala 2. (I’ve placed a using directive in this code, so if
you paste it into a file and run it with the Scala CLI it will use the latest version
of Scala 2.13.)

//> using scala 2.13

sealed trait Random[A] {

import Random._

def flatMap[B](f: A => Random[B]): Random[B] =

RFlatMap(this, f)

def product[B](that: Random[B]): Random[(A, B)] =
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RProduct(this, that)

def run(rng: scala.util.Random = scala.util.Random): A =

this match {

case RFlatMap(source, f) => f(source.run(rng)).run(rng)

case RProduct(l, r) => (l.run(rng), r.run(rng))

case RPure(value) => value

case RDouble => rng.nextDouble()

case RInt => rng.nextInt()

}

}

object Random {

final case class RFlatMap[A, B](source: Random[A], f: A => Random[B

])

extends Random[B]

final case class RProduct[A, B](left: Random[A], right: Random[B])

extends Random[(A, B)]

final case class RPure[A](value: A) extends Random[A]

case object RDouble extends Random[Double]

case object RInt extends Random[Int]

def pure[A](value: A): Random[A] = RPure(value)

// Generate a uniformly distributed random Double greater

// than or equal to zero and less than one.

val double: Random[Double] = RDouble

// Generate a uniformly distributed random Int

val int: Random[Int] = RInt

}

In Scala 2 this generates a lot of type errors like

[error] constructor cannot be instantiated to expected type;

[error] found : Random.RProduct[A(in class RProduct),B]

[error] required: Random[A(in trait Random)]

[error] case RProduct(l, r) => (l.run(rng), r.run(rng))

[error] ^^^^^^^^

To solve this we need to create a nested method with a fresh type parameter
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in the interpreter, as shown below. With this change Scala 2’s type inference
works and it can successfully compile the code.

def run(rng: scala.util.Random = scala.util.Random): A = {

def loop[A](random: Random[A]): A =

random match {

case RFlatMap(source, f) => loop(f(loop(source)))

case RProduct(left, right) => (loop(left), loop(right))

case RPure(value) => value

case RDouble => rng.nextDouble()

case RInt => rng.nextInt()

}

loop(this)

}

The other trick is for when we want to use pattern matches that match type
tags. This means the form like

case r: RPure[A] => ???

rather than

case RPure(value) => ???

For cases like RProduct it is not clear how towrite these patternmatches, as the
type parameters A and B for RProduct don’t correspond to the type parameter
A on Random. The solution is use lower case names from the type parameters.
Concretely, this means we can write

case r: RProduct[a, b] => ???

The type parameters a and b are existential types; we know they exist but
we don’t know what concrete type they correspond to. I’ve found this is
occasionally necessary in Scala 2, but very rare in Scala 3.
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13.4 Conclusions

In this chapter we looked at indexed data and indexed codata. The key idea of
indexed types is to encode equality constraints that a type parameter equals
some type. With indexed data these constraints are encoded in the data and
we discover them when we destructure the data. In this way indexed data
is a producer of equalities. With indexed codata these constraints must be
shown to hold when methods are called. Hence indexed codata is a consumer
of equalities. We also saw that we can go beyond equalities constraints
with contextual abstraction, by encoding other types of constraints in given
instances.

Indexed types build on phantom types. The earliest reference I’ve found to
phantom types is Leijen and Meijer [2000]. Type equalities were added soon
afterwards, creating what we now know as generalized algebraic data types
or indexed data [Cheney and Hinze 2003; Xi et al. 2003; Sheard and Pasalic
2008]. Most work on generalized algebraic data types is concerned with type
inference algorithms (e.g. [Peyton Jones et al. 2006]), which is not so relevant
to the working programmer. Lin and Sheard [2010] is not different in this
respect, but it does have a particularly clear breakdown of how GADTs are
used in the most common case.

Interest in indexed codata is much more recent [Thibodeau et al. 2016],
reflecting the general lack of attention that codata has received in
programming language research (or at least the parts that I read.) Scala has
excellent support for indexed codata but, even so, we can see in Scala a lack
of symmetry in the support for indexed data and codata. While indexed data
is built into the language, indexed codata is something wemust built ourselves
from contextual abstractions. This is not necessarily a bad thing, as contextual
abstraction allows us to go beyond the simple type equalities of indexed data
and codata. Recent research has looked to address this asymmetry. For
example, Ostermann and Jabs [2018] considers indexed data and indexed
codata as related by transposition of a matrix defining the API and Zhang et
al. [2022] develops a system, implemented in Scala, that translates between
data and codata.

In a case study we used indexed codata to implement an API protocol: a
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restriction on the order in which methods can be called. We can view this
as an elaboration on the basic algebra or combinator library strategy we have
seen in some many different case studies. We can also relate it to work in
the object‐oriented programming (OOP) community. It is worth doing so to
show that these problems bridge programming communities and sometimes
disparate communities discover very similar solutions.

In the OOP world a combinator library is called a fluent interface. The
same article that introduces the term fluent interface also mentions the need
for API protocols: “choose your return type based on what you need to
continue fluent action” [Fowler 2005]. Many case studies have explored fluent
interfaces (e.g. [Freeman and Pryce 2006; Hawick 2013; Dethlefs and Hawick
2017; Shrestha et al. 2021]) and this style of code is increasing in popularity
[Nakamaru et al. 2020]. Encoding an API protocol can be quite involved, so
another research direction is the creation of tools to generate code from a
protocol definition [Levy 2016; Nakamaru et al. 2017; Gil and Roth 2019;
Vuković et al. 2023]. Roth and Gil [2023] translates API protocols back to the
functional world, showing a variety of encodings in Standard ML.

The probability monad we developed, which is specialized to sampling
data, is only one of many possibilities. Sampling gives us an approximate
representation of a distribution. Small discrete distributions can be
represented exactly. Erwig and Kollmansberger [2006] show how this can be
done, in addition to the sampling approach we used. Kidd [2007] shows how
the exact and sampling approaches can be factored into monad transformer
stacks. Scibior et al. [2015] uses probability monad as the underlying
abstraction on which a variety of different statistical inference algorithms are
defined. This is application of the idea of multiple interpretations that we
have stressed throughout this book. Scibior et al. [2018] expands on this idea,
breaking down inference algorithms into reusable components.

We introduced the probability monad in the context of property based testing
[Claessen and Hughes 2000]. Randomly generating test data is not the only
approach. Runciman et al. [2008] describes an elegant way of enumerating
data. Also see Duregård et al. [2012] for an approach specialized to
enumerating algebraic data types. More recently machine learning techniques
are being explored. See, for example, Reddy et al. [2020] and Lemieux et al.
[2023]. Goldstein et al. [2024] studies how property based testing is used in
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practice.

I mentioned that the probability monad can be used in generative art.
Generative art is, broadly, art that is generated by some algorithmic process.
This can include an element of randomness. While there are papers on
generative art (e.g. [Boden and Edmonds 2009; Dorin et al. 2012]), and many
other resources that discuss it, it’s much more fun to create some yourself.
Figure 13.3 shows an example of generative art. The code is below, and it has
many knobs that you can play with to create your own example. Just add the
@main annotation to the cycloid method and you can run the code from the
Scala CLI. Have fun!

//> using dep org.creativescala::doodle:0.30.0

import cats.Monoid

import cats.syntax.all.*

import cats.effect.unsafe.implicits.global

import doodle.core.*

import doodle.core.format.{Pdf, Png}

import doodle.interact.syntax.interpolation.*

import doodle.random.{*, given}

import doodle.syntax.all.*

import doodle.java2d.*

def cycloid(): Unit = {

given Monoid[Angle => Vec] with {

def combine(a: Angle => Vec, b: Angle => Vec): Angle => Vec =

angle => a(angle) + b(angle)

val empty: Angle => Vec = angle => Vec.zero

}

/** Reverse the rolling direction of the cycloid. */

val reverse: Angle => Angle = angle => -angle

/** Multiply the angle by the given speed, which determines how

rapidly the

* cycloid rotates.

*/

def speed(speed: Double): Angle => Angle =

angle => angle * speed



13.4. CONCLUSIONS 341

Figure 13.3: A set of cycloids showing five‐fold symmetry
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/** Increment the angle by the given amount. In other words move it

out of

* phase.

*/

def phase(p: Angle): Angle => Angle =

angle => p - angle

/** Set the radius of the cycloid */

def radius(r: Double): Angle => Vec =

angle => Vec(r, angle)

/** Cycloid is speed of rotation and radius (+ve or -ve) */

def cycloid(v: Double, r: Double): Angle => Vec =

speed(v).andThen(radius(r))

/** Inspired by "Creating Symmetry" by Frank Farris. */

def c1(amplitude: Double) =

cycloid(1.0, amplitude) |+| cycloid(6.0, 0.5 * amplitude) |+| (

speed(14.0)

.andThen(phase(90.degrees))

.andThen(radius(0.33 * amplitude)))

val randomCycloid: Random[Double => Angle => Vec] =

for {

d <- Random.int(3, 25) // Degree of symmetry

n <- Random.natural(d) // Offset from d

m1 <- Random.int(1, 5)

m2 <- Random.int(m1, m1 + 5)

} yield amplitude =>

cycloid(n, amplitude) |+| cycloid(

m1 * d + n,

0.5 * amplitude

) |+| phase(90.degrees).andThen(cycloid(m2 * d + n, 0.33 *

amplitude))

def drawCycloid(

cycloid: Angle => Vec,

start: Angle = 0.degrees,

stop: Angle = 720.degrees,

steps: Int = 1000

): Picture[Unit] =

interpolatingSpline[Algebra](
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(start)

.upTo(stop)

.forSteps(steps)

.map(angle => cycloid(angle).toPoint)

.toList

)

/** Repeatedly draw a cycloid with increasing size and a slow turn

*/

def drawCycloids(cycloid: Double => Angle => Vec): Picture[Unit] =

(0.0)

.upTo(1.0)

.forSteps(30)

.map { m =>

drawCycloid(cycloid(350 * m + 100)).rotate(30.degrees * m)

}

.toList

.allOn

// val picture = drawCycloids(c1)

val picture = randomCycloid.map(drawCycloids).run

val frame = Frame.default

picture.drawWithFrame(frame)

picture.write[Png]("cycloid.png", frame)

picture.write[Pdf]("cycloid.pdf", frame)

}
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Chapter 14

Tagless Final Interpreters

In this chapter we’ll explore the codata approach to interpreters, building up to
a strategy known as tagless final. Along the way wewill build two interpreters:
one for terminal interaction and one for user interfaces.

We’ve seen the duality between data and codata in many places, starting
with Chapter 3. This chapter will begin by applying that duality to build an
interpreter using codata, which contrasts with the data approach we saw in
Section 5.2. This will illustrate the technique and give us a concrete example
to discuss its shortcoming. In particular we’ll see that extensibility is limited, a
problem we first encountered in Section 3.5.

Solving the problem of extensibility, otherwise known as the expression
problem, will lead us to tagless final. In the context of interpreters, solving
the expression problem means allowing extensibility of both the programs
we write and the interpreters that run them. We’ll start with the standard
encoding of tagless final in Scala, and see that it is a bit painful to use in
practice. We’ll then develop an alternative encoding that is easier to use.
Solving the expression problem allows for very expressive code but it adds
complexity, so we’ll finish by talking about when tagless final is appropriate
and when it’s best to use a different strategy.

345
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14.1 Codata Interpreters

In this section we’ll explore codata interpreters, using a DSL for terminal
interaction as a case study. The terminal is familiar to most programmers, and
terminal applications are common for developer focused tools. Most terminal
features are controlled by writing so‐called escape codes to the terminal.
However, applications benefit from higher‐level abstractions, motivating
textual user interface (TUI) libraries that present a more ergonomic interface¹.
Our library will showcase codata interpreters, monads, and the central role of
designing for composition and reasoning.

14.1.1 The Terminal

The modern terminal is an accretion of features that started with the VT‐
100 in 1978 and continues [to this day][kitty‐kp]. Most terminal features
are accessed by reading and writing ANSI escape codes, which are sequence
of characters starting with the escape character. We will work only with
escape codes that change the text style. This allows us to produce interesting
output, and raises all the design issues we want to address, but keeps the
system simple. The ideas here are extended to a more complete system in the
Terminus library.

The code below is written so that with a single change it can pasted into a
file and run with any recent version of Scala with just scala <filename>. The
required change is to add the @main annotation before the method go. That is,
change

def go(): Unit =

to

@main def go(): Unit =

(This is due to a limitation of the software that compiles the code in the book.)

¹If you’re interested in TUI libraries you might like to look at the brilliantly named ratatui for
Rust, brick for Haskell, or Textual for Python.

https://www.creativescala.org/terminus/
https://en.wikipedia.org/wiki/Text-based_user_interface
https://github.com/ratatui/ratatui
https://github.com/jtdaugherty/brick
https://textual.textualize.io/
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The examples should work with any terminal from the last 40 odd years. If
you’re onWindows you can useWindows Terminal, WSL, or another terminal
that runs on Windows such as WezTerm.

14.1.2 Color Codes

Wewill start by writing color codes straight to the terminal. This will introduce
us to controlling the terminal, and show the problems of using ANSI escape
codes directly. Here’s our starting point:

val csiString = "\u001b["

def printRed(): Unit =

print(csiString)

print("31")

print("m")

def printReset(): Unit =

print(csiString)

print("0")

print("m")

def go(): Unit =

print("Normal text, ")

printRed()

print("now red text, ")

printReset()

println("and now back to normal.")

Try running the above code (e.g. add the @main annotation to go, save it to a file
ColorCodes.scala and run scala ColorCodes.scala.) You should see text in the
normal style for your terminal, followed by text colored red, and then some
more text in the normal style. The change in color is controlled by writing
escape codes. These are strings starting with ESC (which is the character '\
u001b') followed by '['. This is the value of csiString (where CSI stands for
Control Sequence Introducer). The CSI is followed by a string indicating the
text style to use, and endedwith a "m"The string "\u001b[31m" tells the terminal
to set the text foreground color to red, and the string "\u001b[0m" tells the
terminal to reset all text styling to the default.

https://learn.microsoft.com/en-us/windows/wsl/about
https://wezfurlong.org/wezterm/index.html
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14.1.3 The Trouble with Escape Codes

Escape codes are simple for the terminal to process but lack useful structure
for the programmer generating them. The code above shows one potential
problem: we must remember to reset the color when we finish a run of styled
text. This problem is no different to that of remembering to free manually
allocated memory, and the long history of memory safety problems in C
programs show us that we cannot expect to do this reliably. Luckily, we’re
unlikely to crash our program if we forget an escape code!

To solve this problem we might decide to write functions like printRed below,
which prints a colored string and resets the styling afterwards.

val csiString = "\u001b["

val redCode = s"${csiString}31m"

val resetCode = s"${csiString}0m"

def printRed(output: String): Unit =

print(redCode)

print(output)

print(resetCode)

def go(): Unit =

print("Normal text, ")

printRed("now red text, ")

println("and now back to normal.")

Changing color is the not the only way that we can style terminal output. We
can also, for example, turn text bold. Continuing the above design gives us
the following.

val csiString = "\u001b["

val redCode = s"${csiString}31m"

val resetCode = s"${csiString}0m"

val boldOnCode = s"${csiString}1m"

val boldOffCode = s"${csiString}22m"

def printRed(output: String): Unit =

print(redCode)
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print(output)

print(resetCode)

def printBold(output: String): Unit =

print(boldOnCode)

print(output)

print(boldOffCode)

def go(): Unit =

print("Normal text, ")

printRed("now red text, ")

printBold("and now bold.\n")

This works, but what if we want text that is both red and bold? We cannot
express this with our current design, without creating methods for every
possible combination of styles. Concretely this means methods like

def printRedAndBold(output: String): Unit =

print(redCode)

print(boldOnCode)

print(output)

print(resetCode)

This is not feasible to implement for all possible combinations of styles. The
root problem is that our design is not compositional: there is no way to build
a combination of styles from smaller pieces.

14.1.4 Programs and Interpreters

To solve the problem above we need printRed and printBold to accept not
a String to print but a program to run. We don’t need to know what these
programs do; we just need a way to run them. Then the combinators printRed
, printBold, and so on, can also return programs. These programs will set
the style appropriately before running their program parameter, and reset it
after the parameter program has finished running. By accepting and returning
programs the combinators have the property of closure, meaning that type of
the input (a program) is the same as the type of the outpt. Closure in turn
makes composition possible.
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How should we represent a program? We will choose codata and in particular
functions, the simplest form of codata. In the code below we define the type
Program[A], which is a function ()=> A. The interpreter, which is the thing that
runs programs, is just function application. To make it clearer when we are
running programs I have a created method run that does just that.

type Program[A] = () => A

val csiString = "\u001b["

val redCode = s"${csiString}31m"

val resetCode = s"${csiString}0m"

val boldOnCode = s"${csiString}1m"

val boldOffCode = s"${csiString}22m"

def run[A](program: Program[A]): A = program()

def print(output: String): Program[Unit] =

() => Console.print(output)

def printRed[A](output: Program[A]): Program[A] =

() => {

run(print(redCode))

val result = run(output)

run(print(resetCode))

result

}

def printBold[A](output: Program[A]): Program[A] =

() => {

run(print(boldOnCode))

val result = run(output)

run(print(boldOffCode))

result

}

def go(): Unit =

run(() => {

run(print("Normal text, "))



14.1. CODATA INTERPRETERS 351

run(printRed(print("now red text, ")))

run(printBold(print("and now bold ")))

run(printBold(printRed(print("and now bold and red.\n"))))

})

Notice that we have the usual structure for an algebra, which we first met in
Section 5.2.1:

1. we have a constructor in print;
2. we have two combinators in printRed and printBold; and
3. we have an interpreter in run.

This code works, for the example we have chosen, but there are two issues:
composition and ergonomics. That we have a problem with composition is
perhaps surprising, as that’s the problem we set out to solve. We have made
the system compositional in some aspects, but there are still ways in which it
does not work correctly. For example, take the following code:

run(printBold(() => {

run(print("This should be bold, "))

run(printBold(print("as should this ")))

run(print("and this.\n"))

}))

We would expect output like

This should be bold, as should that and this

but we get

This should be bold, as should this and this.

The inner call to printBold resets the bold stylingwhen it finishes, whichmeans
the surrounding call to printBold does not have effect on later statements.

The issue with ergonomics is that this code is tedious and error‐prone to write.
We have to pepper calls to run in just the right places, and even in these small
examples I found myself making mistakes. This is actually another failing of
composition, because we don’t have methods to combine together programs.
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For example, we don’t have methods to say that the program above is the
sequential composition of three sub‐programs.

We can solve the first problem by keeping track of the state of the terminal.
If printBold is called within a state that is already printing bold it should do
nothing, otherwise it should update the state to indicate bold styling has been
turned on. This means the type of programs changes from ()=> A to Terminal

=> (Terminal, A), where Terminal holds the current state of the terminal.

To solve the second problem we’re looking for a way to sequentially compose
programs. Remember programs have type Terminal => (Terminal, A) and
pass around the state in Terminal. When you hear the phrase “sequentially
compose”, or see that type, your monad sense might start tingling. You are
correct: this is an instance of the state monad, which we first met in Section
9.9.

Using Cats we can define

import cats.data.State

type Program[A] = State[Terminal, A]

assuming some suitable definition of Terminal. Let’s accept this definition for
now, and focus on defining Terminal.

Terminal has two pieces of state: the current bold setting and the current
color. (The real terminal has much more state, but these are representative
and modelling additional state does not introduce any new concepts.) The
bold setting could simply be a toggle that is either on or off, but whenwe come
to the implementation it will be easier to work with a counter that records the
depth of the nesting. The current color must be a stack. We can nest color
changes, and the color should change back to the surrounding color when a
nested level exits. Concretely, we should be able to write code like

printBlue(.... printRed(...) ...)

and have output in blue or red as we would expect.

Given this we can define Terminal as
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final case class Terminal(bold: Int, color: List[String]) {

def boldOn: Terminal = this.copy(bold = bold + 1)

def boldOff: Terminal = this.copy(bold = bold - 1)

def pushColor(c: String): Terminal = this.copy(color = c :: color)

// Only call this when we know there is at least one color on the

// stack

def popColor: Terminal = this.copy(color = color.tail)

def peekColor: Option[String] = this.color.headOption

}

where we use List to represent the stack of color codes. (We could also use
a mutable stack, as working with the state monad ensures the state will be
threaded through our program.) I’ve also defined some convenience methods
to simplify working with the state.

With this in place we can write the rest of the code, which is shown below.
Compared to the previous code I’ve shortened a few method names and
abstracted the escape codes. Remember this code can be directly executed
by scala. Just copy it into a file (e.g. Terminal.scala), add the @main annotation
to go, and run scala Terminal.scala.

//> using dep org.typelevel::cats-core:2.13.0

import cats.data.State

import cats.syntax.all.*

object AnsiCodes {

val csiString: String = "\u001b["

def csi(arg: String, terminator: String): String =

s"${csiString}${arg}${terminator}"

// SGR stands for Select Graphic Rendition.

// All the codes that change formatting are SGR codes.

def sgr(arg: String): String =

csi(arg, "m")

val reset: String = sgr("0")

val boldOn: String = sgr("1")

val boldOff: String = sgr("22")

val red: String = sgr("31")
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val blue: String = sgr("34")

}

final case class Terminal(bold: Int, color: List[String]) {

def boldOn: Terminal = this.copy(bold = bold + 1)

def boldOff: Terminal = this.copy(bold = bold - 1)

def pushColor(c: String): Terminal = this.copy(color = c :: color)

// Only call this when we know there is at least one color on the

// stack

def popColor: Terminal = this.copy(color = color.tail)

def peekColor: Option[String] = this.color.headOption

}

object Terminal {

val empty: Terminal = Terminal(0, List.empty)

}

type Program[A] = State[Terminal, A]

object Program {

def print(output: String): Program[Unit] =

State[Terminal, Unit](

terminal => (terminal, Console.print(output))

)

def bold[A](program: Program[A]): Program[A] =

for {

_ <- State.modify[Terminal] { terminal =>

if terminal.bold == 0 then Console.print(AnsiCodes.boldOn)

terminal.boldOn

}

a <- program

_ <- State.modify[Terminal] { terminal =>

val newTerminal = terminal.boldOff

if terminal.bold == 0 then Console.print(AnsiCodes.boldOff)

newTerminal

}

} yield a

// Helper to construct methods that deal with color

def withColor[A](code: String)(program: Program[A]): Program[A] =

for {

_ <- State.modify[Terminal] { terminal =>

Console.print(code)

terminal.pushColor(code)
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}

a <- program

_ <- State.modify[Terminal] { terminal =>

val newTerminal = terminal.popColor

newTerminal.peekColor match {

case None => Console.print(AnsiCodes.reset)

case Some(c) => Console.print(c)

}

newTerminal

}

} yield a

def red[A](program: Program[A]): Program[A] =

withColor(AnsiCodes.red)(program)

def blue[A](program: Program[A]): Program[A] =

withColor(AnsiCodes.blue)(program)

def run[A](program: Program[A]): A =

program.runA(Terminal.empty).value

}

def go(): Unit = {

val program =

Program.blue(

Program.print("This is blue ") >>

Program.red(Program.print("and this is red ")) >>

Program.bold(Program.print("and this is blue and bold "))

) >>

Program.print("and this is back to normal.\n")

Program.run(program)

}

Having defined the structure of Terminal, the majority of the remaining code
manipulates the Terminal state. Most of the methods on Program have a
common structure that specifies a state change before and after the main
program runs.

Notice we don’t need to implement combinators like flatMap or >> because
we get them from the State monad. This is one of the big benefits of reusing
abstractions like monads: we get a full library of methods without doing
additional work.



356 CHAPTER 14. TAGLESS FINAL INTERPRETERS

14.1.5 Composition and Reasoning

In Section 1.2.1 I argued that the core of functional programming is reasoning
and composition. Both of these are central to this case study. We’ve
explicitly designed the DSL for ease of reasoning. Indeed that’s the whole
point of creating a DSL instead of just spitting control codes at the terminal.
An example is how we paid attention to making sure nested calls work as
we’d expect. Composition comes in at two levels: both our design and
our implementation are compositional. Within the case study we discussed
compositionality in the design. Implementationally, a Program is a composition
of the statemonad and the functions inside the statemonad. The statemonad
provides the sequential flow of the Terminal state, and the functions provide
the domain specific actions.

14.1.6 Codata and Extensibility

We made a seemingly arbitrary choice to use a codata interpreter. Let’s now
explore this choice and its implications.

We described codata as programming to an interface. The interface for
functions is essentially one method: the ability to apply them. This
corresponds to the single interpretation we have for Program: run it and carry
out the effects therein. If we wanted to have multiple interpretations (such as
logging the Terminal state or saving the output to a buffer) we would need to
have a richer interface. In Scala this would be a trait or class exposing more
than one method.

Keen readers will recall that data makes it easy to add new interpreters but
hard to add new operations, while codata makes it easy to add new operations
but hard to add new interpreters. We see that in action here. For example, it’s
trivial to add a new color combinator by defining a method like the below.

def green[A](program: Program[A]): Program[A] =

withColor(AnsiCodes.sgr("32"))(program)

However, changing Program to something that allows more interpretations
requires changing all of the existing code.
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Another advantage of codata is that we can mix in arbitrary other Scala code.
For example, we can use map like shown below.

Program.print("Hello").map(_ => 42)

Using the native representation of programs (i.e. functions) gives us the entire
Scala language for free. In a data representation we have to reify every kind
of expression we wish to support. There is a downside to this as well: we get
Scala semantics whether we like them or not. A codata representation would
not be appropriate if we wanted to make an exotic language that worked in a
different way.

We could factor the interpreter in different ways, and it would still be a codata
interpreter. For example, we could put a method to write to the terminal on
the Terminal type. This would give us a bit more flexibility as changing the
implementation of Terminal could, say, write to a network socket or a terminal
embedded in a browser. We still have the limitation that we cannot create
truly different interpretations, such as serializing programs to disk, with the
codata approach. We’ll address this limitation in the next section where we
look at tagless final.

14.2 Tagless Final Interpreters

We’ll now explore tagless final, an extension to the basic codata interpreter.
In the terminal DSL case study we used an ad‐hoc process to produce the
DSL, fixing problems as we uncovered them. In this section we will be more
systematic, illustrating how we can apply strategies to derive code. This will
in turn make it clearer how we can derive tagless final for the basic codata
interpreter.

We’ll start by being explicit about the role of the different types in the codata
interpreter. Following Section 5.2.1, remember there are three different kinds
of methods in an algebra:

• constructors, with type A => Program,
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• combinators, with type Program => Program, and
• interpreters, with type Program => A.

In the terminal DSL we defined the Program type as

type Program[A] = State[Terminal, A]

There is a single constructor, print, with type String => Program[Unit]. All
of the methods that change the output style, such as bold, red, and blue, are
combinators with the type Program[A] => Program[A]. Finally, there is a single
interpreter, function application, with type Program[A] => A.

In a codata interpreter the available interpretations are limited to the methods
available on the Program type. The terminal DSL represents programs as
functions, and therefore only has a single interpretation available. The key idea
in tagless final, to get around this restriction, is to parameterize the Program

type by the program operations. It’s not entirely clear what this means, so
let’s see a simple example of tagless final to illustrate it.

Our example will be arithmetic expressions. This is not a particularly
compelling example, but it is familiar. This means we can focus on the details
of tagless final without any confusion about the domain. We’ll see a more
compelling example soon.

We’ll start with a data interpreter, convert it to a codata interpreter, and then
apply tagless final. Here’s our program type, defined using an algebraic data
type. We don’t need to explicitly define constructors as they come as part of
the ADT.

enum Expr {

case Add(l: Expr, r: Expr)

case Sub(l: Expr, r: Expr)

case Mul(l: Expr, r: Expr)

case Div(l: Expr, r: Expr)

case Literal(value: Double)

}

We will now define two interpreters, one that evaluates Expr to a Double
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and one that prints them to String. They are implemented using structural
recursion.

object EvalInterpreter {

import Expr.*

def eval(expr: Expr): Double =

expr match {

case Add(l, r) => eval(l) + eval(r)

case Sub(l, r) => eval(l) - eval(r)

case Mul(l, r) => eval(l) * eval(r)

case Div(l, r) => eval(l) / eval(r)

case Literal(value) => value

}

}

object PrintInterpreter {

import Expr.*

def print(expr: Expr): String =

expr match {

case Add(l, r) => s"(${print(l)} + ${print(r)})"

case Sub(l, r) => s"(${print(l)} - ${print(r)})"

case Mul(l, r) => s"(${print(l)} * ${print(r)})"

case Div(l, r) => s"(${print(l)} / ${print(r)})"

case Literal(value) => value.toString

}

}

Finally, let’s see a quick example. We start by defining an expression, in this
case representing 1 + 2.

val onePlusTwo = Expr.Add(Expr.Literal(1), Expr.Literal(2))

Now we can interpret this expression in two different ways.

EvalInterpreter.eval(onePlusTwo)

// res0: Double = 3.0

PrintInterpreter.print(onePlusTwo)

// res1: String = "(1.0 + 2.0)"

We have the usual trade‐off for data: we can easily add more interpreters, but
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we cannot extend the program type with new operations.

Let’s now convert this to codata. The interpreters become methods on the
Expr type.

trait Expr {

def eval: Double

def print: String

}

The constructors and combinators create instances of Expr. We could define
explicit subtypes of Expr but here I’ve used anonymous subtypes to keep the
code more compact. The implementation uses structural corecursion.

trait Expr {

def eval: Double

def print: String

def +(that: Expr): Expr = {

val self = this

new Expr {

def eval: Double = self.eval + that.eval

def print: String = s"(${self.print} + ${that.print})"

}

}

def -(that: Expr): Expr = {

val self = this

new Expr {

def eval: Double = self.eval - that.eval

def print: String = s"(${self.print} - ${that.print})"

}

}

def *(that: Expr): Expr = {

val self = this

new Expr {

def eval: Double = self.eval * that.eval

def print: String = s"(${self.print} * ${that.print})"

}

}
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def /(that: Expr): Expr = {

val self = this

new Expr {

def eval: Double = self.eval / that.eval

def print: String = s"(${self.print} / ${that.print})"

}

}

}

object Expr {

def literal(value: Double): Expr =

new Expr {

def eval: Double = value

def print: String = value.toString

}

}

Now we can create the same example as before

val onePlusTwo = Expr.literal(1) + Expr.literal(2)

and interpret it as before

onePlusTwo.eval

// res4: Double = 3.0

onePlusTwo.print

// res5: String = "(1.0 + 2.0)"

As expected we have the opposite extensibility. We can add new program
operations such as sin.

def sin(expr: Expr): Expr = {

new Expr {

def eval: Double = Math.sin(expr.eval)

def print: String = s"sin(${expr.print})"

}

}

However we are restricted to the two interpretations we have defined on Expr,
eval and print.
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We now need to introduce a bit of terminology, so we can talk more
precisely. We will use the term program algebras to refer to constructors and
combinators, as they are the portion of the algebra used to create programs.
We must also distinguish between programs and the program type. In the
example above, Expr is the program type. A program is an expression that
produces a value of the program type.

The core of tagless final is to:

1. define program algebras parameterized by their program type, and
2. parameterize programs by the program algebras they depend on.

For the example we have just seen we could define a program algebra as
follows:

trait Arithmetic[Expr] {

def +(l: Expr, r: Expr): Expr

def -(l: Expr, r: Expr): Expr

def *(l: Expr, r: Expr): Expr

def /(l: Expr, r: Expr): Expr

def literal(value: Double): Expr

}

Notice how it is parameterized by a type Expr. This is the program type.

Now we can create a program. Here’s the same example we saw above, but
written in tagless final style.

def onePlusTwo[Expr](arithmetic: Arithmetic[Expr]): Expr =

arithmetic.+(arithmetic.literal(1.0), arithmetic.literal(2.0))

Notice the distinction between a program and the program type: a program
creates a value of the program type, but a program is not itself of the program
type. In tagless final a program is a function from program algebras to the
program type.

We can finish our example by creating an instance of Arithmetic.
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object DoubleArithmetic extends Arithmetic[Double] {

def +(l: Double, r: Double): Double =

l + r

def -(l: Double, r: Double): Double =

l - r

def *(l: Double, r: Double): Double =

l * r

def /(l: Double, r: Double): Double =

l / r

def literal(value: Double): Double =

value

}

Now we can run our example.

onePlusTwo(DoubleArithmetic)

// res7: Double = 3.0

Tagless final gives us both forms of extensibility. We can add a new interpreter.

object PrintArithmetic extends Arithmetic[String] {

def +(l: String, r: String): String =

s"($l + $r)"

def -(l: String, r: String): String =

s"($l - $r)"

def *(l: String, r: String): String =

s"($l * $r)"

def /(l: String, r: String): String =

s"($l / $r)"

def literal(value: Double): String =

value.toString

}

This works in the same way.

onePlusTwo(PrintArithmetic)

// res8: String = "(1.0 + 2.0)"

We can also define new program algebras
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trait Trigonometry[Expr] {

def sin(expr: Expr): Expr

}

and use them in a program.

def sinOnePlusTwo[Expr](

arithmetic: Arithmetic[Expr],

trigonometry: Trigonometry[Expr]

): Expr =

trigonometry.sin(onePlusTwo(arithmetic))

Notice that we are using composition here; the program sinOnePlusTwo reuses
onePlusTwo.

A few notes before we move on.

In this example the program type is the same as the type we interpret to. We
can use Double as the program type when we want to interpret to Double, and
likewisewith String. This is usually not the case. It’s just a coincidence of using
arithmetic that we don’t need any additional information to calculate the final
result, and hence the program type and interpreter result type are the same.

There is quite a high notational overhead of tagless final, compared to the data
and codata interpreters. We’ll address this later, and end up with an encoding
of tagless final in Scala that looks like ordinary code. First, however, we’ll
introduce a more compelling example: cross‐platform user interfaces.

14.3 Algebraic User Interfaces

Changing the interpretation of our terminal programs is more a theoretical
than a practical problem. While it is true that different interpretations, such as
saving to a text buffer, or tracing the state changes, will have niche uses, the
vast majority of the time we’ll use the default interpretation. A much more
motivating example is a cross‐platform user interface library. Frameworks
such as Flutter, React Native, and Capacitor derive a lot of their value by
allowing programmers to define a single interface that works across web

https://flutter.dev/
https://reactnative.dev/
https://capacitorjs.com/
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and mobile. We will build such a library here, but our ambitions are a bit
reduced: we will create a terminal backend but leave other backends up to
your inspiration and perspiration.

Broadly speaking, there are two kinds of user interfaces. When operating,
say, a digital musical instrument, we require a continuous stream of values
from the user interface. In contrast, when working with a form we only
require the values once, when the form is submitted. Modelling a continuous
stream of values is certainly doable (see functional reactive programming) but
it adds inessential complexity. Therefore we will stick with the simpler kind of
interface where the user submits values once.

We’ll consider each of constructors, combinators, and interpreters in turn.

Constructors will define the atomic units of user interface for our library. The
granularity we use here trades off expressivity and convenience. At the very
lowest level we could work with vertex buffers and the like, which would
make our library a general purpose graphics library. This gives us the ultimate
flexibility but is far too low level for this case study. At a higher level we
might think of atomic units as user interface elements like labels, buttons, text
inputs, and so on. This is the level at which HTML operates. At this level
we still usually require multiple elements to construct a complete control. For
example, in HTML what is conceptually a single form field will often consist
of separate DOM elements for the label, the input control, and the control
to show validation errors, plus some Javascript to add interactivity. We will
go even higher level. Our atomic elements will specify the kind of user input
we wants, such as a choice between a number of elements, and leave it up
to the interpreter to decide how to render this using the platform’s available
controls. For example, we could render a one‐of‐many control using either
radio buttons or a dropdown, or choose between the two depending on the
number of choices. We’ll also add labels, and optional validation rules, to each
element. Let’s model two such elements, to illustrate the idea.

type Validation[A] = A => Either[String, A]

// The validation rule that always succeeds

def succeed[A](value: A): Either[String, A] = Right(value)
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trait Controls[Ui[_]] {

def textInput(

label: String,

placeholder: String,

validation: Validation[String] = succeed

): Ui[String]

def choice[A](label: String, options: Seq[(String, A)]): Ui[A]

}

Here we defined two controls:

• textInput, which creates a text input where the user can enter any text
that passes the validation rule; and

• choice, which gives the user a choice of one of the given items.

Notice how our modelling decisions restrict our expressivity. For example,
textInput has a placeholder, which is displayed before the user enters
input, but does not have a default value. By reducing expressivity we gain
convenience. If the user’s requirements fit our model it is very easy to create
controls. Also notice that we don’t have any way to control the appearance of
controls. This is deliberate; we are pushing that concern into the interpreters.

These controls generate an element of the program type Ui. Each particular
interpreter, corresponding to a backend, will choose a concrete type for Ui
corresponding to the needs of the user interface toolkit it is working with.

These two constructors are enough to illustrate the idea, sowewill move on to
combinators. In the context of user interfaces the most common combinators
will specify the layout of elements. As with the constructors there are a
number of possible designs: we could allow a lot of precision in layout, as
CSS does for HTML, or we could provide a few pre‐defined layouts, or we
could even push layout into the interpreter. In keeping with our design for
the constructors, and with the need to keep things simple, we will go with
a very high‐level design. Our single combinator, and, only specifies that two
elements should occur together. It leaves it up to the interpreter how this
should be rendered on the screen.
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trait Layout[Ui[_]] {

def and[A, B](first: Ui[A], second: Ui[B]): Ui[(A, B)]

}

You might have noticed that and is another name for product from Semigroupal

, which we encountered in Section 11.1. It has exactly the same signature,
apart from the name, and it represents the same concept as applied to user
interfaces.

At this point we have defined two program algebras, Controls and Layout,
and shown examples of both constructors and combinators. The next step
is to create an interpreter. Here we are going to create an extremely simple
interpreter to illustrate the idea and to allow us to showhow towrite programs
using our algebras. More full featured interpreters are certainly possible, but
they don’t introduce any new concepts and take considerably more code.

Our interpreter will use the Console IO features of the standard library to
interact with the user.

import cats.syntax.all.*

import scala.io.StdIn

import scala.util.Try

type Program[A] = () => A

object Simple extends Controls[Program], Layout[Program] {

def and[A, B](first: Program[A], second: Program[B]): Program[(A, B)

] =

// Use Cats Semigroupal for Function0

(first, second).tupled

def textInput(

label: String,

placeholder: String,

validation: Validation[String] = succeed

): Program[String] =

() => {

def loop(): String = {

println(s"$label (e.g. $placeholder):")

val input = StdIn.readLine
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validation(input).fold(

msg => {

println(msg)

loop()

},

value => value

)

}

loop()

}

def choice[A](label: String, options: Seq[(String, A)]): Program[A]

=

() => {

def loop(): A = {

println(label)

options.zipWithIndex.foreach { case ((desc, _), idx) =>

println(s"$idx: $desc")

}

Try(StdIn.readInt).fold(

_ => {

println("Please enter a valid number.")

loop()

},

idx => {

if idx >= 0 && idx < options.size then options(idx)(1)

else {

println("Please enter a valid number.")

loop()

}

}

)

}

loop()

}

}

Now we can implement a simple example.
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def quiz[Ui[_]](

controls: Controls[Ui],

layout: Layout[Ui]

): Ui[(String, Int)] =

layout.and(

controls.textInput("What is your name?", "John Doe"),

controls.choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

)

We can run this example with code like the following.

val (name, rating) = quiz(Simple, Simple)()

println(s"Hello $name!")

println(s"You gave tagless final a rating of $rating.")

Here is an example of interaction.

What is your name? (e.g. John Doe):

Noel Welsh

Tagless final is the greatest thing ever

0: Strongly disagree

1: Disagree

2: Neutral

3: Agree

4: Strongly agree

4

Hello Noel Welsh!

You gave tagless final a rating of 5.

We have a basic example working, but it is not very nice to work with. The
way in which we write code in tagless final style is very convoluted compared
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to normal code. In the next section we’ll see a different encoding of tagless
final that gives the user a much better experience.

14.4 A Better Encoding

The basic implementation of tagless final has quite a poor developer
experience. Consider the refactoring of our example below.

def name[Ui[_]](controls: Controls[Ui]): Ui[String] =

controls.textInput("What is your name?", "John Doe")

def rating[Ui[_]](controls: Controls[Ui]): Ui[Int] =

controls.choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

def quiz[Ui[_]](

controls: Controls[Ui],

layout: Layout[Ui]

): Ui[(String, Int)] =

layout.and(name(controls), rating(controls))

This style of code quickly becomes tedious to write. The method signatures
are quite involved, and passing the program algebras from method to method
is annoying busy work.

An improvement is to make the program algebras given instances. If we define
accessors

object Controls {

def apply[Ui[_]](using controls: Controls[Ui]): Controls[Ui] =

controls
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}

object Layout {

def apply[Ui[_]](using layout: Layout[Ui]): Layout[Ui] =

layout

}

we can then write

def name[Ui[_]: Controls]: Ui[String] =

Controls[Ui].textInput("What is your name?", "John Doe")

def rating[Ui[_]: Controls]: Ui[Int] =

Controls[Ui].choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

def quiz[Ui[_]: Controls: Layout]: Ui[(String, Int)] =

Layout[Ui].and(name, rating)

This is the encoding of tagless final that is common in the Scala community,
but there is still a lot of notational overhead for the developer who has to
write this code. We can use Scala language features to reduce the overhead
of writing code using a tagless final style to the point where is a simple as
standard code.

We’ll use a combination of five techniques:

1. creating a base type for program algebras;
2. making the program type a type member;
3. defining a type for programs;
4. defining constructors on companion objects; and
5. using extension methods for combinators.
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This is quite involved, but each step is relatively simple. Let’s see how it works.

Our first step is to create a base type for algebras. This is just a trait like

trait Algebra[Ui[_]]

Our program algebras extend this trait.

trait Controls[Ui[_]] extends Algebra[Ui[_]]{

def textInput(

label: String,

placeholder: String,

validation: Validation[String] = succeed

): Ui[String]

def choice[A](label: String, options: Seq[(String, A)]): Ui[A]

}

trait Layout[Ui[_]] extends Algebra[Ui[_]]{

def and[A, B](first: Ui[A], second: Ui[B]): Ui[(A, B)]

}

Now we make the program type a type member.

trait Algebra {

type Ui[_]

}

trait Controls extends Algebra {

def textInput(

label: String,

placeholder: String,

validation: Validation[String] = succeed

): Ui[String]

def choice[A](label: String, options: Seq[(String, A)]): Ui[A]

}

trait Layout extends Algebra {

def and[A, B](first: Ui[A], second: Ui[B]): Ui[(A, B)]

}



14.4. A BETTER ENCODING 373

At this point we’ve made sufficient changes that our example program is
meaningfully changed. Our starting point was

def quiz[Ui[_]: Controls: Layout](

controls: Controls[Ui],

layout: Layout[Ui]

): Ui[(String, Int)] =

Layout[Ui].and(

Controls[Ui].textInput("What is your name?", "John Doe"),

Controls[Ui].choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

)

With the changes above we can instead write

def quiz(using alg: Controls & Layout): alg.Ui[(String, Int)] =

alg.and(

alg.textInput("What is your name?", "John Doe"),

alg.choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

)

The key changes are:

1. the program algebras are a single parameter to the method, which is
possible because they extend a common base type;
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2. the Ui type parameter is no longer needed, as it has become a type
member; and

3. we must now use a dependent method to specify the result type.

Our next step is to define a type for programs. Programs are conceptually
functions from an algebra to a program type, so we can define such a type.

trait Program[-Alg <: Algebra, A] {

def apply(alg: Alg): alg.Ui[A]

}

Pay particular attention to the result type, alg.Ui[A]. As Program requires a
dependent method type it cannot be a standard function.

The example now becomes

val quiz =

new Program[Controls & Layout, (String, Int)] {

def apply(alg: Controls & Layout) =

alg.and(

alg.textInput("What is your name?", "John Doe"),

alg.choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

)

}

Programs are now values instead of methods. Notice that first type parameter
of Program declares all the program algebras the program requires. It’s still quite
involved to write this code, though we can simplify it a bit by using the single
abstract method technique, which means a traitwith a single abstract method
(like Program) can be implemented with a function.
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val quiz: Program[Controls & Layout, (String, Int)] =

(alg: Controls & Layout) =>

alg.and(

alg.textInput("What is your name?", "John Doe"),

alg.choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

)

Programs‐as‐values is the key that unlocks the next two improvements. The
first is to define constructors as methods on companion objects.

object Controls {

def textInput(

label: String,

placeholder: String,

validation: Validation[String] = succeed

): Program[Controls, String] =

alg => alg.textInput(label, placeholder, validation)

def choice[A](

label: String,

options: Seq[(String, A)]

): Program[Controls, A] =

alg => alg.choice(label, options)

}

This works because methods can now return programs.

The second and final improvement is to define extension methods for
combinators. Since we only have one combinator, and, that means a single
extension method.
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extension [Alg <: Algebra, A](p: Program[Alg, A]) {

def and[Alg2 <: Algebra, B](

second: Program[Alg2, B]

): Program[Alg & Alg2 & Layout, (A, B)] =

alg => alg.and(p(alg), second(alg))

}

Pay particular attention to how the types are defined for this extension
method. We define the extension on a Program requiring algebras Alg. The
parameter to the and method is a Program requiring algebras Alg2. The result
requires algebras Alg & Alg2 & Layout, which is the union of the algebras
required by the two programs and the Layout algebra. In this way the
combinators build up the algebras required for the program.

The net result is that users can write

val quiz =

Controls

.textInput("What is your name?", "John Doe")

.and(

Controls.choice(

"Tagless final is the greatest thing ever",

Seq(

"Strongly disagree" -> 1,

"Disagree" -> 2,

"Neutral" -> 3,

"Agree" -> 4,

"Strongly agree" -> 5

)

)

)

which looks just like normal code. The type of quiz shows that type inference
has correctly inferred all the needed program algebras.

quiz

// res0: Program[Controls & Layout, Tuple2[String, Int]] = repl.

MdocSession$MdocApp$$Lambda$21536/0x00000008051c9840@3beb26c4

This encoding requires more work from the library developer. However this
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is a one off cost, and result is that library users write much simpler code. For
most applications of tagless final I think this is an appropriate trade off.

14.5 Conclusions

In this chapter we looked at codata interpreters, and their extension to tagless
final. Tagless final is particularly interesting because it solves the expression
problem, allowing us to extend both the operations a program can perform
and the interpretations of that program.

Our exploration of tagless final nicely illustrates the distinction between
theory and craft introduced in Section 1.1. We saw two different encoding
of tagless final in Scala (three, if we count using context bounds as a different
encoding). They are both tagless final at the theory level, but are very different
to implement or use as a programmer. The “standard” encoding is relatively
easy to implement for the library author, but tedious and potentially confusing
for the user. The improved encoding places more work on the library author,
but the user writes code in a natural style.

Tagless final is very powerful and it can be tempting to use it everywhere. I
want to caution against this urge. Tagless final can cause problems, both for
the author and the user. From the user’s point of view everything works fine
until they make a mistake. Then the errors can be confusing. Consider this
code, where we have missed a parameter to and.

Controls.textInput("Name", "John Doe").and()

// error:

// missing argument for parameter second of method and in object

MdocApp: (second: repl.MdocSession.MdocApp.Program[Alg2, B]):

// repl.MdocSession.MdocApp.Program[

// Alg & Alg2 & repl.MdocSession.MdocApp.Layout, (String, B)]

// Controls.textInput("Name", "John Doe").and()

// ^^^

The error message does tell us the problem, but it exposes a lot of the internal
machinery that the user is not normally exposed to, and hence they’ll probably
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have difficult understanding. A straightforward data or codata interpreter
does not have this problem.

From the library author’s point of view, it is a lot more work to create tagless
final code. It can also be difficult to onboard new developers to this code, as
the techniques are not familiar to most.

As always, the applicability of tagless final comes down to the context in which
it is used. In cases where the extensibility is truly justified it is a powerful tool.
In other cases it just introduces unwarranted complexity.

The term “expression problem” was first introduced in an email by Phil Wadler
[Wadler 1998], but there are much earlier sources that discuss the same issue.
One example is [Cook 1990]. Tagless final was first introduced in [Carette et
al. 2009] and expanded on in [Kiselyov 2012]. It is just one of many solutions
that have been proposed to the expression problem. I’m no expert on the
wider field of solutions to the expression problem, but of the papers I’ve read
the ones I’d like to highlight object algebras [Oliveira and Cook 2012] and
data types à la carte [Swierstra 2008]. Object algebras are, in all essentials,
the same as tagless final. They were developed in object‐oriented languages
rather than functional programming languages, making an interesting case of
convergent evolution in two distinct, but connected, fields of research. The
object algebras paper is also a good read for a more formal, if brief, discussion
of the theory behind the concepts we’ve been dealing with. Data types à la
carte is a data, rather than codata, approach to the expression problem, and so
makes an interesting contrast to tagless final. I find tagless final much simpler,
sowe have not explored data types à la carte in this book. Another noteworthy
paper is [Gibbons and Wu 2014], which discuss the duality between data and
codata and its implication for embedded domain specific languages.

Tagless final was introduced using Haskell as the implementation language.
The standard encoding in Scala is a direct translation of the Haskell
implementation. The improved Scala encoding is my own creation. The use
of the single abstract method shortcut was suggested by Jakub Kozłowski.



Chapter 15

Optimizing Interpreters and
Compilers

In a previous chapter we introduced interpreters as a key strategy in functional
programming. In many cases simple structurally recursive interpreters are
sufficient. However, in a few cases we need more performance than they can
offer so in this chapter we’ll turn to optimization. This is a huge subject, which
we cannot hope to cover in just one book chapter. Instead we’ll focus on two
techniques that I believe use key ideas found in more complex techniques:
algebraic manipulation and compilation to a virtual machine.

We’ll start looking at algebraic manipulation, returning to the regular
expression example we used earlier. We’ll then move to virtual machine, this
time using a simple arithmetic interpreter example. We’ll see how we can
compile code to a stack machine, and then look at some of the optimizations
that are available when we use a virtual machine.

15.1 Algebraic Manipulation

Reifying a program represents it as a data structure. We can rewrite this
data structure to several ends: as a way to simplify and therefore optimize
the program being interpreted, but also as a general form of computation

379
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implementing the interpreter. In this section we’re going to return to our
regular expression example, and show how rewriting can be used perform
both of these tasks.

We will use a technique known as regular expression derivatives. Regular
expression derivatives provide a simple way to match a regular expression
against input (with the correct semantics for union, which you may recall
we didn’t deal with in the previous chapter). The derivative of a regular
expression, with respect to a character, is the regular expression that remains
after matching that character. Say we have the regular expression that
matches the string "osprey". In our library this would be Regexp("osprey"). The
derivative with respect to the character o is Regexp("sprey"). In other words
it’s the regular expression that is looking for the string "sprey". The derivative
with respect to the character a is the regular expression that matches nothing,
which is written Regexp.empty in our library. To take a more complicated
example, the derivative with respect to c of Regexp("cats").repeat is Regexp
("ats")++ Regexp("cats").repeat. This indicates we’re looking for the string
"ats" followed by zero or more repeats of "cats"

All we need to do to determine if a regular expression matches some input is
to calculate successive derivatives with respect to the characters in the input
in the order in which they occur. If the resulting regular expression matches
the empty string then we have a successful match. Otherwise it has failed to
match.

To implement this algorithm we need three things:

1. an explicit representation of the regular expression that matches the
empty string;

2. a method that tests if a regular expression matches the empty string;
and

3. a method that computes the derivative of a regular expression with
respect to a given character.

Our starting point is the basic reified interpreter we developed in the previous
chapter. This is the simplest code and therefore the easiest to work with.
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enum Regexp {

def ++(that: Regexp): Regexp =

Append(this, that)

def orElse(that: Regexp): Regexp =

OrElse(this, that)

def repeat: Regexp =

Repeat(this)

def `*` : Regexp = this.repeat

def matches(input: String): Boolean = {

def loop(regexp: Regexp, idx: Int): Option[Int] =

regexp match {

case Append(left, right) =>

loop(left, idx).flatMap(i => loop(right, i))

case OrElse(first, second) =>

loop(first, idx).orElse(loop(second, idx))

case Repeat(source) =>

loop(source, idx)

.flatMap(i => loop(regexp, i))

.orElse(Some(idx))

case Apply(string) =>

Option.when(input.startsWith(string, idx))(idx + string.size

)

case Empty =>

None

}

// Check we matched the entire input

loop(this, 0).map(idx => idx == input.size).getOrElse(false)

}

case Append(left: Regexp, right: Regexp)

case OrElse(first: Regexp, second: Regexp)

case Repeat(source: Regexp)

case Apply(string: String)

case Empty

}

object Regexp {

val empty: Regexp = Empty
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def apply(string: String): Regexp =

Apply(string)

}

Wewant to explicitly represent the regular expression that matches the empty
string, as it plays an important part in the algorithms that follow. This is simple
to do: we just reify it and adjust the constructors as necessary. I’ve called this
case “epsilon”, which matches the terminology used in the literature.

enum Regexp {

// ...

case Epsilon

}

object Regexp {

val epsilon: Regexp = Epsilon

def apply(string: String): Regexp =

if string.isEmpty() then Epsilon

else Apply(string)

}

Next up we will create a predicate that tells us if a regular expression matches
the empty string. Such a regular expression is called “nullable”. The code is so
simple it’s easier to read it than try to explain it in English.

def nullable: Boolean =

this match {

case Append(left, right) => left.nullable && right.nullable

case OrElse(first, second) => first.nullable || second.nullable

case Repeat(source) => true

case Apply(string) => false

case Epsilon => true

case Empty => false

}

Nowwe can implement the actual regular expression derivative. It consists of
two parts: the method to calculate the derivative which in turn depends on a
method that handles a nullable regular expression. Both parts are quite simple
so I’ll give the code first and then explain the more complicated parts.
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def delta: Regexp =

if nullable then Epsilon else Empty

def derivative(ch: Char): Regexp =

this match {

case Append(left, right) =>

(left.derivative(ch) ++ right).orElse(left.delta ++ right.

derivative(ch))

case OrElse(first, second) =>

first.derivative(ch).orElse(second.derivative(ch))

case Repeat(source) =>

source.derivative(ch) ++ this

case Apply(string) =>

if string.size == 1 then

if string.charAt(0) == ch then Epsilon

else Empty

else if string.charAt(0) == ch then Apply(string.tail)

else Empty

case Epsilon => Empty

case Empty => Empty

}

I think this code is reasonably straightforward, except perhaps for the cases
for OrElse and Append. The case for OrElse is trying to match both regular
expressions simultaneously, which gets around the problem in our earlier
implementation. The definition of nullable ensures we match if either side
matches. The case for Append is attempting to match the left side if it is still
looking for characters; otherwise it is attempting to match the right side.

With this we redefine matches as follows.

def matches(input: String): Boolean = {

val r = input.foldLeft(this){ (regexp, ch) => regexp.derivative(ch)

}

r.nullable

}

We can show the code works as expected.
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val regexp = Regexp("Sca") ++ Regexp("la") ++ Regexp("la").repeat

regexp.matches("Scala")

// res1: Boolean = true

regexp.matches("Scalalalala")

// res2: Boolean = true

regexp.matches("Sca")

// res3: Boolean = false

regexp.matches("Scalal")

// res4: Boolean = false

It also solves the problem with the earlier implementation.

Regexp("cat").orElse(Regexp("cats")).matches("cats")

// res5: Boolean = true

This is a nice result for a very simple algorithm. However there is a problem.
You might notice that regular expression matching can become very slow. In
fact we can run out of heap space trying a simple match like

Regexp("cats").repeat.matches("catscatscatscats")

// java.lang.OutOfMemoryError: Java heap space

This happens because the derivative of the regular expression can grow very
large. Look at this example, after only a few derivatives.

Regexp("cats").repeat.derivative('c').derivative('a').derivative('t')

// res6: Regexp = OrElse(OrElse(Append(Apply(s),Repeat(Apply(cats))),

Append(Empty,Append(Empty,Repeat(Apply(cats))))),OrElse(Append(

Empty,Append(Empty,Repeat(Apply(cats)))),Append(Empty,OrElse(

Append(Empty,Repeat(Apply(cats))),Append(Empty,Append(Empty,

Repeat(Apply(cats))))))))

The root cause is that the derivative rules for Append, OrElse, and Repeat can
produce a regular expression that is larger than the input. However this output
often contains redundant information. In the example above there aremultiple
occurrences of Append(Empty, ...), which is equivalent to just Empty. This is
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similar to adding zero or multiplying by one in arithmetic, and we can use
similar algebraic simplification rules to get rid of these unnecessary elements.

We can implement this simplification in one of two ways: we can make
simplification a separate method that we apply to an existing Regexp, or we
can do the simplification as we construct the Regexp. I’ve chosen to do the
latter, modifying ++, orElse, and repeat as follows:

def ++(that: Regexp): Regexp = {

(this, that) match {

case (Epsilon, re2) => re2

case (re1, Epsilon) => re1

case (Empty, _) => Empty

case (_, Empty) => Empty

case _ => Append(this, that)

}

}

def orElse(that: Regexp): Regexp = {

(this, that) match {

case (Empty, re) => re

case (re, Empty) => re

case _ => OrElse(this, that)

}

}

def repeat: Regexp = {

this match {

case Repeat(source) => this

case Epsilon => Epsilon

case Empty => Empty

case _ => Repeat(this)

}

}

With this small change in‐place, our regular expressions stay at a reasonable
size for any input.

Regexp("cats").repeat.derivative('c').derivative('a').derivative('t')

// res8: Regexp = Append(Apply(s),Repeat(Apply(cats)))

Here’s the final code.
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enum Regexp {

def ++(that: Regexp): Regexp = {

(this, that) match {

case (Epsilon, re2) => re2

case (re1, Epsilon) => re1

case (Empty, _) => Empty

case (_, Empty) => Empty

case _ => Append(this, that)

}

}

def orElse(that: Regexp): Regexp = {

(this, that) match {

case (Empty, re) => re

case (re, Empty) => re

case _ => OrElse(this, that)

}

}

def repeat: Regexp = {

this match {

case Repeat(source) => this

case Epsilon => Epsilon

case Empty => Empty

case _ => Repeat(this)

}

}

def `*` : Regexp = this.repeat

/** True if this regular expression accepts the empty string */

def nullable: Boolean =

this match {

case Append(left, right) => left.nullable && right.nullable

case OrElse(first, second) => first.nullable || second.nullable

case Repeat(source) => true

case Apply(string) => false

case Epsilon => true

case Empty => false

}

def delta: Regexp =

if nullable then Epsilon else Empty
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def derivative(ch: Char): Regexp =

this match {

case Append(left, right) =>

(left.derivative(ch) ++ right).orElse(left.delta ++ right.

derivative(ch))

case OrElse(first, second) =>

first.derivative(ch).orElse(second.derivative(ch))

case Repeat(source) =>

source.derivative(ch) ++ this

case Apply(string) =>

if string.size == 1 then

if string.charAt(0) == ch then Epsilon

else Empty

else if string.charAt(0) == ch then Apply(string.tail)

else Empty

case Epsilon => Empty

case Empty => Empty

}

def matches(input: String): Boolean = {

val r = input.foldLeft(this){ (regexp, ch) => regexp.derivative(ch

) }

r.nullable

}

case Append(left: Regexp, right: Regexp)

case OrElse(first: Regexp, second: Regexp)

case Repeat(source: Regexp)

case Apply(string: String)

case Epsilon

case Empty

}

object Regexp {

val empty: Regexp = Empty

val epsilon: Regexp = Epsilon

def apply(string: String): Regexp =

if string.isEmpty() then Epsilon

else Apply(string)

}

Notice that our implementation is tail recursive. The only “looping” is the
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call to the tail recursive foldLeft in matches. No continuation‐passing style
transform is necessary here! (Calculating the derivatives is not tail recursive
but it very unlikely this would overflow the stack.) This may not be surprising
if you’ve studied theory of computation. A key result from that field is the
equivalence between regular expressions and finite state machines. If you
know this you may have found it a bit surprising we had to use a stack
at all in our prior implementations. But hold on a minute. If we think
carefully about regular expression derivatives we’ll see that they actually are
continuations! A continuation means “what comes next”, which is exactly
what a regular expression derviative defines for a regular expression and a
particular character. So our interpreter does use CPS, but reified as a regular
expression not a function, and derived through a different route.

Continuations reify control‐flow. That is, they give us an explicit
representation of how control moves through our program. This means
we can change the control flow by applying continuations in a different
order. Let’s make this concrete. A regular expression derivative represents
a continuation. So imagine we’re running a regular expression on data that
arrives asynchronously; we want to match as much data as we have available,
and then suspend the regular expression and continue matching when more
data arrives. This is trival. When we run out of data we just store the
current derivative. When more data arrives we continue processing using the
derivative we stored. Here’s an example.

Start by defining the regular expression.

val cats = Regexp("cats").repeat

Process the first piece of data and store the continuation.

val next = "catsca".foldLeft(cats){ (regexp, ch) => regexp.derivative(

ch) }

Continue processing when more data arrives.

"tscats".foldLeft(next){ (regexp, ch) => regexp.derivative(ch) }
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Notice that we could just as easily go back to a previous regular expression if
we wanted to. This would give us backtracking. We don’t need backtracking
for regular expressions, but for more general parsers we do. In fact with
continuations we can define any control flow we like, including backtracking
search, exceptions, cooperative threading, and much much more.

In this section we’ve also seen the power of rewrites. Regular expression
matching using derivatives works solely by rewriting the regular expression.
We also used rewriting to simplify the regular expressions, avoiding the
explosion in size that derivatives can cause. The abstract type of these
methods is Program => Program so we might think they are combinators.
However the implementation uses structural recursion and they serve the role
of interpreters. Rewrites are the one place where the types alone can lead us
astray.

I hope you find regular expression derivatives interesting and a bit surprising. I
certainly did when I first read about them. There is a deeper point here, which
runs throughout the book: most problems have already been solved and we
can save a lot of time if we can just find those solutions. I elevate this idea
of the status of a strategy, which I call read the literature for reasons that will
soon be clear. Most developers read the occasional blog post andmight attend
a conference from time to time. Many fewer, I think, read academic papers.
This is unfortunate. Part of the fault is with the academics: theywrite in a style
that is hard to read without some practice. However I think many developers
think the academic literature is irrelevant. One of the goals of this book is to
show the relevance of academic work, which is why each chapter conclusion
sketches the development of its main ideas with links to relevant papers.

15.2 From Continuations to Stacks

In the previous section we explored regular expression derivatives. We saw
that they are continuations, but reified as data structures rather than the
functions we used when we first worked with continuation‐passing style. In
this section we’ll reify continuations‐as‐functions as data. In doing so we’ll
find continuations implicitly encode a stack structure. Explicitly reifying this
structure is a step towards implementing a stack machine.
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We’ll start with the CPSed regular expression interpreter (not using
derivatives), shown below.

enum Regexp {

def ++(that: Regexp): Regexp =

Append(this, that)

def orElse(that: Regexp): Regexp =

OrElse(this, that)

def repeat: Regexp =

Repeat(this)

def `*` : Regexp = this.repeat

def matches(input: String): Boolean = {

// Define a type alias so we can easily write continuations

type Continuation = Option[Int] => Option[Int]

def loop(regexp: Regexp, idx: Int, cont: Continuation): Option[Int

] =

regexp match {

case Append(left, right) =>

val k: Continuation = _ match {

case None => cont(None)

case Some(i) => loop(right, i, cont)

}

loop(left, idx, k)

case OrElse(first, second) =>

val k: Continuation = _ match {

case None => loop(second, idx, cont)

case some => cont(some)

}

loop(first, idx, k)

case Repeat(source) =>

val k: Continuation =

_ match {

case None => cont(Some(idx))

case Some(i) => loop(regexp, i, cont)

}
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loop(source, idx, k)

case Apply(string) =>

cont(Option.when(input.startsWith(string, idx))(idx + string

.size))

case Empty =>

cont(None)

}

// Check we matched the entire input

loop(this, 0, identity).map(idx => idx == input.size).getOrElse(

false)

}

case Append(left: Regexp, right: Regexp)

case OrElse(first: Regexp, second: Regexp)

case Repeat(source: Regexp)

case Apply(string: String)

case Empty

}

object Regexp {

val empty: Regexp = Empty

def apply(string: String): Regexp =

Apply(string)

}

To reify the continuations we can apply the same recipe as before: we create
a case for each place in which we construct a continuation. In our interpreter
loop this is for Append, OrElse, and Repeat. We also construct a continuation
using the identity function when we first call loop, which represents the
continuation to call when the loop has finished. This gives us four cases.

enum Continuation {

case AppendK

case OrElseK

case RepeatK

case DoneK

}

What data does each case next to hold? Let’s let look at the structure of the
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cases within the CPS interpreter. The case for Append is typical.

case Append(left, right) =>

val k: Cont = _ match {

case None => cont(None)

case Some(i) => loop(right, i, cont)

}

loop(left, idx, k)

The continuation k refers to the Regexp right, the method loop, and the
continuation cont. Our reification should reflect this by holding the same data.
If we consider all the cases we end up with the following definition. Notice
that I implemented an apply method so we can still call these continuations
like a function.

type Loop = (Regexp, Int, Continuation) => Option[Int]

enum Continuation {

case AppendK(right: Regexp, loop: Loop, next: Continuation)

case OrElseK(second: Regexp, index: Int, loop: Loop, next:

Continuation)

case RepeatK(regexp: Regexp, index: Int, loop: Loop, next:

Continuation)

case DoneK

def apply(idx: Option[Int]): Option[Int] =

this match {

case AppendK(right, loop, next) =>

idx match {

case None => next(None)

case Some(i) => loop(right, i, next)

}

case OrElseK(second, index, loop, next) =>

idx match {

case None => loop(second, index, next)

case some => next(some)

}

case RepeatK(regexp, index, loop, next) =>

idx match {

case None => next(Some(index))
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case Some(i) => loop(regexp, i, next)

}

case DoneK =>

idx

}

}

Now we can rewrite the interpreter loop using the Continuation type.

def matches(input: String): Boolean = {

def loop(

regexp: Regexp,

idx: Int,

cont: Continuation

): Option[Int] =

regexp match {

case Append(left, right) =>

val k: Continuation = AppendK(right, loop, cont)

loop(left, idx, k)

case OrElse(first, second) =>

val k: Continuation = OrElseK(second, idx, loop, cont)

loop(first, idx, k)

case Repeat(source) =>

val k: Continuation = RepeatK(regexp, idx, loop, cont)

loop(source, idx, k)

case Apply(string) =>

cont(Option.when(input.startsWith(string, idx))(idx + string.

size))

case Empty =>

cont(None)

}

// Check we matched the entire input

loop(this, 0, DoneK)

.map(idx => idx == input.size)

.getOrElse(false)

}
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The point of this construction is that we’ve reified the stack: it’s now explicitly
represented as the next field in each Continuation. The stack is a last‐in
first‐out (LIFO) data structure: the last element we add to the stack is the
first element we use. (This is exactly the same as efficient use of a List.)
We construct continuations by adding elements to the front of the existing
continuation, which is exactly how we construct lists or stacks. We use
continuations from front‐to‐back; in other words in last‐in first‐out (LIFO)
order. This is the correct access pattern to use a list efficiently, and also the
access pattern that defines a stack. Reifying the continuations as data has
reified the stack. In the next section we’ll use this fact to build a compiler that
targets a stack machine.

15.3 Compilers and Virtual Machines

We’ve reified continuations and seen they contain a stack structure: each
continuation contains a references to the next continuation, and continuations
are constructed in a last‐in first‐out order. We’ll now, once again, reify this
structure. This time we’ll create an explicit stack, giving rise to a stack‐based
virtual machine to run our code. We’ll also introduce a compiler, transforming
our code into a sequence of operations that run on this virtual machine.
We’ll then look at optimizing our virtual machine. As this code involves
benchmarking, there is an accompanying repository that contains benchmarks
you can run on your own computer.

15.3.1 Virtual and Abstract Machines

A virtual machine is a computational machine implemented in software rather
than hardware. A virtual machine runs programs written in some instruction
set. The Java Virtual Machine (JVM), for example, runs programs written in
Java bytecode. Closely related are abstract machines. The two terms are
sometimes used interchangeably but I’ll make the distinction that a virtual
machine has an implementation in software, while an abstract machine is
a theoretical model without an implementation. Thus we can think of an

https://github.com/scalawithcats/stack-machine
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abstract machine as a concept, and a virtual machine as a realization of a
concept. This is a distinction we’ve made in many other parts of the book.

As an abstract machine, stack machines are represented by models such as
push down automata and the SECD machine. From abstract stack machines
we firstly get the concept itself of a stack machine. The two core operations
for a stack are pushing a value on to the top of the stack, and popping the
top value off the stack. Function arguments and results are both passed
via the stack. So, for example, a binary operation like addition will pop the
top two values off the stack, add them, and push the result onto the stack.
Abstract stack machines also tell us that stack machines with a single stack are
not universal computers. In other words, they are not as powerful as Turing
machines. If we add a second stack, or some other form of additional memory,
we have a universal computer. This informs the design of virtual machines
based on a stack machine.

Stack machines are also very common virtual machines. The Java Virtual
Machine is a stack machine, as are the .Net andWASM virtual machines. They
are easy to implement, and to write compilers for. We’ve already seen how
easy it is to implement an interpreter so why should we care about stack
machines, or virtual machines in general? The usual answer is performance.
Implementing a virtual machine opens up opportunities for optimizations that
are difficult to implement in interpreters. Virtual machines also give us a lot of
flexibility. It’s simple to trace or otherwise inspect the execution of a virtual
machine, which makes debugging easier. They are easy to port to different
platforms and languages. Virtual machines are often very compact, as is the
code they run. This makes them suitable for embedded devices. Our focuswill
be on performance. Although we won’t go down the rabbit‐hole of compiler
and virtual machine optimizations, which would easily take up an entire book,
we’ll at least tip‐toe to the edge and peek down.

15.3.2 Compilation

Let’s now briefly talk about compilation. A compiler transforms a program
from one representation to another. In our case we will transform our
programs represented as an algebraic data type of reified constructors and
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combinators into the instruction set for our virtual machine. The virtual
machine itself is an interpreter for its instruction set. Computation always
bottoms out in interpretation: a hardware CPU is nothing but an interpreter
for it’s machine code.

Notice there are two notions of program here, and two corresponding
instruction sets: there is the program the structurally recursive interpreter
executes, with an instruction set consisting of reified constructors and
combinators, and there is the program we compile this into for the stack
machine using the stack machine’s instruction set. We will call these the
interpreter program and instruction set, and stack machine program and
instruction set respectively.

The structurally recursive interpreter is an example of a tree‐walking
interpreter or abstract syntax tree (AST) interpreter. The stack machine is
an example of a byte‐code interpreter.

15.4 From Interpreter to Stack Machine

There are three parts to transforming an interpreter to a stack machine:

1. creating the instruction set the stack machine will run;
2. creating the compiler from interpreter programs to stack machine
programs; and

3. implementing the stack machine to execute stack machine instructions.

Let’s make this concrete by returning to our arithmetic interpreter.

enum Expression {

def +(that: Expression): Expression = Addition(this, that)

def *(that: Expression): Expression = Multiplication(this, that)

def -(that: Expression): Expression = Subtraction(this, that)

def /(that: Expression): Expression = Division(this, that)

def eval: Double =

this match {

case Literal(value) => value
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case Addition(left, right) => left.eval + right.eval

case Subtraction(left, right) => left.eval - right.eval

case Multiplication(left, right) => left.eval * right.eval

case Division(left, right) => left.eval / right.eval

}

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

}

object Expression {

def literal(value: Double): Expression = Literal(value)

}

Interpreter programs are defined by the interpreter instruction set

enum Expression {

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

}

Transforming the interpreter instruction set to the stack machine instruction
set works as follows:

• each constructor interpreter instruction corresponds to stack machine
instruction carrying exactly the same data; and

• each combinator interpreter instruction has a corresponding stack
machine instruction that carries only non‐recursive data. Recursive
data, which is executed by recursive calls to the interpreter, will be
represented by data on the stack machine’s stack.

Turning to the arithmetic interpreter’s instruction set, we see that Literal is
our sole constructor and thus has a mirror in our stack machine’s instruction
set. Here I’ve named the interpreter instruction set Op (short for “operation”),
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and shortened the name from Literal to Lit to make it clearer which
instruction set we are using.

enum Op {

case Lit(value: Double)

}

The other instructions are all combinators. They also all only contain values of
type Expression, and hence in the stack machine the corresponding values will
be found on the stack. This gives us the complete stack machine instruction
set.

enum Op {

case Lit(value: Double)

case Add

case Sub

case Mul

case Div

}

This completes the first step of the process. The second step is to implement
the compiler. The secret to compiling for a stack machine is to transfrom
instructions into reverse polish notation (RPN). In RPN operations follow their
operands. So, instead of writing 1 + 2wewrite 1 2 +. This is exactly the order
in which a stack machine works. To evaluate 1 + 2 we should first push 1

onto the stack, then push 2, and finally pop both these values, perform the
addition, and push the result back to the stack. RPN also does not need
nesting. To represent 1 + (2 + 3) in RPN we simply use 2 3 + 1 +. Doing
away with brackets means that stack machine programs can be represented
as a linear sequence of instructions, not a tree. Concretely, we can use List[

Op].

How we should we implement the conversion to RPN. We are performing a
transformation on an algebraic data type, our interpreter instruction set and
therefore we can use structural recursion. The following code shows one way
to implement this. It’s not very efficient (appending lists is a slow operation)
but this doesn’t matter for our purposes.
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def compile: List[Op] =

this match {

case Literal(value) => List(Op.Lit(value))

case Addition(left, right) =>

left.compile ++ right.compile ++ List(Op.Add)

case Subtraction(left, right) =>

left.compile ++ right.compile ++ List(Op.Sub)

case Multiplication(left, right) =>

left.compile ++ right.compile ++ List(Op.Mul)

case Division(left, right) =>

left.compile ++ right.compile ++ List(Op.Div)

}

We now are left to implement the stack machine. We’ll start by sketching out
the interface for the stack machine.

final case class StackMachine(program: List[Op]) {

def eval: Double = ???

}

In this design the program is fixed for a given StackMachine instance, but we
can run the program multiple times.

Now we’ll implement eval. It is a structural recursion over an algebraic data
type, in this case the program of type List[Op]. It’s a little bit more complicated
than some of the structural recursions we have seen, because we need to
implement the stack as well. We’ll represent the stack as a List[Double], and
define methods to push and pop the stack.

final case class StackMachine(program: List[Op]) {

def eval: Double = {

def pop(stack: List[Double]): (Double, List[Double]) =

stack match {

case head :: next => (head, next)

case Nil =>

throw new IllegalStateException(

s"The data stack does not have any elements."

)

}
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def push(value: Double, stack: List[Double]): List[Double] =

value :: stack

???

}

}

Now we can define the main stack machine loop. It takes as parameters the
program and the stack, and is a structural recursion over the program.

def eval: Double = {

// pop and push defined here ...

def loop(stack: List[Double], program: List[Op]): Double =

program match {

case head :: next =>

head match {

case Op.Lit(value) => loop(push(value, stack), next)

case Op.Add =>

val (a, s1) = pop(stack)

val (b, s2) = pop(s1)

val s = push(a + b, s2)

loop(s, next)

case Op.Sub =>

val (a, s1) = pop(stack)

val (b, s2) = pop(s1)

val s = push(a + b, s2)

loop(s, next)

case Op.Mul =>

val (a, s1) = pop(stack)

val (b, s2) = pop(s1)

val s = push(a + b, s2)

loop(s, next)

case Op.Div =>

val (a, s1) = pop(stack)

val (b, s2) = pop(s1)

val s = push(a + b, s2)

loop(s, next)

}

case Nil => stack.head

}
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loop(List.empty, program)

}

I’ve implemented a simple benchmark for this code (see the repository) and it’s
roughly five times slower than the interpreter we started with. Clearly some
optimization is needed.

15.4.1 Effectful Interpreters

One of the reasons for using the interpreter strategy is to isolate effects, such
as state or input and output. An interpreter can be effectful without impacting
the ability to reason about or compose the programs the interpreter runs.
Sometimes the effects are the entire point of the interpreter as the program
may describe effectful actions, such as parsing network data or drawing on a
screen, which the interpreter then carries out. Sometimes effects may just be
optimizations, which is how we are going to use them in our arithmetic stack
machine.

There are many inefficiencies in the stack machine we have just created. A
List is a poor choice of data structure for both the stack and program. We
can avoid a lot of pointer chasing and memory allocation by using a fixed size
Array. The program never changes in size, and we can simply allocate a large
enough stack that resizing it becomes very unlikely. We can also avoid the
indirection of pushing and popping and operate directly on the stack array.

The code below shows a simple implementation, which in my benchmarking
is about thirty percent faster than the tree‐walking interpreter.

final case class StackMachine(program: Array[Op]) {

// The data stack

private val stack: Array[Double] = Array.ofDim[Double](256)

def eval: Double = {

// sp points to first free element on the stack

// stack(sp - 1) is the first element with data

//

// pc points to the current instruction in program

https://github.com/scalawithcats/stack-machine
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def loop(sp: Int, pc: Int): Double =

if (pc == program.size) stack(sp - 1)

else

program(pc) match {

case Op.Lit(value) =>

stack(sp) = value

loop(sp + 1, pc + 1)

case Op.Add =>

val a = stack(sp - 1)

val b = stack(sp - 2)

stack(sp - 2) = (a + b)

loop(sp - 1, pc + 1)

case Op.Sub =>

val a = stack(sp - 1)

val b = stack(sp - 2)

stack(sp - 2) = (a - b)

loop(sp - 1, pc + 1)

case Op.Mul =>

val a = stack(sp - 1)

val b = stack(sp - 2)

stack(sp - 2) = (a * b)

loop(sp - 1, pc + 1)

case Op.Div =>

val a = stack(sp - 1)

val b = stack(sp - 2)

stack(sp - 2) = (a / b)

loop(sp - 1, pc + 1)

}

loop(0, 0)

}

}

15.4.2 Further Optimization

The above optimization is, to me, the most obvious and straightforward to
implement. In this section we’ll attempt to go further, by looking at some of
the optimizations described in the literature. We’ll see that there is not always
a straight path to faster code.

The benchmark I used is the simple recursive Fibonacci. Calculating the nth

Fibonacci number produces a large expression for amodest choice ofn. I used
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a value of 25, and the expression has over one million elements. Notably the
expressions only involve addition, and the only literals in use are zero and one.
This limits the applicability of the optimizations to a wider range of inputs,
but the intention is not to produce an optimized interpreter for this specific
case but rather to discuss possible optimizations and issues that arise when
attempting to optimize an interpreter in general.

We’ll look at four different optimizations, which all use the optimized stack
machine above as their base:

• Algebraic simplification performs simplifications at compile‐time to
produce smaller expressions. A small expression should require fewer
interpreter steps and hence be faster. The only simplification I usedwas
replacing x+0 or 0+xwith x. This occurs frequently in the Fibonacci
series. Since the expressions we are working with have no variables or
control flowwe could simplify the entire expression to a single literal at
compile‐time. This would be an extremely good optimization but rather
defeats the purpose of trying to generalize to other applications.

• Byte code replaces the Op algebraic data type with a single byte. The
hope here is that the smaller representation will lead to better cache
utilization, and possibly a faster match expression, and therefore a faster
overall interpreter. In this representation literals are also stored in a
separate array of Doubles. More on this later.

• Stack caching stores the top of the stack in a variable, which we hope
will be allocated to a register and therefore be extremely fast to access.
The remainder of the stack is stored in an array as above. Stack caching
involves more work when pushing values on to the stack, as we must
copy the value from the top into the array, but less work when popping
values off the stack. The hope is that the savings will outweigh the
costs.

• Superinstructions replace common sequences of instructions with a
single instruction. We already do this to an extent; a typical stack
machinewould have separate instructions for pushing and popping, but
our instruction set merges these into the arithmetic operations. I used
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two superinstructions: one for incrementing a value, which frequently
occurs in the Fibonacci, and one for adding two values from the stack
and a literal.

Below are the benchmarks results obtained on an AMD Ryzen 5 3600 and an
Apple M1, both running JDK 21. Results are shown in operations per second.
The Baseline interpreter is the one using structural recursion. The Stack
interpreter uses a List to represent the stack and program. The Optimized
Stack represents the stack and program as arrays. The other interpreters build
on theOptimized Stack interpreter and add the optimizations described above.
The All interpreter has all the optimizations.

Interpreter Ryzen 5 Speedup M1 Speedup

Baseline 2754.43 1 3932.93 1
Stack 676.43 0.25 1004.16 0.26
Optimized Stack 3631.19 1.32 2953.21 0.75
Algebraic Simplification 1630.93 0.59 4818.45 1.23
Byte Code 4057.11 1.47 3355.75 0.85
Stack Caching 3698.10 1.34 3237.17 0.82
Superinstructions 3706.10 1.35 4689.02 1.19
All 7612.45 2.76 7098.06 1.80

There are a few lessons to take from this. The most important, in my
opinion, is that performance is not compositional. The results of applying two
optimizations is not simply the sum of applying the optimizations individually.
You can see that most of the optimizations on their own make little or no
change to performance relative to the Optimized Stack interpreter. Taken
together, however, they make a significant improvement.

Basic structural recursion, the Baseline interpreter, is surprisingly fast; a bit
slower than the Optimized Stack interpreter on the Ryzen 5 but faster on the
M1. A stack machine emulates the processor’s built‐in call stack. The native
call stack is extremely fast, so we need a good reason to avoid using it.

Details really matter in optimization. We see the choice of data structure
makes a massive difference between the Stack and Optimized Stack
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interpreters. An earlier version of the Byte Code interpreter had worse
performance than the Optimized Stack. As best I could tell this was because
I was storing literals alongside byte code, and loading a Double from an Array[

Byte] (using a ByteBuffer) was slow. Superinstructions are very dependent on
the chosen superinstructions. The superinstruction to add two values from
the stack plus a literal had little effect on it’s own; in fact the interpreter with
this single superinstruction was much slower on the Ryzen 5.

Compilers, and JIT compilers in particular, are difficult to understand. I cannot
explain why, for example, the Algebraic Simplification interpreter is so slow on
the Ryzen 5. This interpreter does strictly less work than the Optimized Stack
interpreter. Just like the interpreter optimizations I implemented, compiler
optimizations apply in restricted cases that the algorithms recognize. If code
does not match the patterns the algorithms look for, the optimizations will
not apply, which can lead to strange performance cliffs. My best guess is that
something about my implementation caused me to run afoul of such an issue.

Finally, differences between platforms are also significant. It’s hard to know
how much this due to differences in the computer’s architecture, and how
much is down to differences in the JVM. Either way, be aware of which
platform or platforms you expect the majority of users to run on, and don’t
naively assume performance on one platform will directly translate to another.

15.5 Conclusions

In this chapter we explored two main techniques for optimizing interpeters:
algebraic simplification of programs, and interpretation in a virtual machine.

Our regular expression derivative algorithm is taken from Regular‐expression
derivatives reexamined. What we didn’t explore, but we should if we really
care about performance, is compiling regular expressions to a finite state
machine, another kind of virtual machine. Regular expression derivatives
are very easy to implement and nicely illustrate the point of algebraic
simplification. However we have to recompute the derivative on each input
character. If we instead compile the regular expression to a finite state
machine ahead of time, we save time when parsing input. The details of this
algorithm are in the paper.

https://www.khoury.northeastern.edu/home/turon/re-deriv.pdf
https://www.khoury.northeastern.edu/home/turon/re-deriv.pdf
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This work is based on Derivatives of Regular Expressions. Derivatives of
Regular Expressions was published in 1964. Although the style of the paper
will be immediately recognizable to anyone familiar with the more theoretical
end of computer science, anachronisms like “State Diagram Construction” are
a reminder that this work comes from the very beginnings of the discipline.
Regular expression derivatives can be extended to context‐free grammars
and therefore used to implement parsers. This is explored in Parsing with
Derivatives.

A lot of work has looked at systematically transforming an interpreter into
a compiler and virtual machine. From Interpreter to Compiler and Virtual
Machine: A Functional Derivation is an earlier example. Calculating Correct
Compilers is more recent, and follow‐up papers extend the technique in a
number of directions.

Interpreter and their optimization is an enormous area of work. It also one I
find very interesting, so I’ve been a bit more through in collecting references
for this section.

We looked at four techniques for optimization: algebraic simplification, byte
code, stack caching, and superinstructions. Algebraic simplification is as
old as algebra, and something familiar to any secondary school student.
In the world of compilers, different aspects of algebraic simplification are
known as constant folding, constant propagation, and common subexpression
elimination. Byte code is probably as old as interpreters, and dates
back to at least the 1960s in the form of p‐code. Stack Caching for
Interpreters introduces the idea of stack caching, and shows some rather
more complex realizations than the simple system I used. Superinstructions
were introduced in Optimizing an ANSI C interpreter with superoperators.
Towards Superinstructions for Java Interpreters is a nice example of applying
superinstructions to a interpreted JVM.

Let’s now talk about instruction dispatch, which is area we did not consider
for optimization. Instruction dispatch is the process by which the interpreter
chooses the code to run for a given interpreter instruction. The Structure and
Performance of Efficient Interpreters argues that instruction dispatch makes
up amajor portion of an interpreter’s execution time. The approachwe used is
generally called switch dispatch in the literature. There are several alternative

https://dl.acm.org/doi/pdf/10.1145/321239.321249
https://matt.might.net/papers/might2011derivatives.pdf
https://matt.might.net/papers/might2011derivatives.pdf
https://www.brics.dk/RS/03/14/BRICS-RS-03-14.pdf
https://www.brics.dk/RS/03/14/BRICS-RS-03-14.pdf
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/calculating-correct-compilers/70AA17724EBCA4182B1B2B522362A9AF
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/calculating-correct-compilers/70AA17724EBCA4182B1B2B522362A9AF
https://en.wikipedia.org/wiki/P-code_machine
https://dl.acm.org/doi/pdf/10.1145/207110.207165
https://dl.acm.org/doi/pdf/10.1145/207110.207165
https://dl.acm.org/doi/abs/10.1145/199448.199526
https://core.ac.uk/download/pdf/297029962.pdf
https://jilp.org/vol5/v5paper12.pdf
https://jilp.org/vol5/v5paper12.pdf
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approaches. Direct threaded dispatch is described in Threaded Code. Direct
threading represents an instruction by the function that implements it. This
requires first‐class functions and full tail calls. It is generally considered the
fastest form of dispatch. Notice that it relies on the duality between data and
functions. Subroutine threading is like direct threading, but uses normal calls
and returns instead of tail calls. In indirect threaded code (described in Indirect
Threaded Code), each bytecode is the index into a lookup table that points to
the implementing function.

Stack machines are not the only virtual machine used for implementing
interpreters. Register machines are the most common alternative. The
Lua virtual machine, for example, is a register machine. Virtual Machine
Showdown: Stack Versus Registers compares the two and concludes that
register machines are faster. However they are more complex to implement.

If you’re interested in the design considerations in a general purpose stack
based instruction set, Bringing the Web up to Speed with WebAssembly is
the paper for you. It covers the design of WebAssembly, and the rationale
behind the design choices. An interpreter for WebAssembly is described in A
Fast In‐Place Interpreter for WebAssembly. Notice how often tail calls arise in
the discussion!

https://dl.acm.org/doi/pdf/10.1145/362248.362270
http://figforth.org.uk/library/Indirect.Threaded.Code.p330-dewar.pdf
http://figforth.org.uk/library/Indirect.Threaded.Code.p330-dewar.pdf
https://dl.acm.org/doi/pdf/10.1145/1328195.1328197
https://dl.acm.org/doi/pdf/10.1145/1328195.1328197
https://dl.acm.org/doi/pdf/10.1145/3062341.3062363
https://dl.acm.org/doi/pdf/10.1145/3563311
https://dl.acm.org/doi/pdf/10.1145/3563311
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Part IV

Case Studies
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Chapter 16

Creating Usable Code

APIs are interfaces and should be designed as such.

scala.annotation.implicitNotFound and scala.annotation.implicitAmbiguous
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Chapter 17

Case Study: Testing
Asynchronous Code

We’ll start with a straightforward case study: how to simplify unit tests for
asynchronous code by making them synchronous.

Let’s return to the example from Chapter 12 where we’re measuring the
uptime on a set of servers. We’ll flesh out the code into a more complete
structure. There will be two components. The first is an UptimeClient that
polls remote servers for their uptime:

import scala.concurrent.Future

trait UptimeClient {

def getUptime(hostname: String): Future[Int]

}

We’ll also have an UptimeService that maintains a list of servers and allows the
user to poll them for their total uptime:

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

import cats.syntax.traverse._ // for traverse

413
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import scala.concurrent.ExecutionContext.Implicits.global

class UptimeService(client: UptimeClient) {

def getTotalUptime(hostnames: List[String]): Future[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

We’ve modelled UptimeClient as a trait because we’re going to want to stub
it out in unit tests. For example, we can write a test client that allows us to
provide dummy data rather than calling out to actual servers:

class TestUptimeClient(hosts: Map[String, Int]) extends UptimeClient {

def getUptime(hostname: String): Future[Int] =

Future.successful(hosts.getOrElse(hostname, 0))

}

Now, suppose we’re writing unit tests for UptimeService. We want to test its
ability to sum values, regardless of where it is getting them from. Here’s an
example:

def testTotalUptime() = {

val hosts = Map("host1" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)

val expected = hosts.values.sum

assert(actual == expected)

}

// error:

// Values of types scala.concurrent.Future[Int] and Int cannot be

compared with == or !=

// assert(actual == expected)

// ^^^^^^^^^^^^^^^^^^

The code doesn’t compile because we’ve made a classic error¹. We forgot that
our application code is asynchronous. Our actual result is of type Future[Int]
and our expected result is of type Int. We can’t compare them directly!

¹Technically this is a warning not an error. It has been promoted to an error in our case
because we’re using the -Xfatal-warnings flag on scalac.
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There are a couple of ways to solve this problem. We could alter our test
code to accommodate the asynchronousness. However, there is another
alternative. Let’s make our service code synchronous so our test works
without modification!

17.1 Abstracting over Type Constructors

We need to implement two versions of UptimeClient: an asynchronous one for
use in production and a synchronous one for use in our unit tests:

trait RealUptimeClient extends UptimeClient {

def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient {

def getUptime(hostname: String): Int

}

The question is: what result type should we give to the abstract method in
UptimeClient? We need to abstract over Future[Int] and Int:

trait UptimeClient {

def getUptime(hostname: String): ???

}

At first this may seem difficult. We want to retain the Int part from each type
but “throw away” the Future part in the test code. Fortunately, Cats provides a
solution in terms of the identity type, Id, that we discussed way back in Section
9.3. Id allows us to “wrap” types in a type constructor without changing their
meaning:

package cats

type Id[A] = A

Id allows us to abstract over the return types in UptimeClient. Implement this
now:
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• write a trait definition for UptimeClient that accepts a type constructor
F[_] as a parameter;

• extend it with two traits, RealUptimeClient and TestUptimeClient, that
bind F to Future and Id respectively;

• write out the method signature for getUptime in each case to verify that
it compiles.

See the solution

You should now be able to flesh your definition of TestUptimeClient out into a
full class based on a Map[String, Int] as before.

See the solution

17.2 Abstracting over Monads

Let’s turn our attention to UptimeService. We need to rewrite it to abstract over
the two types of UptimeClient. We’ll do this in two stages: first we’ll rewrite
the class and method signatures, then the method bodies. Starting with the
method signatures:

• comment out the body of getTotalUptime (replace it with ??? to make
everything compile);

• add a type parameter F[_] to UptimeService and pass it on to
UptimeClient.

See the solution

Now uncomment the body of getTotalUptime. You should get a compilation
error similar to the following:
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// <console>:28: error: could not find implicit value for

// evidence parameter of type cats.Applicative[F]

// hostnames.traverse(client.getUptime).map(_.sum)

// ^

The problem here is that traverse only works on sequences of values that
have an Applicative. In our original code we were traversing a List[Future

[Int]]. There is an applicative for Future so that was fine. In this version
we are traversing a List[F[Int]]. We need to prove to the compiler that F
has an Applicative. Do this by adding an implicit constructor parameter to
UptimeService.

See the solution

Finally, let’s turn our attention to our unit tests. Our test code now works as
intendedwithout anymodification. We create an instance of TestUptimeClient
and wrap it in an UptimeService. This effectively binds F to Id, allowing the
rest of the code to operate synchronously without worrying about monads or
applicatives:

def testTotalUptime() = {

val hosts = Map("host1" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)

val expected = hosts.values.sum

assert(actual == expected)

}

testTotalUptime()

17.3 Summary

This case study provides an example of how Cats can help us abstract over
different computational scenarios. We used the Applicative type class to
abstract over asynchronous and synchronous code. Leaning on a functional
abstraction allows us to specify the sequence of computations we want to
perform without worrying about the details of the implementation.
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Back in Figure 11.1, we showed a “stack” of computational type classes that
are meant for exactly this kind of abstraction. Type classes like Functor,
Applicative, Monad, and Traverse provide abstract implementations of patterns
such as mapping, zipping, sequencing, and iteration. The mathematical laws
on those types ensure that they work together with a consistent set of
semantics.

We used Applicative in this case study because it was the least powerful type
class that did what we needed. If we had required flatMap, we could have
swapped out Applicative for Monad. If we had needed to abstract over different
sequence types, we could have used Traverse. There are also type classes like
ApplicativeError and MonadError that help model failures as well as successful
computations.

Let’s move on now to a more complex case study where type classes will help
us produce something more interesting: a map‐reduce‐style framework for
parallel processing.
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Case Study: Map‐Reduce

In this case study we’re going to implement a simple‐but‐powerful parallel
processing framework using Monoids, Functors, and a host of other goodies.

If you have used Hadoop or otherwise worked in “big data” you will have
heard of MapReduce, which is a programming model for doing parallel data
processing across clusters of machines (aka “nodes”). As the name suggests,
themodel is built around amap phase, which is the same map functionwe know
from Scala and the Functor type class, and a reduce phase, which we usually
call fold¹ in Scala.

18.1 Parallelizing map and fold

Recall the general signature for map is to apply a function A => B to a F[A],
returning a F[B]:

map transforms each individual element in a sequence independently. We
can easily parallelize map because there are no dependencies between the
transformations applied to different elements (the type signature of the
function A => B shows us this, assumingwe don’t use side‐effects not reflected
in the types).

¹In Hadoop there is also a shuffle phase that we will ignore here.
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http://research.google.com/archive/map-reduce.html
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F[A] F[B]A => B

map

Figure 18.1: Type chart: functor map

F[A] B(B, A) => BB

foldLeft ,

Figure 18.2: Type chart: fold

What about fold? We can implement this step with an instance of Foldable
. Not every functor also has an instance of foldable but we can implement a
map‐reduce system on top of any data type that has both of these type classes.
Our reduction step becomes a foldLeft over the results of the distributed map.

By distributing the reduce step we lose control over the order of traversal.
Our overall reduction may not be entirely left‐to‐right—we may reduce left‐
to‐right across several subsequences and then combine the results. To ensure
correctness we need a reduction operation that is associative:

reduce(a1, reduce(a2, a3)) == reduce(reduce(a1, a2), a3)

If we have associativity, we can arbitrarily distribute work between our nodes
provided the subsequences at every node stay in the same order as the initial
dataset.

Our fold operation requires us to seed the computation with an element of
type B. Since fold may be split into an arbitrary number of parallel steps, the
seed should not affect the result of the computation. This naturally requires
the seed to be an identity element:

reduce(seed, a1) == reduce(a1, seed) == a1
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In summary, our parallel fold will yield the correct results if:

• we require the reducer function to be associative;
• we seed the computation with the identity of this function.

What does this pattern sound like? That’s right, we’ve come full circle back
to Monoid, the first type class we discussed in this book. We are not the
first to recognise the importance of monoids. The monoid design pattern for
map‐reduce jobs is at the core of recent big data systems such as Twitter’s
Summingbird.

In this project we’re going to implement a very simple single‐machine map‐
reduce. We’ll start by implementing a method called foldMap to model the
data‐flow we need.

18.2 Implementing foldMap

Wesaw foldMap briefly backwhenwe covered Foldable. It is one of the derived
operations that sits on top of foldLeft and foldRight. However, rather than
use Foldable, we will re‐implement foldMap here ourselves as it will provide
useful insight into the structure of map‐reduce.

Start by writing out the signature of foldMap. It should accept the following
parameters:

• a sequence of type Vector[A];
• a function of type A => B, where there is a Monoid for B;

You will have to add implicit parameters or context bounds to complete the
type signature.

See the solution

Now implement the body of foldMap. Use the flow chart in Figure 18.3 as a
guide to the steps required:

http://arxiv.org/abs/1304.7544
http://arxiv.org/abs/1304.7544
https://github.com/twitter/summingbird
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4. Final result

3. Fold/reduce step

2. Map step

1. Initial data sequence

Figure 18.3: foldMap algorithm

1. start with a sequence of items of type A;
2. map over the list to produce a sequence of items of type B;
3. use the Monoid to reduce the items to a single B.

Here’s some sample output for reference:

import cats.instances.int._ // for Monoid

foldMap(Vector(1, 2, 3))(identity)

// res1: Int = 6

import cats.instances.string._ // for Monoid
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// Mapping to a String uses the concatenation monoid:

foldMap(Vector(1, 2, 3))(_.toString + "! ")

// res2: String = "1! 2! 3! "

// Mapping over a String to produce a String:

foldMap("Hello world!".toVector)(_.toString.toUpperCase)

// res3: String = "HELLO WORLD!"

See the solution

18.3 Parallelising foldMap

Now we have a working single‐threaded implementation of foldMap, let’s look
at distributing work to run in parallel. We’ll use our single‐threaded version of
foldMap as a building block.

We’ll write a multi‐CPU implementation that simulates the way we would
distribute work in a map‐reduce cluster as shown in Figure 18.4:

1. we start with an initial list of all the data we need to process;
2. we divide the data into batches, sending one batch to each CPU;
3. the CPUs run a batch‐level map phase in parallel;
4. the CPUs run a batch‐level reduce phase in parallel, producing a local
result for each batch;

5. we reduce the results for each batch to a single final result.

Scala provides some simple tools to distribute work amongst threads. We
could use the parallel collections library to implement a solution, but let’s
challenge ourselves by diving a bit deeper and implementing the algorithm
ourselves using Futures.

18.3.1 Futures, Thread Pools, and ExecutionContexts

Wealready know a fair amount about themonadic nature of Futures. Let’s take
a moment for a quick recap, and to describe how Scala futures are scheduled
behind the scenes.

http://docs.scala-lang.org/overviews/parallel-collections/overview.html
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6. Final result

5. Reduce the batches

4. Reduce each batch in parallel

3. Map over the batches in parallel

2. Divide into batches for each CPU

1. Initial data sequence

Figure 18.4: parallelFoldMap algorithm
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Futures run on a thread pool, determined by an implicit ExecutionContext

parameter. Whenever we create a Future, whether through a call to Future

.apply or some other combinator, we must have an implicit ExecutionContext
in scope:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

val future1 = Future {

(1 to 100).toList.foldLeft(0)(_ + _)

}

// future1: Future[Int] = Future(Success(5050))

val future2 = Future {

(100 to 200).toList.foldLeft(0)(_ + _)

}

// future2: Future[Int] = Future(Success(15150))

In this example we’ve imported a ExecutionContext.Implicits.global. This
default context allocates a thread pool with one thread per CPU in our
machine. When we create a Future the ExecutionContext schedules it for
execution. If there is a free thread in the pool, the Future starts executing
immediately. Most modern machines have at least two CPUs, so in our
example it is likely that future1 and future2 will execute in parellel.

Some combinators create new Futures that schedule work based on the
results of other Futures. The map and flatMap methods, for example, schedule
computations that run as soon as their input values are computed and a CPU
is available:

val future3 = future1.map(_.toString)

// future3: Future[String] = Future(Success(5050))

val future4 = for {

a <- future1

b <- future2

} yield a + b

// future4: Future[Int] = Future(Success(20200))
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As we saw in Section 12.2, we can convert a List[Future[A]] to a Future[List
[A]] using Future.sequence:

Future.sequence(List(Future(1), Future(2), Future(3)))

// res6: Future[List[Int]] = Future(Success(List(1, 2, 3)))

or an instance of Traverse:

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

import cats.syntax.traverse._ // for sequence

List(Future(1), Future(2), Future(3)).sequence

// res7: Future[List[Int]] = Future(Success(List(1, 2, 3)))

An ExecutionContext is required in either case. Finally, we can use Await.result
to block on a Future until a result is available:

import scala.concurrent._

import scala.concurrent.duration._

Await.result(Future(1), 1.second) // wait for the result

// res8: Int = 1

There are also Monad and Monoid implementations for Future available from cats

.instances.future:

import cats.{Monad, Monoid}

import cats.instances.int._ // for Monoid

import cats.instances.future._ // for Monad and Monoid

Monad[Future].pure(42)

Monoid[Future[Int]].combine(Future(1), Future(2))
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18.3.2 Dividing Work

Now we’ve refreshed our memory of Futures, let’s look at how we can divide
work into batches. We can query the number of available CPUs on our
machine using an API call from the Java standard library:

Runtime.getRuntime.availableProcessors

// res11: Int = 4

We can partition a sequence (actually anything that implements Vector) using
the grouped method. We’ll use this to split off batches of work for each CPU:

(1 to 10).toList.grouped(3).toList

// res12: List[List[Int]] = List(

// List(1, 2, 3),

// List(4, 5, 6),

// List(7, 8, 9),

// List(10)

// )

18.3.3 Implementing parallelFoldMap

Implement a parallel version of foldMap called parallelFoldMap. Here is the
type signature:

def parallelFoldMap[A, B : Monoid]

(values: Vector[A])

(func: A => B): Future[B] = ???

Use the techniques described above to split the work into batches, one batch
per CPU. Process each batch in a parallel thread. Refer back to Figure 18.4 if
you need to review the overall algorithm.

For bonus points, process the batches for each CPU using your
implementation of foldMap from above.

See the solution
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18.3.4 parallelFoldMapwith more Cats

Although we implemented foldMap ourselves above, the method is also
available as part of the Foldable type class we discussed in Section 12.1.

Reimplement parallelFoldMap using Cats’ Foldable and Traverseable type
classes.

See the solution

18.4 Summary

In this case study we implemented a system that imitates map‐reduce as
performed on a cluster. Our algorithm followed three steps:

1. batch the data and send one batch to each “node”;
2. perform a local map‐reduce on each batch;
3. combine the results using monoid addition.

Our toy system emulates the batching behaviour of real‐world map‐reduce
systems such as Hadoop. However, in reality we are running all of our work
on a single machine where communcation between nodes is negligible. We
don’t actually need to batch data to gain efficient parallel processing of a list.
We can simply map using a Functor and reduce using a Monoid.

Regardless of the batching strategy, mapping and reducing with Monoids is a
powerful and general framework that isn’t limited to simple tasks like addition
and string concatenation. Most of the tasks data scientists perform in their
day‐to‐day analyses can be cast as monoids. There are monoids for all the
following:

• approximate sets such as the Bloom filter;
• set cardinality estimators, such as the HyperLogLog algorithm;
• vectors and vector operations like stochastic gradient descent;
• quantile estimators such as the t‐digest

to name but a few.
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Case Study: Data Validation

In this case study we will build a library for validation. What do we mean by
validation? Almost all programs must check their input meets certain criteria.
Usernames must not be blank, email addresses must be valid, and so on. This
type of validation often occurs in web forms, but it could be performed on
configuration files, on web service responses, and any other case where we
have to deal with data that we can’t guarantee is correct. Authentication, for
example, is just a specialised form of validation.

We want to build a library that performs these checks. What design goals
should we have? For inspiration, let’s look at some examples of the types of
checks we want to perform:

• A user must be over 18 years old or must have parental consent.

• A String ID must be parsable as a Int and the Int must correspond to
a valid record ID.

• A bid in an auction must apply to one or more items and have a positive
value.

• A username must contain at least four characters and all characters
must be alphanumeric.

429
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• An email address must contain a single @ sign. Split the string at the @.
The string to the left must not be empty. The string to the right must
be at least three characters long and contain a dot.

With these examples in mind we can state some goals:

• We should be able to associate meaningful messages with each
validation failure, so the user knows why their data is not valid.

• We should be able to combine small checks into larger ones. Taking
the username example above, we should be able to express this by
combining a check of length and a check for alphanumeric values.

• We should be able to transform data while we are checking it. There
is an example above requiring we parse data, changing its type from
String to Int.

• Finally, we should be able to accumulate all the failures in one go, so
the user can correct all the issues before resubmitting.

These goals assumewe’re checking a single piece of data. Wewill also need to
combine checks across multiple pieces of data. For a login form, for example,
we’ll need to combine the check results for the username and the password.
This will turn out to be quite a small component of the library, so the majority
of our time will focus on checking a single data item.

19.1 Sketching the Library Structure

Let’s start at the bottom, checking individual pieces of data. Before we start
coding let’s try to develop a feel for what we’ll be building. We can use a
graphical notation to help us. We’ll go through our goals one by one.

Providing error messages

Our first goal requires us to associate useful error messages with a check
failure. The output of a check could be either the value being checked, if it
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F[A]

Figure 19.1: A validation result

A => F[A]

Figure 19.2: A validation check

passed the check, or some kind of error message. We can abstractly represent
this as a value in a context, where the context is the possibility of an error
message as shown in Figure 19.1.

A check itself is therefore a function that transforms a value into a value in a
context as shown in Figure 19.2.

Combine checks

How do we combine smaller checks into larger ones? Is this an applicative or
semigroupal as shown in Figure 19.3?

Not really. With applicative combination, both checks are applied to the same
value and result in a tuple with the value repeated. What we want feels more
like a monoid as shown in Figure 19.4. We can define a sensible identity—a
check that always passes—and two binary combination operators—and and or:

We’ll probably be using and and or about equally often with our validation

A => F[A] A => F[A] A => F[(A, A)]

, ).tupled(

Figure 19.3: Applicative combination of checks
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A => F[A] A => F[A] A => F[A]

|+|

Figure 19.4: Monoid combination of checks

A => F[B] B => (A => F[C]) A => F[C]

flatMap

A => F[B] B => C A => F[C]

map

Figure 19.5: Monadic combination of checks

library and it will be annoying to continuously switch between two monoids
for combining rules. We consequentlywon’t actually use themonoid API: we’ll
use two separate methods, and and or, instead.

Accumulating errors as we check

Monoids also feel like a good mechanism for accumulating error messages. If
we store messages as a List or NonEmptyList, we can even use a pre‐existing
monoid from inside Cats.

Transforming data as we check it

In addition to checking data, we also have the goal of transforming it. This
seems like it should be a map or a flatMap depending on whether the transform
can fail or not, so it seems we also want checks to be a monad as shown in
Figure 19.5.

We’ve now broken down our library into familiar abstractions and are in a good
position to begin development.
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19.2 The Check Datatype

Our design revolves around a Check, which we said was a function from a value
to a value in a context. As soon as you see this description you should think
of something like

type Check[A] = A => Either[String, A]

Here we’ve represented the error message as a String. This is probably
not the best representation. We may want to accumulate messages in a
List, for example, or even use a different representation that allows for
internationalization or standard error codes.

We could attempt to build some kind of ErrorMessage type that holds all
the information we can think of. However, we can’t predict the user’s
requirements. Instead let’s let the user specify what they want. We can do
this by adding a second type parameter to Check:

type Check[E, A] = A => Either[E, A]

We will probably want to add custom methods to Check so let’s declare it as a
trait instead of a type alias:

trait Check[E, A] {

def apply(value: A): Either[E, A]

// other methods...

}

As we said in Essential Scala, there are two functional programming patterns
that we should consider when defining a trait:

• we can make it a typeclass, or;
• we can make it an algebraic data type (and hence seal it).

Type classes allow us to unify disparate data types with a common interface.
This doesn’t seem like what we’re trying to do here. That leaves us with an

http://underscore.io/books/essential-scala
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E • E => E

List[String] • List[String] => List[String]

Figure 19.6: Combining error messages

algebraic data type. Let’s keep that thought in mind as we explore the design
a bit further.

19.3 Basic Combinators

Let’s add some combinator methods to Check, starting with and. This method
combines two checks into one, succeeding only if both checks succeed. Think
about implementing this method now. You should hit some problems. Read
on when you do!

trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

???

// other methods...

}

The problem is: what do you do when both checks fail? The correct thing to
do is to return both errors, but we don’t currently have any way to combine
Es. We need a type class that abstracts over the concept of “accumulating”
errors as shown in Figure 19.6 What type class do we know that looks like
this? What method or operator should we use to implement the ? operation?

See the solution
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There is another semantic issue that will come up quite quickly: should and

short‐circuit if the first check fails. What do you think the most useful
behaviour is?

See the solution

Use this knowledge to implement and. Make sure you end up with the
behaviour you expect!

See the solution

Strictly speaking, Either[E, A] is the wrong abstraction for the output of our
check. Why is this the case? What other data type could we use instead?
Switch your implementation over to this new data type.

See the solution

Our implementation is looking pretty good now. Implement an or combinator
to complement and.

See the solution

With and and or we can implement many of checks we’ll want in practice.
However, we still have a few more methods to add. We’ll turn to map and
related methods next.

19.4 Transforming Data

One of our requirements is the ability to transform data. This allows us to
support additional scenarios like parsing input. In this section we’ll extend our
check library with this additional functionality.

The obvious starting point is map. When we try to implement this, we
immediately run into a wall. Our current definition of Check requires the input
and output types to be the same:

type Check[E, A] = A => Either[E, A]

When we map over a check, what type do we assign to the result? It can’t be
A and it can’t be B. We are at an impasse:
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def map(check: Check[E, A])(func: A => B): Check[E, ???]

To implement map we need to change the definition of Check. Specifically, we
need to a new type variable to separate the input type from the output:

type Check[E, A, B] = A => Either[E, B]

Checks can now represent operations like parsing a String as an Int:

val parseInt: Check[List[String], String, Int] =

// etc...

However, splitting our input and output types raises another issue. Up until
now we have operated under the assumption that a Check always returns its
input when successful. We used this in and and or to ignore the output of the
left and right rules and simply return the original input on success:

(this(a), that(a)) match {

case And(left, right) =>

(left(a), right(a))

.mapN((result1, result2) => Right(a))

// etc...

}

In our new formulation we can’t return Right(a) because its type is Either[
E, A] not Either[E, B]. We’re forced to make an arbitrary choice between
returning Right(result1) and Right(result2). The same is true of the or

method. From this we can derive two things:

• we should strive to make the laws we adhere to explicit; and
• the code is telling us we have the wrong abstraction in Check.

19.4.1 Predicates

We can make progress by pulling apart the concept of a predicate, which can
be combined using logical operations such as and and or, and the concept of
a check, which can transform data.
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What we have called Check so far we will call Predicate. For Predicate we can
state the following identity law encoding the notion that a predicate always
returns its input if it succeeds:

For a predicate p of type Predicate[E, A] and elements a1 and a2

of type A, if p(a1)== Success(a2) then a1 == a2.

Making this change gives us the following code:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.data.Validated._ // for Valid and Invalid

sealed trait Predicate[E, A] {

def and(that: Predicate[E, A]): Predicate[E, A] =

And(this, that)

def or(that: Predicate[E, A]): Predicate[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(_) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(_) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}
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}

final case class And[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Predicate[E, A]

19.4.2 Checks

We’ll use Check to represent a structure we build from a Predicate that
also allows transformation of its input. Implement Check with the following
interface:

sealed trait Check[E, A, B] {

def apply(a: A): Validated[E, B] =

???

def map[C](func: B => C): Check[E, A, C] =

???

}

See the solution

What about flatMap? The semantics are a bit unclear here. The method is
simple enough to declare but it’s not so obvious what it means or how we
should implement apply. The general shape of flatMap is shown in Figure 19.7.

How do we relate F in the figure to Check in our code? Check has three type
variables while F only has one.

To unify the types we need to fix two of the type parameters. The idiomatic
choices are the error type E and the input type A. This gives us the relationships
shown in Figure 19.8. In other words, the semantics of applying a FlatMap are:

• given an input of type A, convert to F[B];
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F[A] F[B]A => F[B]

flatMap

Figure 19.7: Type chart for flatMap

A => F[B] B => (A => F[C]) A => F[C]

flatMap

Figure 19.8: Type chart for flatMap applied to Check

• use the output of type B to choose a Check[E, A, C];

• return to the original input of type A and apply it to the chosen check to
generate the final result of type F[C].

This is quite an odd method. We can implement it, but it is hard to find a use
for it. Go ahead and implement flatMap for Check, and then we’ll see a more
generally useful method.

See the solution

We can write a more useful combinator that chains together two Checks. The
output of the first check is connected to the input of the second. This is
analogous to function composition using andThen:

val f: A => B = ???

val g: B => C = ???

val h: A => C = f andThen g

A Check is basically a function A => Validated[E, B] so we can define an
analagous andThen method:



440 CHAPTER 19. CASE STUDY: DATA VALIDATION

trait Check[E, A, B] {

def andThen[C](that: Check[E, B, C]): Check[E, A, C]

}

Implement andThen now!

See the solution

19.4.3 Recap

We now have two algebraic data types, Predicate and Check, and a host of
combinators with their associated case class implementations. Look at the
following solution for a complete definition of each ADT.

See the solution

We have a complete implementation of Check and Predicate that do most of
what we originally set out to do. However, we are not finished yet. You have
probably recognised structure in Predicate and Check thatwe can abstract over:
Predicate has a monoid and Check has a monad. Furthermore, in implementing
Check you might have felt the implementation doesn’t do much—all we do is
call through to underlying methods on Predicate and Validated.

There are a lot of ways this library could be cleaned up. However, let’s
implement some examples to prove to ourselves that our library really does
work, and then we’ll turn to improving it.

Implement checks for some of the examples given in the introduction:

• A username must contain at least four characters and consist entirely
of alphanumeric characters

• An email address must contain an @ sign. Split the string at the @. The
string to the left must not be empty. The string to the right must be at
least three characters long and contain a dot.

You might find the following predicates useful:
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import cats.data.{NonEmptyList, Validated}

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

NonEmptyList(s, Nil)

def longerThan(n: Int): Predicate[Errors, String] =

Predicate.lift(

error(s"Must be longer than $n characters"),

str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

Predicate.lift(

error(s"Must be all alphanumeric characters"),

str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char"),

str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char only once"),

str => str.filter(c => c == char).size == 1)

See the solution

19.5 Kleislis

We’ll finish off this case study by cleaning up the implementation of Check. A
justifiable criticism of our approach is that we’ve written a lot of code to do
very little. A Predicate is essentially a function A => Validated[E, A], and a
Check is basically a wrapper that lets us compose these functions.

We can abstract A => Validated[E, A] to A => F[B], which you’ll recognise as
the type of function you pass to the flatMapmethod on a monad. Imagine we
have the following sequence of operations:
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A => F[A]

flatMap flatMap

A => F[B] B => F[C]

Figure 19.9: Sequencing monadic transforms

• We lift some value into a monad (by using pure, for example). This is a
function with type A => F[A].

• We then sequence some transformations on the monad using flatMap.

We can illustrate this as shown in Figure 19.9. We can also write out this
example using the monad API as follows:

val aToB: A => F[B] = ???

val bToC: B => F[C] = ???

def example[A, C](a: A): F[C] =

aToB(a).flatMap(bToC)

Recall that Check is, in the abstract, allowing us to compose functions of type
A => F[B]. We can write the above in terms of andThen as:

val aToC = aToB andThen bToC

The result is a (wrapped) function aToC of type A => F[C] that we can
subsequently apply to a value of type A.

We have achieved the same thing as the example method without having to
reference an argument of type A. The andThenmethod on Check is analogous to
function composition, but is composing function A => F[B] instead of A => B.

The abstract concept of composing functions of type A => F[B] has a name: a
Kleisli.

Cats contains a data type cats.data.Kleisli that wraps a function just as Check
does. Kleisli has all the methods of Check plus some additional ones. If
Kleisli seems familiar to you, then congratulations. You’ve seen through its

http://typelevel.org/cats/api/cats/data/Kleisli.html
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disguise and recognised it as another concept from earlier in the book: Kleisli
is just another name for ReaderT.

Here is a simple example using Kleisli to transform an integer into a list of
integers through three steps:

import cats.data.Kleisli

import cats.instances.list._ // for Monad

These steps each transform an input Int into an output of type List[Int]:

val step1: Kleisli[List, Int, Int] =

Kleisli(x => List(x + 1, x - 1))

val step2: Kleisli[List, Int, Int] =

Kleisli(x => List(x, -x))

val step3: Kleisli[List, Int, Int] =

Kleisli(x => List(x * 2, x / 2))

We can combine the steps into a single pipeline that combines the underlying
Lists using flatMap:

val pipeline = step1 andThen step2 andThen step3

The result is a function that consumes a single Int and returns eight outputs,
each produced by a different combination of transformations from step1, step2
, and step3:

pipeline.run(20)

// res0: List[Int] = List(42, 10, -42, -10, 38, 9, -38, -9)

The only notable difference between Kleisli and Check in terms of API is that
Kleisli renames our apply method to run.

Let’s replace Check with Kleisli in our validation examples. To do so we need
to make a few changes to Predicate. We must be able to convert a Predicate
to a function, as Kleisli only works with functions. Somewhat more subtly,
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when we convert a Predicate to a function, it should have type A => Either[E

, A] rather than A => Validated[E, A] because Kleisli relies on the wrapped
function returning a monad.

Add a method to Predicate called run that returns a function of the correct
type. Leave the rest of the code in Predicate the same.

See the solution

Now rewrite our username and email validation example in terms of Kleisli
and Predicate. Here are few tips in case you get stuck:

First, remember that the runmethod on Predicate takes an implicit parameter.
If you call aPredicate.run(a) it will try to pass the implicit parameter explicitly.
If you want to create a function from a Predicate and immediately apply that
function, use aPredicate.run.apply(a)

Second, type inference can be tricky in this exercise. We found that the
following definitions helped us to write code with fewer type declarations.

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

// Create a check from a function:

def check[A, B](func: A => Result[B]): Check[A, B] =

Kleisli(func)

// Create a check from a Predicate:

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

Kleisli[Result, A, A](pred.run)

See the solution

We have now written our code entirely in terms of Kleisli and Predicate,
completely removing Check. This is a good first step to simplifying our library.
There’s still plenty more to do, but we have a sophisticated building block from
Cats to work with. We’ll leave further improvements up to the reader.
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19.6 Summary

This case study has been an exercise in removing rather than building
abstractions. We started with a fairly complex Check type. Once we realised
we were conflating two concepts, we separated out Predicate leaving us with
something that could be implemented with Kleisli.

We made several design choices above that reasonable developers may
disagree with. Should the method that converts a Predicate to a function
really be called run instead of, say, toFunction? Should Predicate be a subtype
of Function to begin with? Many functional programmers prefer to avoid
subtyping because it plays poorly with implicit resolution and type inference,
but there could be an argument to use it here. As always the best decisions
depend on the context in which the library will be used.
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Chapter 20

Case Study: CRDTs

In this case study we will explore Commutative Replicated Data Types (CRDTs),
a family of data structures that can be used to reconcile eventually consistent
data.

We’ll start by describing the utility and difficulty of eventually consistent
systems, then show how we can use monoids and their extensions to solve
the issues that arise. Finally, we will model the solutions in Scala.

Our goal here is to focus on the implementation in Scala of a particular type
of CRDT. We’re not aiming at a comprehensive survey of all CRDTs. CRDTs
are a fast‐moving field and we advise you to read the literature to learn about
more.

20.1 Eventual Consistency

As soon as a system scales beyond a single machine we have to make a
fundamental choice about how we manage data.

One approach is to build a system that is consistent, meaning that all machines
have the same view of data. For example, if a user changes their password
then all machines that store a copy of that password must accept the change
before we consider the operation to have completed successfully.

447
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Consistent systems are easy to work with but they have their disadvantages.
They tend to have high latency because a single change can result in many
messages being sent between machines. They also tend to have relatively low
uptime because outages can cut communications between machines creating
a network partition. When there is a network partition, a consistent system
may refuse further updates to prevent inconsistencies across machines.

An alternative approach is an eventually consistent system. This means that
at any particular point in time machines are allowed to have differing views
of data. However, if all machines can communicate and there are no further
updates they will eventually all have the same view of data.

Eventually consistent systems require less communication between machines
so latency can be lower. A partitioned machine can still accept updates and
reconcile its changes when the network is fixed, so systems can also have
better uptime.

The big question is: how do we do this reconciliation between machines?
CRDTs provide one approach to the problem.

20.2 The GCounter

Let’s look at one particular CRDT implementation. Then we’ll attempt to
generalise properties to see if we can find a general pattern.

The data structure we will look at is called a GCounter. It is a distributed
increment‐only counter that can be used, for example, to count the number
of visitors to a web site where requests are served by many web servers.

20.2.1 Simple Counters

To see why a straightforward counter won’t work, imagine we have two
servers storing a simple count of visitors. Let’s call the machines A and B.
Each machine is storing an integer counter and the counters all start at zero
as shown in Figure 20.1.
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Machine BMachine A

0 0

Figure 20.1: Simple counters: initial state

5 5

3 2

Machine BMachine A

Add counters

Incoming requestsIncoming requests

Figure 20.2: Simple counters: first round of requests and reconciliation

Now imagine we receive some web traffic. Our load balancer distributes five
incoming requests to A and B, A serving three visitors and B two. The machines
have inconsistent views of the system state that they need to reconcile to
achieve consistency. One reconciliation strategy with simple counters is to
exchange counts and add them as shown in Figure 20.2.

So far so good, but things will start to fall apart shortly. Suppose A serves
a single visitor, which means we’ve seen six visitors in total. The machines
attempt to reconcile state again using addition leading to the answer shown
in Figure 20.3.

This is clearly wrong! The problem is that simple counters don’t give us
enough information about the history of interactions between the machines.
Fortunately we don’t need to store the complete history to get the correct
answer—just a summary of it. Let’s look at how the GCounter solves this
problem.



450 CHAPTER 20. CASE STUDY: CRDTS

11 11

6 5

Machine BMachine A

Add counters

Incorrect result!

Incoming request

Figure 20.3: Simple counters: second round of requests and (incorrect)
reconciliation

Machine BMachine A

A:0
B:0

A:0
B:0

Figure 20.4: GCounter: initial state

20.2.2 GCounters

The first clever idea in the GCounter is to have eachmachine storing a separate
counter for every machine it knows about (including itself). In the previous
example we had two machines, A and B. In this situation both machines would
store a counter for A and a counter for B as shown in Figure 20.4.

The rule with GCounters is that a given machine is only allowed to increment
its own counter. If A serves three visitors and B serves two visitors the counters
look as shown in Figure 20.5.

When two machines reconcile their counters the rule is to take the largest
value stored for each machine. In our example, the result of the first merge
will be as shown in Figure 20.6.

Subsequent incoming web requests are handled using the increment‐own‐
counter rule and subsequent merges are handled using the take‐maximum‐
value rule, producing the same correct values for each machine as shown in
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A:3
B:0

A:0
B:2

Machine BMachine A

Incoming requestsIncoming requests

Figure 20.5: GCounter: first round of web requests

A:3
B:2

A:3
B:2

A:3
B:0

A:0
B:2

Machine BMachine A

Merge, take max

Incoming requestsIncoming requests

Figure 20.6: GCounter: first reconciliation

Figure 20.7.

GCounters allow each machine to keep an accurate account of the state of
the whole system without storing the complete history of interactions. If a
machine wants to calculate the total traffic for the whole web site, it sums
up all the per‐machine counters. The result is accurate or near‐accurate
depending on how recently we performed a reconciliation. Eventually,
regardless of network outages, the system will always converge on a
consistent state.

20.2.3 Exercise: GCounter Implementation

We can implement a GCounter with the following interface, where we
represent machine IDs as Strings.
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A:4
B:2

A:4
B:2

A:4
B:2

A:3
B:2

Machine BMachine A

Merge, take max

Correct result!

Incoming request

Figure 20.7: GCounter: second reconciliation

final case class GCounter(counters: Map[String, Int]) {

def increment(machine: String, amount: Int) =

???

def merge(that: GCounter): GCounter =

???

def total: Int =

???

}

Finish the implementation!

See the solution

20.3 Generalisation

We’ve now created a distributed, eventually consistent, increment‐only
counter. This is a useful achievement but we don’t want to stop here. In this
section we will attempt to abstract the operations in the GCounter so it will
work with more data types than just natural numbers.

The GCounter uses the following operations on natural numbers:

• addition (in increment and total);
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• maximum (in merge);
• and the identity element 0 (in increment and merge).

You can probably guess that there’s amonoid in here somewhere, but let’s look
in more detail at the properties we’re relying on.

As a refresher, in Chapter 7 we saw that monoids must satisfy two laws. The
binary operation + must be associative:

(a + b)+ c == a + (b + c)

and the empty element must be an identity:

0 + a == a + 0 == a

We need an identity in increment to initialise the counter. We also rely on
associativity to ensure the specific sequence of merges gives the correct value.

In totalwe implicitly rely on associativity and commutativity to ensure we get
the correct value no matter what arbitrary order we choose to sum the per‐
machine counters. We also implicitly assume an identity, which allows us to
skip machines for which we do not store a counter.

The properties of merge are a bit more interesting. We rely on commutativity
to ensure that machine A merging with machine B yields the same result as
machine Bmerging with machine A. We need associativity to ensure we obtain
the correct result when three or moremachines are merging data. We need an
identity element to initialise empty counters. Finally, we need an additional
property, called idempotency, to ensure that if two machines hold the same
data in a per‐machine counter, merging data will not lead to an incorrect
result. Idempotent operations are ones that return the same result again and
again if they are executed multiple times. Formally, a binary operation max is
idempotent if the following relationship holds:

a max a = a

Written more compactly, we have:
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Method Identity Commutative Associative Idempotent

increment Y N Y N
merge Y Y Y Y
total Y Y Y N

From this we can see that

• increment requires a monoid;
• total requires a commutative monoid; and
• merge required an idempotent commutative monoid, also called a
bounded semilattice.

Since increment and get both use the same binary operation (addition) it’s usual
to require the same commutative monoid for both.

This investigation demonstrates the powers of thinking about properties
or laws of abstractions. Now we have identified these properties we can
substitute the natural numbers used in our GCounter with any data type with
operations satisfying these properties. A simple example is a set, with the
binary operation being union and the identity element the empty set. With
this simple substitution of Int for Set[A] we can create a GSet type.

20.3.1 Implementation

Let’s implement this generalisation in code. Remember increment and total

require a commutative monoid and merge requires a bounded semilattice (or
idempotent commutative monoid).

Cats provides a type class for both Monoid and CommutativeMonoid, but doesn’t
provide one for bounded semilattice¹. That’s why we’re going to implement
our own BoundedSemiLattice type class.

¹A closely related library called Spire already provides that abstractions.

https://github.com/non/spire
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import cats.kernel.CommutativeMonoid

trait BoundedSemiLattice[A] extends CommutativeMonoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

In the implementation above, BoundedSemiLattice[A] extends
CommutativeMonoid[A] because a bounded semilattice is a commutative
monoid (a commutative idempotent one, to be exact).

20.3.2 Exercise: BoundedSemiLattice Instances

Implement BoundedSemiLattice type class instances for Ints and for Sets. The
instance for Int will technically only hold for non‐negative numbers, but you
don’t need to model non‐negativity explicitly in the types.

See the solution

20.3.3 Exercise: Generic GCounter

Using CommutativeMonoid and BoundedSemiLattice, generalise GCounter.

When you implement this, look for opportunities to use methods and syntax
on Monoid to simplify your implementation. This is a good example of how type
class abstractions work at multiple levels in our code. We’re using monoids to
design a large component—our CRDTs—but they are also useful in the small,
simplifying our code and making it shorter and clearer.

See the solution

20.4 Abstracting GCounter to a Type Class

We’ve created a generic GCounter that works with any value that has
instances of BoundedSemiLattice and CommutativeMonoid. However we’re still
tied to a particular representation of the map from machine IDs to values.
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There is no need to have this restriction, and indeed it can be useful to abstract
away from it. There aremany key‐value stores thatwewant toworkwith, from
a simple Map to a relational database.

If we define a GCounter type class we can abstract over different concrete
implementations. This allows us to, for example, seamlessly substitute an in‐
memory store for a persistent store when we want to change performance
and durability tradeoffs.

There are a number of ways we can implement this. One approach is to
define a GCounter type class with dependencies on CommutativeMonoid and
BoundedSemiLattice. Wedefine this as a type class that takes a type constructor
with two type parameters represent the key and value types of the map
abstraction.

trait GCounter[F[_,_],K, V] {

def increment(f: F[K, V])(k: K, v: V)

(implicit m: CommutativeMonoid[V]): F[K, V]

def merge(f1: F[K, V], f2: F[K, V])

(implicit b: BoundedSemiLattice[V]): F[K, V]

def total(f: F[K, V])

(implicit m: CommutativeMonoid[V]): V

}

object GCounter {

def apply[F[_,_], K, V]

(implicit counter: GCounter[F, K, V]) =

counter

}

Try defining an instance of this type class for Map. You should be able to
reuse your code from the case class version of GCounter with some minor
modifications.

See the solution

You should be able to use your instance as follows:
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import cats.instances.int._ // for Monoid

val g1 = Map("a" -> 7, "b" -> 3)

val g2 = Map("a" -> 2, "b" -> 5)

val counter = GCounter[Map, String, Int]

val merged = counter.merge(g1, g2)

// merged: Map[String, Int] = Map("a" -> 7, "b" -> 5)

val total = counter.total(merged)

// total: Int = 12

The implementation strategy for the type class instance is a bit unsatisfying.
Although the structure of the implementation will be the same for most
instances we define, we won’t get any code reuse.

20.5 Abstracting a Key Value Store

One solution is to capture the idea of a key‐value store within a type class,
and then generate GCounter instances for any type that has a KeyValueStore

instance. Here’s the code for such a type class:

trait KeyValueStore[F[_,_]] {

def put[K, V](f: F[K, V])(k: K, v: V): F[K, V]

def get[K, V](f: F[K, V])(k: K): Option[V]

def getOrElse[K, V](f: F[K, V])(k: K, default: V): V =

get(f)(k).getOrElse(default)

def values[K, V](f: F[K, V]): List[V]

}

Implement your own instance for Map.

See the solution

With our type class in place we can implement syntax to enhance data types
for which we have instances:
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implicit class KvsOps[F[_,_], K, V](f: F[K, V]) {

def put(key: K, value: V)

(implicit kvs: KeyValueStore[F]): F[K, V] =

kvs.put(f)(key, value)

def get(key: K)(implicit kvs: KeyValueStore[F]): Option[V] =

kvs.get(f)(key)

def getOrElse(key: K, default: V)

(implicit kvs: KeyValueStore[F]): V =

kvs.getOrElse(f)(key, default)

def values(implicit kvs: KeyValueStore[F]): List[V] =

kvs.values(f)

}

Now we can generate GCounter instances for any data type that has instances
of KeyValueStore and CommutativeMonoid using an implicit def:

implicit def gcounterInstance[F[_,_], K, V]

(implicit kvs: KeyValueStore[F], km: CommutativeMonoid[F[K, V]]):

GCounter[F, K, V] =

new GCounter[F, K, V] {

def increment(f: F[K, V])(key: K, value: V)

(implicit m: CommutativeMonoid[V]): F[K, V] = {

val total = f.getOrElse(key, m.empty) |+| value

f.put(key, total)

}

def merge(f1: F[K, V], f2: F[K, V])

(implicit b: BoundedSemiLattice[V]): F[K, V] =

f1 |+| f2

def total(f: F[K, V])(implicit m: CommutativeMonoid[V]): V =

f.values.combineAll

}

The complete code for this case study is quite long, but most of it is boilerplate
setting up syntax for operations on the type class. We can cut down on this
using compiler plugins such as Simulacrum and Kind Projector.

https://github.com/mpilquist/simulacrum
https://github.com/typelevel/kind-projector
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20.6 Summary

In this case study we’ve seen how we can use type classes to model a simple
CRDT, the GCounter, in Scala. Our implementation gives us a lot of flexibility
and code reuse: we aren’t tied to the data type we “count”, nor to the data
type that maps machine IDs to counters.

The focus in this case study has been on using the tools that Scala provides,
not on exploring CRDTs. There are many other CRDTs, some of which operate
in a similar manner to the GCounter, and some of which have very different
implementations. A fairly recent survey gives a good overview of many of the
basic CRDTs. However this is an active area of research andwe encourage you
to read the recent publications in the field if CRDTs and eventually consistency
interest you.

https://hal.inria.fr/inria-00609399v2/document
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Part V

Appendices
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Appendix A

Solutions for: Algebraic Data
Types

A.1 Tree

We can directly translate this binary tree into Scala. Here’s the Scala 3 version.

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

}

In the Scala 2 encoding we write

sealed abstract class Tree[A] extends Product with Serializable

final case class Leaf[A](value: A) extends Tree[A]

final case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A

]

Return to the exercise
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A.2 Methods for Tree

I chose to use pattern matching to implement these methods. I’m using the
Scala 3 encoding so I have no choice.

I start by creating the method declarations with empty bodies.

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def size: Int =

???

def contains(element: A): Boolean =

???

def map[B](f: A => B): Tree[B] =

???

}

Now these methods all transform an algebraic data type so I can implement
them using structural recursion. I write down the structural recursion skeleton
for Tree, remembering to apply the recursion rule.

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def size: Int =

this match {

case Leaf(value) => ???

case Node(left, right) => left.size ??? right.size

}

def contains(element: A): Boolean =

this match {

case Leaf(value) => ???

case Node(left, right) => left.contains(element) ??? right.

contains(element)

}
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def map[B](f: A => B): Tree[B] =

this match {

case Leaf(value) => ???

case Node(left, right) => left.map(f) ??? right.map(f)

}

}

Now I can use the other reasoning techniques to complete the method
declarations. Let’s work through size.

def size: Int =

this match {

case Leaf(value) => 1

case Node(left, right) => left.size ??? right.size

}

I can reason independently by case. The size of a Leaf is, by definition, 1.

def size: Int =

this match {

case Leaf(value) => 1

case Node(left, right) => left.size ??? right.size

}

Now I can use the rule for reasoning about recursion: I assume the recursive
calls successfully compute the size of the left and right children. What is the
size then of the combined tree? It must be the sum of the size of the children.
With this, I’m done.

def size: Int =

this match {

case Leaf(value) => 1

case Node(left, right) => left.size + right.size

}

I can use the same process to work through the other two methods, giving me
the complete solution shown below.
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enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def size: Int =

this match {

case Leaf(value) => 1

case Node(left, right) => left.size + right.size

}

def contains(element: A): Boolean =

this match {

case Leaf(value) => element == value

case Node(left, right) => left.contains(element) || right.

contains(element)

}

def map[B](f: A => B): Tree[B] =

this match {

case Leaf(value) => Leaf(f(value))

case Node(left, right) => Node(left.map(f), right.map(f))

}

}

Return to the exercise

A.3 Tree Fold

I start by add the method declaration without a body.

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def fold[B]: B =

???

}

Next step is to add the structural recursion skeleton.
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enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def fold[B]: B =

this match {

case Leaf(value) => ???

case Node(left, right) => left.fold ??? right.fold

}

}

Now I follow the types to add the method parameters. For the Leaf case we
want a function of type A => B.

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def fold[B](leaf: A => B): B =

this match {

case Leaf(value) => leaf(value)

case Node(left, right) => left.fold ??? right.fold

}

}

For the Node case we want a function that combines the two recursive results,
and therefore has type (B, B)=> B.

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def fold[B](leaf: A => B)(node: (B, B) => B): B =

this match {

case Leaf(value) => leaf(value)

case Node(left, right) => node(left.fold(leaf)(node), right.fold

(leaf)(node))

}

}

Return to the exercise
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A.4 Using Fold

enum Tree[A] {

case Leaf(value: A)

case Node(left: Tree[A], right: Tree[A])

def fold[B](leaf: A => B)(node: (B, B) => B): B =

this match {

case Leaf(value) => leaf(value)

case Node(left, right) => node(left.fold(leaf)(node), right.fold

(leaf)(node))

}

def size: Int =

this.fold(_ => 1)(_ + _)

def contains(element: A): Boolean =

this.fold(_ == element)(_ || _)

def map[B](f: A => B): Tree[B] =

this.fold(v => Leaf(f(v)))((l, r) => Node(l, r))

}

Return to the exercise

A.5 Iterate

object MyList {

def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A =>

A): MyList[B] =

if stop(seed) then MyList.Empty()

else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

def fill[A](n: Int)(elem: => A): MyList[A] =

unfold(n)(_ == 0)(_ => elem, _ - 1)

def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =

unfold((len, start)){

(len, _) => len == 0,

(_, start) => start,
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(len, start) => (len - 1, f(start))

}

}

We should check that this works.

List.iterate(0, 5)(x => x - 1)

// res11: List[Int] = List(0, -1, -2, -3, -4)

MyList.iterate(0, 5)(x => x - 1)

// res12: MyList[Int] = MyList(0, -1, -2, -3, -4)

Return to the exercise

A.6 Map

def map[B](f: A => B): MyList[B] =

MyList.unfold(this)(

_.isEmpty,

pair => f(pair.head),

pair => pair.tail

)

List.iterate(0, 5)(x => x + 1).map(x => x * 2)

// res13: List[Int] = List(0, 2, 4, 6, 8)

MyList.iterate(0, 5)(x => x + 1).map(x => x * 2)

// res14: MyList[Int] = MyList(0, 2, 4, 6, 8)

Return to the exercise

A.7 Identities

It’s Unit, because adding Unit to any product doesn’t add anymore information.
So, Int contains exactly as much information as Int × Unit (written as the
tuple (Int, Unit) in Scala).

Return to the exercise
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A.8 Identities Part 2

It’s Nothing, following the same reasoning as products: a case of Nothing adds
no further information (and we cannot even create a value with this type.)

Return to the exercise



Appendix B

Solutions for: Objects as Codata

B.1 Stream Combinators

For all of these methods I found that structural corecursion was the most
natural way to tackle them. You could start with structural recursion, though.

You might be worried about the inefficiency of filter. That’s something we’ll
discuss a bit later.

trait Stream[A] {

def head: A

def tail: Stream[A]

def filter(pred: A => Boolean): Stream[A] = {

val self = this

new Stream[A] {

def head: A = {

def loop(stream: Stream[A]): A =

if pred(stream.head) then stream.head

else loop(stream.tail)

loop(self)

}

def tail: Stream[A] = {
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def loop(stream: Stream[A]): Stream[A] =

if pred(stream.head) then stream.tail.filter(pred)

else loop(stream.tail)

loop(self)

}

}

}

def zip[B](that: Stream[B]): Stream[(A, B)] = {

val self = this

new Stream[(A, B)] {

def head: (A, B) = (self.head, that.head)

def tail: Stream[(A, B)] =

self.tail.zip(that.tail)

}

}

def scanLeft[B](zero: B)(f: (B, A) => B): Stream[B] = {

val self = this

new Stream[B] {

def head: B = zero

def tail: Stream[B] =

self.tail.scanLeft(f(zero, self.head))(f)

}

}

}

Return to the exercise

B.2 Or and Not

We can follow the same structure as and.

def or(l: Bool, r: Bool): Bool =

new Bool {

def `if`[A](t: A)(f: A): A =

l.`if`(True)(r).`if`(t)(f)
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}

def not(b: Bool): Bool =

new Bool {

def `if`[A](t: A)(f: A): A =

b.`if`(False)(True).`if`(t)(f)

}

Once again, we can test the entire truth table.

or(True, True).`if`("yes")("no")

// res5: String = "yes"

or(True, False).`if`("yes")("no")

// res6: String = "yes"

or(False, True).`if`("yes")("no")

// res7: String = "yes"

or(False, False).`if`("yes")("no")

// res8: String = "no"

not(True).`if`("yes")("no")

// res9: String = "no"

not(False).`if`("yes")("no")

// res10: String = "yes"

Return to the exercise

B.3 Sets

I used structural corecursion to implement these methods. I decided to name
the subclasses, as I think it’s a little bit clearer what’s going on in this case.

trait Set[A] {

def contains(elt: A): Boolean

def insert(elt: A): Set[A] =

InsertOneSet(elt, this)

def union(that: Set[A]): Set[A] =
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UnionSet(this, that)

}

final class InsertOneSet[A](element: A, source: Set[A])

extends Set[A] {

def contains(elt: A): Boolean =

elt == element || source.contains(elt)

}

final class UnionSet[A](first: Set[A], second: Set[A])

extends Set[A] {

def contains(elt: A): Boolean =

first.contains(elt) || second.contains(elt)

}

Return to the exercise

B.4 Sets Part 2

I implemented Evens using an object. This is possible because all possible
instances of this set are the same, so we only need one instance.

object Evens extends Set[Int] {

def contains(elt: Int): Boolean =

(elt % 2 == 0)

}

It turns out, perhaps surprisingly, that this works. Let’s define a few sets using
Evens and ListSet.

val evensAndOne = Evens.insert(1)

val evensAndOthers =

Evens.union(ListSet.empty.insert(1).insert(3))

Now show that they work as expected.
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evensAndOne.contains(1)

// res1: Boolean = true

evensAndOthers.contains(1)

// res2: Boolean = true

evensAndOne.contains(2)

// res3: Boolean = true

evensAndOthers.contains(2)

// res4: Boolean = true

evensAndOne.contains(3)

// res5: Boolean = false

evensAndOthers.contains(3)

// res6: Boolean = true

Return to the exercise

B.5 Sets Part 3

final class IndicatorSet[A](indicator: A => Boolean)

extends Set[A] {

def contains(elt: A): Boolean =

indicator(elt)

}

To test this, let’s define the infinite set of odd integers.

val odds = IndicatorSet[Int](_ % 2 == 1)

Now we’ll show it works as expected.

odds.contains(1)

// res7: Boolean = true

odds.contains(2)

// res8: Boolean = false

odds.contains(3)

// res9: Boolean = true

Taking the union of even and odd integers gives us a set that contains all
integers.
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val integers = Evens.union(odds)

It has the expected behaviour.

integers.contains(1)

// res10: Boolean = true

integers.contains(2)

// res11: Boolean = true

integers.contains(3)

// res12: Boolean = true

Return to the exercise



Appendix C

Solutions for: Contextual
Abstraction

C.1 Display Library

These steps define the three main components of our type class. First we
define Display—the type class itself:

trait Display[A] {

def display(value: A): String

}

Then we define some default instances of Display and package them in the
Display companion object:

object Display {

given stringDisplay: Display[String] with {

def display(input: String) = input

}

given intDisplay: Display[Int] with {

def display(input: Int) = input.toString

}
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}

Finally we extend the Display companion object to provide a basic interface:

object Display {

given stringDisplay: Display[String] with {

def display(input: String) = input

}

given intDisplay: Display[Int] with {

def display(input: Int) = input.toString

}

def display[A](input: A)(using p: Display[A]): String =

p.display(input)

def print[A](input: A)(using Display[A]): Unit =

println(display(input))

}

Notice that the Display instance on print is anonymous. This is allowed in
Scala 3, and works because we only pass it to display.

Return to the exercise

C.2 Using the Library

This is a standard use of the type class pattern. First we define custom data
type for our application:

final case class Cat(name: String, age: Int, color: String)

Then we define type class instances for the types we care about. These either
go into the companion object of Cat or a separate object to act as a namespace:
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given catDisplay: Display[Cat] = new Display[Cat] {

def display(cat: Cat) = {

val name = Display.display(cat.name)

val age = Display.display(cat.age)

val color = Display.display(cat.color)

s"$name is a $age year-old $color cat."

}

}

Finally, we use the type class by bringing the relevant instances into scope
and using interface object/syntax. If we defined the instances in companion
objects Scala brings them into scope for us automatically. Otherwise we use
an import to access them:

val cat = Cat("Garfield", 41, "ginger and black")

Display.print(cat)

// Garfield is a 41 year-old ginger and black cat.

Return to the exercise

C.3 Better Syntax

First we define DisplaySyntax with the extension methods we want.

object DisplaySyntax {

extension [A](value: A)(using p: Display[A]) {

def display: String = p.display(value)

def print: Unit = Display.print(value)

}

}

Now we can show everything working by calling print on a Cat.
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import DisplaySyntax.*

Cat("Garfield", 41, "ginger and black").print

// Garfield is a 41 year-old ginger and black cat.

We get a compile error if we haven’t defined an instance of Display for the
relevant type:

import java.util.Date

new Date().print

// error:

// value print is not a member of java.util.Date.

// An extension method was tried, but could not be fully constructed:

//

// repl.MdocSession.MdocApp1.DisplaySyntax.print[java.util.Date](

// new java.util.Date())(

// /* missing */summon[repl.MdocSession.MdocApp1.Display[java.

util.Date]])

//

// failed with:

//

// No given instance of type repl.MdocSession.MdocApp1.Display

[java.util.Date] was found for parameter p of method print in

object DisplaySyntax

// new Date().print

// ^^^^^^^^^^^^^^^^

Return to the exercise
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Solutions for: Reified Interpreters

D.1 Arithmetic

The trick here is to recognize how the textual description relates to code, and
to apply reification correctly.

enum Expression {

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

}

object Expression {

def apply(value: Double): Expression =

Literal(value)

}

Return to the exercise

D.2 Arithmetic Part 2

Our interpreter is a structural recursion.
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enum Expression {

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

def eval: Double =

this match {

case Literal(value) => value

case Addition(left, right) => left.eval + right.eval

case Subtraction(left, right) => left.eval - right.eval

case Multiplication(left, right) => left.eval * right.eval

case Division(left, right) => left.eval / right.eval

}

}

object Expression {

def apply(value: Double): Expression =

Literal(value)

}

Return to the exercise

D.3 Arithmetic Part 3

Here’s the complete code.

enum Expression {

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

def +(that: Expression): Expression =

Addition(this, that)

def -(that: Expression): Expression =

Subtraction(this, that)
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def *(that: Expression): Expression =

Multiplication(this, that)

def /(that: Expression): Expression =

Division(this, that)

def eval: Double =

this match {

case Literal(value) => value

case Addition(left, right) => left.eval + right.eval

case Subtraction(left, right) => left.eval - right.eval

case Multiplication(left, right) => left.eval * right.eval

case Division(left, right) => left.eval / right.eval

}

}

object Expression {

def apply(value: Double): Expression =

Literal(value)

}

Here’s an example showing use, and that the code is correct.

val fortyTwo = ((Expression(15.0) + Expression(5.0)) * Expression(2.0)

+ Expression(2.0)) / Expression(1.0)

fortyTwo.eval

// res2: Double = 42.0

Return to the exercise

D.4 CPS Arithmetic

The continuations have a slightly different structure to the regular expression
example. In the regular expression example, all the information needs by a
continuation is either found in the parameter to the continuation (the index)
or values extracted via pattern matching. In the arithmetic code we need
values from previous continuations that are not passed as parameters. This is
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to compute binary operations like additions. The solution is to capture these
values within the environment of the closure that represents the continuation.

type Continuation = Double => Double

enum Expression {

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

def eval: Double = {

def loop(expr: Expression, cont: Continuation): Double =

expr match {

case Literal(value) => cont(value)

case Addition(left, right) =>

loop(left, l => loop(right, r => cont(l + r)))

case Subtraction(left, right) =>

loop(left, l => loop(right, r => cont(l - r)))

case Multiplication(left, right) =>

loop(left, l => loop(right, r => cont(l * r)))

case Division(left, right) =>

loop(left, l => loop(right, r => cont(l / r)))

}

loop(this, identity)

}

def +(that: Expression): Expression =

Addition(this, that)

def -(that: Expression): Expression =

Subtraction(this, that)

def *(that: Expression): Expression =

Multiplication(this, that)

def /(that: Expression): Expression =

Division(this, that)

}

object Expression {
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def apply(value: Double): Expression =

Literal(value)

}

Return to the exercise

D.5 Exericse: Trampolined Arithmetic

The process to produce this code is very similar to the regular expression
example. We just identify all the different types of calls (which are the same
as the regular expression example) and reify them.

type Continuation = Double => Call

enum Call {

case Continue(value: Double, k: Continuation)

case Loop(expr: Expression, k: Continuation)

case Done(result: Double)

}

enum Expression {

case Literal(value: Double)

case Addition(left: Expression, right: Expression)

case Subtraction(left: Expression, right: Expression)

case Multiplication(left: Expression, right: Expression)

case Division(left: Expression, right: Expression)

def eval: Double = {

def loop(expr: Expression, cont: Continuation): Call =

expr match {

case Literal(value) => Call.Continue(value, cont)

case Addition(left, right) =>

Call.Loop(

left,

l => Call.Loop(right, r => Call.Continue(l + r, cont))

)

case Subtraction(left, right) =>

Call.Loop(

left,
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l => Call.Loop(right, r => Call.Continue(l - r, cont))

)

case Multiplication(left, right) =>

Call.Loop(

left,

l => Call.Loop(right, r => Call.Continue(l * r, cont))

)

case Division(left, right) =>

Call.Loop(

left,

l => Call.Loop(right, r => Call.Continue(l / r, cont))

)

}

def trampoline(call: Call): Double =

call match {

case Call.Continue(value, k) => trampoline(k(value))

case Call.Loop(expr, k) => trampoline(loop(expr, k))

case Call.Done(result) => result

}

trampoline(loop(this, x => Call.Done(x)))

}

def +(that: Expression): Expression =

Addition(this, that)

def -(that: Expression): Expression =

Subtraction(this, that)

def *(that: Expression): Expression =

Multiplication(this, that)

def /(that: Expression): Expression =

Division(this, that)

}

object Expression {

def apply(value: Double): Expression =

Literal(value)

}

Return to the exercise
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Solutions for: Using Cats

E.1 Cat Show

First let’s import everything we need from Cats.

import cats.*

import cats.syntax.all.*

Our definition of Cat remains the same:

final case class Cat(name: String, age: Int, color: String)

In the companion object we replace our Display instance with an instance of
Show using one of the definition helpers discussed above:

given catShow: Show[Cat] = Show.show[Cat] { cat =>

val name = cat.name.show

val age = cat.age.show

val color = cat.color.show

s"$name is a $age year-old $color cat."

}

Finally, we use the Show interface syntax to print our instance of Cat:
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println(Cat("Garfield", 38, "ginger and black").show)

// Garfield is a 38 year-old ginger and black cat.

Return to the exercise

E.2 Equality, Liberty, and Felinity

First we need our Cats imports. In this exercise we’ll be using the Eq type class
and the Eq interface syntax, so we start by importing that.

import cats.*

import cats.syntax.all.*

Our Cat class is the same as ever:

final case class Cat(name: String, age: Int, color: String)

Webring the Eq instances for Int and String into scope for the implementation
of Eq[Cat]:

given catEqual: Eq[Cat] =

Eq.instance[Cat] { (cat1, cat2) =>

(cat1.name === cat2.name ) &&

(cat1.age === cat2.age ) &&

(cat1.color === cat2.color)

}

Finally, we test things out in a sample application:

val cat1 = Cat("Garfield", 38, "orange and black")

// cat1: Cat = Cat(name = "Garfield", age = 38, color = "orange and

black")

val cat2 = Cat("Heathcliff", 32, "orange and black")

// cat2: Cat = Cat(name = "Heathcliff", age = 32, color = "orange and

black")

cat1 === cat2
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// res15: Boolean = false

cat1 =!= cat2

// res16: Boolean = true

val optionCat1 = Option(cat1)

// optionCat1: Option[Cat] = Some(

// value = Cat(name = "Garfield", age = 38, color = "orange and

black")

// )

val optionCat2 = Option.empty[Cat]

// optionCat2: Option[Cat] = None

optionCat1 === optionCat2

// res17: Boolean = false

optionCat1 =!= optionCat2

// res18: Boolean = true

Return to the exercise
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Appendix F

Solutions for: Monoids and
Semigroups

F.1 The Truth About Monoids

There are at least four monoids for Boolean! First, we have and with operator
&& and identity true:

given booleanAndMonoid: Monoid[Boolean] with {

def combine(a: Boolean, b: Boolean) = a && b

def empty = true

}

Second, we have or with operator || and identity false:

given booleanOrMonoid: Monoid[Boolean] with {

def combine(a: Boolean, b: Boolean) = a || b

def empty = false

}

Third, we have exclusive or with identity false:
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given booleanEitherMonoid: Monoid[Boolean] with {

def combine(a: Boolean, b: Boolean) =

(a && !b) || (!a && b)

def empty = false

}

Finally, we have exclusive nor (the negation of exclusive or) with identity true:

given booleanXnorMonoid: Monoid[Boolean] with {

def combine(a: Boolean, b: Boolean) =

(!a || b) && (a || !b)

def empty = true

}

Showing that the identity law holds in each case is straightforward. Similarly
associativity of the combine operation can be shown by enumerating the cases.

Return to the exercise

F.2 All Set for Monoids

Set union forms a monoid along with the empty set:

given setUnionMonoid[A]: Monoid[Set[A]] with {

def combine(a: Set[A], b: Set[A]) = a.union(b)

def empty = Set.empty[A]

}

We need to define setUnionMonoid as a method rather than a value so we can
accept the type parameter A. The type parameter allows us to use the same
definition to summon Monoids for Sets of any type of data:

val intSetMonoid = Monoid[Set[Int]]

val strSetMonoid = Monoid[Set[String]]
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intSetMonoid.combine(Set(1, 2), Set(2, 3))

// res18: Set[Int] = Set(1, 2, 3)

strSetMonoid.combine(Set("A", "B"), Set("B", "C"))

// res19: Set[String] = Set("A", "B", "C")

Set intersection forms a semigroup, but doesn’t form a monoid because it has
no identity element:

given setIntersectionSemigroup[A]: Semigroup[Set[A]] with {

def combine(a: Set[A], b: Set[A]) =

a.intersect(b)

}

Set complement and set difference are not associative, so they cannot be
considered for either monoids or semigroups. However, symmetric difference
(the union less the intersection) does form a monoid with the empty set:

given symDiffMonoid[A]: Monoid[Set[A]] with {

def combine(a: Set[A], b: Set[A]): Set[A] =

(a.diff(b)).union(b.diff(a))

def empty: Set[A] = Set.empty

}

Return to the exercise

F.3 Adding All The Things

We can write the addition as a foldLeft using 0 and the + operator:

def add(items: List[Int]): Int =

items.foldLeft(0)(_ + _)

We can alternatively write the fold using Monoids, although there’s not a
compelling use case for this yet:
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import cats.Monoid

import cats.syntax.all.*

def add(items: List[Int]): Int =

items.foldLeft(Monoid[Int].empty)(_ |+| _)

Return to the exercise

F.4 Adding All The Things Part 2

Now there is a use case for Monoids. We need a single method that adds Ints
and instances of Option[Int]. We can write this as a generic method that
accepts an implicit Monoid as a parameter:

import cats.Monoid

import cats.syntax.all.*

def add[A](items: List[A])(using monoid: Monoid[A]): A =

items.foldLeft(monoid.empty)(_ |+| _)

We can optionally use Scala’s context bound syntax to write the same code in
a shorter way:

def add[A: Monoid](items: List[A]): A =

items.foldLeft(Monoid[A].empty)(_ |+| _)

We can use this code to add values of type Int and Option[Int] as requested:

add(List(1, 2, 3))

// res9: Int = 6

add(List(Some(1), None, Some(2), None, Some(3)))

// res10: Option[Int] = Some(value = 6)

Note that if we try to add a list consisting entirely of Some values, we get a
compile error:
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add(List(Some(1), Some(2), Some(3)))

// error:

// No given instance of type cats.kernel.Monoid[Some[Int]] was found

for a context parameter of method add in object MdocApp3

This happens because the inferred type of the list is List[Some[Int]], while
Cats will only generate a Monoid for Option[Int]. We’ll see how to get around
this in a moment.

Return to the exercise

F.5 Adding All The Things Part 3

Easy—we simply define a monoid instance for Order!

given monoid: Monoid[Order] with {

def combine(o1: Order, o2: Order) =

Order(

o1.totalCost + o2.totalCost,

o1.quantity + o2.quantity

)

def empty = Order(0, 0)

}

Return to the exercise
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Appendix G

Solutions for: Functors

G.1 Branching out with Functors

The semantics are similar to writing a Functor for List. We recurse over the
data structure, applying the function to every Leaf we find. The functor laws
intuitively require us to retain the same structure with the same pattern of
Branch and Leaf nodes:

implicit val treeFunctor: Functor[Tree] =

new Functor[Tree] {

def map[A, B](tree: Tree[A])(func: A => B): Tree[B] =

tree match {

case Branch(left, right) =>

Branch(map(left)(func), map(right)(func))

case Leaf(value) =>

Leaf(func(value))

}

}

Let’s use our Functor to transform some Trees:

Branch(Leaf(10), Leaf(20)).map(_ * 2)

// error:

// value map is not a member of repl.MdocSession.MdocApp0.Branch[Int]
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// Branch(Leaf(10), Leaf(20)).map(_ * 2)

// ^

Oops! This falls foul of the same invariance problem we discussed in Section
4.6.1. The compiler can find a Functor instance for Tree but not for Branch or
Leaf. Let’s add some smart constructors to compensate:

object Tree {

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =

Branch(left, right)

def leaf[A](value: A): Tree[A] =

Leaf(value)

}

Now we can use our Functor properly:

Tree.leaf(100).map(_ * 2)

// res9: Tree[Int] = Leaf(value = 200)

Tree.branch(Tree.leaf(10), Tree.leaf(20)).map(_ * 2)

// res10: Tree[Int] = Branch(left = Leaf(value = 20), right = Leaf(

value = 40))

Return to the exercise

G.2 Showing off with Contramap

Here’s a working implementation. We call func to turn the B into an A and then
use our original Display to turn the A into a String. In a small show of sleight
of hand we use a self alias to distinguish the outer and inner Displays:

trait Display[A] { self =>

def display(value: A): String

def contramap[B](func: B => A): Display[B] =
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new Display[B] {

def display(value: B): String =

self.display(func(value))

}

}

def display[A](value: A)(using p: Display[A]): String =

p.display(value)

Return to the exercise

G.3 Showing off with Contramap Part 2

To make the instance generic across all types of Box, we base it on the Display
for the type inside the Box. We can either write out the complete definition
by hand:

given boxDisplay[A](

using p: Display[A]

): Display[Box[A]] with {

def display(box: Box[A]): String =

p.display(box.value)

}

or use contramap to base the new instance on the using clause:

given boxDisplay[A](using p: Display[A]): Display[Box[A]] =

p.contramap[Box[A]](_.value)

Using contramap is much simpler, and conveys the functional programming
approach of building solutions by combining simple building blocks using pure
functional combinators.

Return to the exercise
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G.4 Transformative Thinking with imap

Here’s a working implementation:

trait Codec[A] { self =>

def encode(value: A): String

def decode(value: String): A

def imap[B](dec: A => B, enc: B => A): Codec[B] = {

new Codec[B] {

def encode(value: B): String =

self.encode(enc(value))

def decode(value: String): B =

dec(self.decode(value))

}

}

}

Return to the exercise

G.5 Transformative Thinking with imap Part 2

We can implement this using the imap method of stringCodec:

given doubleCodec: Codec[Double] =

stringCodec.imap[Double](_.toDouble, _.toString)

Return to the exercise

G.6 Transformative Thinking with imap Part 3

We need a generic Codec for Box[A] for any given A. We create this by calling
imap on a Codec[A], which we bring into scope using an implicit parameter:
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given boxCodec[A](using c: Codec[A]): Codec[Box[A]] =

c.imap[Box[A]](Box(_), _.value)

Return to the exercise
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Appendix H

Solutions for: Monads

H.1 Getting Func‐y

At first glance this seems tricky, but if we follow the types we’ll see there’s only
one solution. We are passed a value of type F[A]. Given the tools available
there’s only one thing we can do: call flatMap:

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

flatMap(value)(a => ???)

}

We need a function of type A => F[B] as the second parameter. We have two
function building blocks available: the func parameter of type A => B and the
pure function of type A => F[A]. Combining these gives us our result:

trait Monad[F[_]] {

def pure[A](value: A): F[A]
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def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

flatMap(value)(a => pure(func(a)))

}

Return to the exercise

H.2 Monadic Secret Identities

Let’s start by defining the method signatures:

import cats.Id

def pure[A](value: A): Id[A] =

???

def map[A, B](initial: Id[A])(func: A => B): Id[B] =

???

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =

???

Now let’s look at each method in turn. The pure operation creates an Id[A]

from an A. But A and Id[A] are the same type! All we have to do is return the
initial value:

def pure[A](value: A): Id[A] =

value

pure(123)

// res7: Int = 123

The map method takes a parameter of type Id[A], applies a function of type
A => B, and returns an Id[B]. But Id[A] is simply A and Id[B] is simply B! All we
have to do is call the function—no boxing or unboxing required:
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def map[A, B](initial: Id[A])(func: A => B): Id[B] =

func(initial)

map(123)(_ * 2)

// res8: Int = 246

The final punch line is that, once we strip away the Id type constructors,
flatMap and map are actually identical:

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =

func(initial)

flatMap(123)(_ * 2)

// res9: Int = 246

This ties inwith our understanding of functors andmonads as sequencing type
classes. Each type class allows us to sequence operations ignoring some kind
of complication. In the case of Id there is no complication, making map and
flatMap the same thing.

Notice that we haven’t had to write type annotations in the method bodies
above. The compiler is able to interpret values of type A as Id[A] and vice
versa by the context in which they are used.

The only restrictionwe’ve seen to this is that Scala cannot unify types and type
constructors when searching for given instances. Hence our need to re‐type
Int as Id[Int] in the call to sumSquare at the opening of this section:

sumSquare(3 : Id[Int], 4 : Id[Int])

Return to the exercise

H.3 What is Best?

This is an open question. It’s also kind of a trick question—the answer depends
on the semantics we’re looking for. Some points to ponder:
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• Error recovery is important when processing large jobs. We don’t want
to run a job for a day and then find it failed on the last element.

• Error reporting is equally important. We need to know what went
wrong, not just that something went wrong.

• In a number of cases, we want to collect all the errors, not just the first
one we encountered. A typical example is validating a web form. It’s a
far better experience to report all errors to the user when they submit
a form than to report them one at a time.

Return to the exercise

H.4 Abstracting

We can solve this using pure and raiseError. Note the use of type parameters
to these methods, to aid type inference.

def validateAdult[F[_]](age: Int)(implicit me: MonadError[F, Throwable

]): F[Int] =

if(age >= 18) age.pure[F]

else new IllegalArgumentException("Age must be greater than or equal

to 18").raiseError[F, Int]

Return to the exercise

H.5 Safer Folding using Eval

The easiest way to fix this is to introduce a helper method called foldRightEval
. This is essentially our original method with every occurrence of B replaced
with Eval[B], and a call to Eval.defer to protect the recursive call:
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import cats.Eval

def foldRightEval[A, B](as: List[A], acc: Eval[B])

(fn: (A, Eval[B]) => Eval[B]): Eval[B] =

as match {

case head :: tail =>

Eval.defer(fn(head, foldRightEval(tail, acc)(fn)))

case Nil =>

acc

}

We can redefine foldRight simply in terms of foldRightEval and the resulting
method is stack safe:

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =

foldRightEval(as, Eval.now(acc)) { (a, b) =>

b.map(fn(a, _))

}.value

foldRight((1 to 100000).toList, 0L)(_ + _)

// res24: Long = 5000050000L

Return to the exercise

H.6 Show Your Working

We’ll start by defining a type alias for Writer so we can use it with pure syntax:

import cats.data.Writer

import cats.instances.vector._

import cats.syntax.applicative._ // for pure

type Logged[A] = Writer[Vector[String], A]
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42.pure[Logged]

// res11: WriterT[Id, Vector[String], Int] = WriterT(run = (Vector(),

42))

We’ll import the tell syntax as well:

import cats.syntax.writer._ // for tell

Vector("Message").tell

// res12: WriterT[Id, Vector[String], Unit] = WriterT(

// run = (Vector("Message"), ())

// )

Finally, we’ll import the Semigroup instance for Vector. We need this to map and
flatMap over Logged:

import cats.instances.vector._ // for Monoid

41.pure[Logged].map(_ + 1)

// res13: WriterT[Id, Vector[String], Int] = WriterT(run = (Vector(),

42))

With these in scope, the definition of factorial becomes:

def factorial(n: Int): Logged[Int] =

for {

ans <- if(n == 0) {

1.pure[Logged]

} else {

slowly(factorial(n - 1).map(_ * n))

}

_ <- Vector(s"fact $n $ans").tell

} yield ans

When we call factorial, we now have to run the return value to extract the
log and our factorial:
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val (log, res) = factorial(5).run

// log: Vector[String] = Vector(

// "fact 0 1",

// "fact 1 1",

// "fact 2 2",

// "fact 3 6",

// "fact 4 24",

// "fact 5 120"

// )

// res: Int = 120

We can run several factorials in parallel as follows, capturing their logs
independently without fear of interleaving:

Await.result(Future.sequence(Vector(

Future(factorial(5)),

Future(factorial(5))

)).map(_.map(_.written)), 5.seconds)

// res: scala.collection.immutable.Vector[cats.Id[Vector[String]]] =

// Vector(

// Vector(fact 0 1, fact 1 1, fact 2 2, fact 3 6, fact 4 24, fact

5 120),

// Vector(fact 0 1, fact 1 1, fact 2 2, fact 3 6, fact 4 24, fact

5 120)

// )

Return to the exercise

H.7 Hacking on Readers

Our type alias fixes the Db type but leaves the result type flexible:

type DbReader[A] = Reader[Db, A]

Return to the exercise
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H.8 Hacking on Readers Part 2

Remember: the idea is to leave injecting the configuration until last. This
means setting up functions that accept the config as a parameter and check it
against the concrete user info we have been given:

def findUsername(userId: Int): DbReader[Option[String]] =

Reader(db => db.usernames.get(userId))

def checkPassword(

username: String,

password: String): DbReader[Boolean] =

Reader(db => db.passwords.get(username).contains(password))

Return to the exercise

H.9 Hacking on Readers Part 3

As you might expect, here we use flatMap to chain findUsername and
checkPassword. We use pure to lift a Boolean to a DbReader[Boolean] when the
username is not found:

import cats.syntax.applicative._ // for pure

def checkLogin(

userId: Int,

password: String): DbReader[Boolean] =

for {

username <- findUsername(userId)

passwordOk <- username.map { username =>

checkPassword(username, password)

}.getOrElse {

false.pure[DbReader]

}

} yield passwordOk

Return to the exercise
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H.10 Post‐Order Calculator

The stack operation required is different for operators and operands. For
clarity we’ll implement evalOne in terms of two helper functions, one for each
case:

def evalOne(sym: String): CalcState[Int] =

sym match {

case "+" => operator(_ + _)

case "-" => operator(_ - _)

case "*" => operator(_ * _)

case "/" => operator(_ / _)

case num => operand(num.toInt)

}

Let’s look at operand first. All we have to do is push a number onto the stack.
We also return the operand as an intermediate result:

def operand(num: Int): CalcState[Int] =

State[List[Int], Int] { stack =>

(num :: stack, num)

}

The operator function is a little more complex. We have to pop two operands
off the stack (having the second operand at the top of the stack)i and push
the result in their place. The code can fail if the stack doesn’t have enough
operands on it, but the exercise description allows us to throw an exception
in this case:

def operator(func: (Int, Int) => Int): CalcState[Int] =

State[List[Int], Int] {

case b :: a :: tail =>

val ans = func(a, b)

(ans :: tail, ans)

case _ =>

sys.error("Fail!")

}

Return to the exercise
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H.11 Post‐Order Calculator Part 2

We implement evalAll by folding over the input. We start with a pure
CalcState that returns 0 if the list is empty. We flatMap at each stage, ignoring
the intermediate results as we saw in the example:

import cats.syntax.applicative._ // for pure

def evalAll(input: List[String]): CalcState[Int] =

input.foldLeft(0.pure[CalcState]) { (a, b) =>

a.flatMap(_ => evalOne(b))

}

Return to the exercise

H.12 Post‐Order Calculator Part 3

We’ve done all the hard work now. All we need to do is split the input into
terms and call runA and value to unpack the result:

def evalInput(input: String): Int =

evalAll(input.split(" ").toList).runA(Nil).value

evalInput("1 2 + 3 4 + *")

// res15: Int = 21

Return to the exercise

H.13 Branching out Further with Monads

The code for flatMap is similar to the code for map. Again, we recurse down
the structure and use the results from func to build a new Tree.
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The code for tailRecM is fairly complex regardless of whether we make it tail‐
recursive or not.

If we follow the types, the non‐tail‐recursive solution falls out:

import cats.Monad

implicit val treeMonad: Monad[Tree] = new Monad[Tree] {

def pure[A](value: A): Tree[A] =

Leaf(value)

def flatMap[A, B](tree: Tree[A])

(func: A => Tree[B]): Tree[B] =

tree match {

case Branch(l, r) =>

Branch(flatMap(l)(func), flatMap(r)(func))

case Leaf(value) =>

func(value)

}

def tailRecM[A, B](a: A)(func: A => Tree[Either[A, B]]): Tree[B] = {

flatMap(func(a)) {

case Left(value) =>

tailRecM(value)(func)

case Right(value) =>

Leaf(value)

}

}

}

The solution above is perfectly fine for this exercise. Its only downside is that
Cats cannot make guarantees about stack safety.

The tail‐recursive solution is much harder to write. We adapted this solution
from this Stack Overflow post by Nazarii Bardiuk. It involves an explicit depth
first traversal of the tree, maintaining an open list of nodes to visit and a closed
list of nodes to use to reconstruct the tree:

import cats.Monad

import scala.annotation.tailrec

https://stackoverflow.com/questions/44504790/cats-non-tail-recursive-tailrecm-method-for-monads
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implicit val treeMonad: Monad[Tree] = new Monad[Tree] {

def pure[A](value: A): Tree[A] =

Leaf(value)

def flatMap[A, B](tree: Tree[A])

(func: A => Tree[B]): Tree[B] =

tree match {

case Branch(l, r) =>

Branch(flatMap(l)(func), flatMap(r)(func))

case Leaf(value) =>

func(value)

}

def tailRecM[A, B](arg: A)

(func: A => Tree[Either[A, B]]): Tree[B] = {

@tailrec

def loop(

open: List[Tree[Either[A, B]]],

closed: List[Option[Tree[B]]]): List[Tree[B]] =

open match {

case Branch(l, r) :: next =>

loop(l :: r :: next, None :: closed)

case Leaf(Left(value)) :: next =>

loop(func(value) :: next, closed)

case Leaf(Right(value)) :: next =>

loop(next, Some(pure(value)) :: closed)

case Nil =>

closed.foldLeft(Nil: List[Tree[B]]) { (acc, maybeTree) =>

maybeTree.map(_ :: acc).getOrElse {

acc match {

case left :: right :: tail => branch(left, right) ::

tail

}

}

}

}

loop(List(func(arg)), Nil).head

}

}
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Regardless of which version of tailRecM we define, we can use our Monad to
flatMap and map on Trees:

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatMap

branch(leaf(100), leaf(200)).

flatMap(x => branch(leaf(x - 1), leaf(x + 1)))

// res5: Tree[Int] = Branch(

// left = Branch(left = Leaf(value = 99), right = Leaf(value = 101))

,

// right = Branch(left = Leaf(value = 199), right = Leaf(value =

201))

// )

We can also transform Trees using for comprehensions:

for {

a <- branch(leaf(100), leaf(200))

b <- branch(leaf(a - 10), leaf(a + 10))

c <- branch(leaf(b - 1), leaf(b + 1))

} yield c

// res6: Tree[Int] = Branch(

// left = Branch(

// left = Branch(left = Leaf(value = 89), right = Leaf(value = 91)

),

// right = Branch(left = Leaf(value = 109), right = Leaf(value =

111))

// ),

// right = Branch(

// left = Branch(left = Leaf(value = 189), right = Leaf(value =

191)),

// right = Branch(left = Leaf(value = 209), right = Leaf(value =

211))

// )

// )

The monad for Option provides fail‐fast semantics. The monad for List

provides concatenation semantics. What are the semantics of flatMap for
a binary tree? Every node in the tree has the potential to be replaced with
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a whole subtree, producing a kind of “growing” or “feathering” behaviour,
reminiscent of list concatenation along two axes.

Return to the exercise



Appendix I

Solutions for: Monad
Transformers

I.1 Monads: Transform and Roll Out

This is a relatively simple combination. We want Future on the outside and
Either on the inside, so we build from the inside out using an EitherT of Future:

import cats.data.EitherT

import scala.concurrent.Future

type Response[A] = EitherT[Future, String, A]

Return to the exercise

I.2 Monads: Transform and Roll Out Part 2

import cats.data.EitherT

import scala.concurrent.Future

val powerLevels = Map(

"Jazz" -> 6,

"Bumblebee" -> 8,

517
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"Hot Rod" -> 10

)

import cats.instances.future._ // for Monad

import scala.concurrent.ExecutionContext.Implicits.global

type Response[A] = EitherT[Future, String, A]

def getPowerLevel(ally: String): Response[Int] = {

powerLevels.get(ally) match {

case Some(avg) => EitherT.right(Future(avg))

case None => EitherT.left(Future(s"$ally unreachable"))

}

}

Return to the exercise

I.3 Monads: Transform and Roll Out Part 3

We request the power level from each ally and use map and flatMap to combine
the results:

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =

for {

power1 <- getPowerLevel(ally1)

power2 <- getPowerLevel(ally2)

} yield (power1 + power2) > 15

Return to the exercise

I.4 Monads: Transform and Roll Out Part 4

We use the value method to unpack the monad stack and Await and fold to
unpack the Future and Either:
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import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =

for {

power1 <- getPowerLevel(ally1)

power2 <- getPowerLevel(ally2)

} yield (power1 + power2) > 15

def tacticalReport(ally1: String, ally2: String): String = {

val stack = canSpecialMove(ally1, ally2).value

Await.result(stack, 1.second) match {

case Left(msg) =>

s"Comms error: $msg"

case Right(true) =>

s"$ally1 and $ally2 are ready to roll out!"

case Right(false) =>

s"$ally1 and $ally2 need a recharge."

}

}

Return to the exercise



520 APPENDIX I. SOLUTIONS FOR: MONAD TRANSFORMERS



Appendix J

Solutions for: Semigroupal and
Applicative

J.1 The Product of Lists

This exercise is checking that you understood the definition of product in terms
of flatMap and map.

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatMap

def product[F[_]: Monad, A, B](x: F[A], y: F[B]): F[(A, B)] =

x.flatMap(a => y.map(b => (a, b)))

This code is equivalent to a for comprehension:

def product[F[_]: Monad, A, B](x: F[A], y: F[B]): F[(A, B)] =

for {

a <- x

b <- y

} yield (a, b)

The semantics of flatMap are what give rise to the behaviour for List and
Either:
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import cats.instances.list._ // for Semigroupal

product(List(1, 2), List(3, 4))

// res9: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3), (2, 4))

Return to the exercise

J.2 Parallel List

List does have a Parallel instance, and it zips the List insted of creating the
cartesian product.

We can see by writing a little bit of code.

import cats.instances.list._

(List(1, 2), List(3, 4)).tupled

(List(1, 2), List(3, 4)).parTupled

// res7: List[Tuple2[Int, Int]] = List((1, 3), (2, 4))

Return to the exercise
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Solutions for: Foldable and
Traverse

K.1 Reflecting on Folds

Folding from left to right reverses the list:

List(1, 2, 3).foldLeft(List.empty[Int])((a, i) => i :: a)

// res6: List[Int] = List(3, 2, 1)

Folding right to left copies the list, leaving the order intact:

List(1, 2, 3).foldRight(List.empty[Int])((i, a) => i :: a)

// res7: List[Int] = List(1, 2, 3)

Note that we have to carefully specify the type of the accumulator to avoid a
type error. We use List.empty[Int] to avoid inferring the accumulator type as
Nil.type or List[Nothing]:

List(1, 2, 3).foldRight(Nil)(_ :: _)

// error:

// Found: List[Int]
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// Required: scala.collection.immutable.Nil.type

// List(1, 2, 3).foldRight(Nil)(_ :: _)

// ^^^^^^

Return to the exercise

K.2 Scaf‐fold‐ing Other Methods

Here are the solutions:

def map[A, B](list: List[A])(func: A => B): List[B] =

list.foldRight(List.empty[B]) { (item, accum) =>

func(item) :: accum

}

map(List(1, 2, 3))(_ * 2)

// res9: List[Int] = List(2, 4, 6)

def flatMap[A, B](list: List[A])(func: A => List[B]): List[B] =

list.foldRight(List.empty[B]) { (item, accum) =>

func(item) ::: accum

}

flatMap(List(1, 2, 3))(a => List(a, a * 10, a * 100))

// res10: List[Int] = List(1, 10, 100, 2, 20, 200, 3, 30, 300)

def filter[A](list: List[A])(func: A => Boolean): List[A] =

list.foldRight(List.empty[A]) { (item, accum) =>

if(func(item)) item :: accum else accum

}
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filter(List(1, 2, 3))(_ % 2 == 1)

// res11: List[Int] = List(1, 3)

We’ve provided two definitions of sum, one using scala.math.Numeric (which
recreates the built‐in functionality accurately)…

import scala.math.Numeric

def sumWithNumeric[A](list: List[A])

(implicit numeric: Numeric[A]): A =

list.foldRight(numeric.zero)(numeric.plus)

sumWithNumeric(List(1, 2, 3))

// res12: Int = 6

and one using cats.Monoid (which is more appropriate to the content of this
book):

import cats.Monoid

def sumWithMonoid[A](list: List[A])

(implicit monoid: Monoid[A]): A =

list.foldRight(monoid.empty)(monoid.combine)

import cats.instances.int._ // for Monoid

sumWithMonoid(List(1, 2, 3))

// res13: Int = 6

Return to the exercise

K.3 Traversing with Vectors

The argument is of type List[Vector[Int]], so we’re using the Applicative for
Vector and the return type is going to be Vector[List[Int]].



526 APPENDIX K. SOLUTIONS FOR: FOLDABLE AND TRAVERSE

Vector is a monad, so its semigroupal combine function is based on flatMap.
We’ll end up with a Vector of Lists of all the possible combinations of List(1,
2) and List(3, 4):

listSequence(List(Vector(1, 2), Vector(3, 4)))

// res7: Vector[List[Int]] = Vector(

// List(1, 3),

// List(1, 4),

// List(2, 3),

// List(2, 4)

// )

Return to the exercise

K.4 Traversing with Vectors Part 2

With three items in the input list, we end up with combinations of three Ints:
one from the first item, one from the second, and one from the third:

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

// res9: Vector[List[Int]] = Vector(

// List(1, 3, 5),

// List(1, 3, 6),

// List(1, 4, 5),

// List(1, 4, 6),

// List(2, 3, 5),

// List(2, 3, 6),

// List(2, 4, 5),

// List(2, 4, 6)

// )

Return to the exercise

K.5 Traversing with Options

The arguments to listTraverse are of types List[Int] and Int => Option[

Int], so the return type is Option[List[Int]]. Again, Option is a monad, so
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the semigroupal combine function follows from flatMap. The semantics are
therefore fail‐fast error handling: if all inputs are even, we get a list of outputs.
Otherwise we get None:

process(List(2, 4, 6))

// res12: Option[List[Int]] = Some(value = List(2, 4, 6))

process(List(1, 2, 3))

// res13: Option[List[Int]] = None

Return to the exercise

K.6 Traversing with Validated

The return type here is ErrorsOr[List[Int]], which expands to Validated[List

[String], List[Int]]. The semantics for semigroupal combine on validated are
accumulating error handling, so the result is either a list of even Ints, or a list
of errors detailing which Ints failed the test:

process(List(2, 4, 6))

// res17: Validated[List[String], List[Int]] = Valid(a = List(2, 4, 6)

)

process(List(1, 2, 3))

// res18: Validated[List[String], List[Int]] = Invalid(

// e = List("1 is not even", "3 is not even")

// )

Return to the exercise



528 APPENDIX K. SOLUTIONS FOR: FOLDABLE AND TRAVERSE



Appendix L

Solutions for: Indexed Types

L.1 Torque

Defining Force, Torque, and the unit types is a repeat of the pattern we saw in
the example code.

trait Newtons

trait NewtonMetres

final case class Force[Unit](value: Double)

final case class Torque[Unit](value: Double)

To define the *method on Forcewe need constraints that specify Force's Unit
type is Newtons, and Length's Unit type is Metres. These are both type equalities,
so we can express them with =:=.

final case class Force[Unit](value: Double) {

def *[L](length: Length[L])(using Unit =:= Newtons, L =:= Metres):

Torque[NewtonMetres] =

Torque(this.value * length.value)

}

Return to the exercise

529
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L.2 HTML API Design

Here’s how I implemented it. The structure is very similar to the original
implementation, but where we factored the state into type parameters I also
factored the implementation into types. Notice how we use Head and Body

to accumulate the set of tags that make up the head and body respectively.
We still need to use indexed codata in some place, but we can avoid it in
others. For example, the head method simply requires a function of type Head

[WithoutTitle] => Head[WithTitle].

sealed trait StructureState

trait NeedsHead extends StructureState

trait NeedsBody extends StructureState

trait Complete extends StructureState

sealed trait TitleState

trait WithoutTitle extends TitleState

trait WithTitle extends TitleState

final class Head[S <: TitleState](contents: Vector[String]) {

def title(text: String)(using S =:= WithoutTitle): Head[WithTitle] =

Head(contents :+ s"<title>$text</title>")

def link(rel: String, href: String): Head[S] =

Head(contents :+ s"<link rel=\"$rel\" href=\"$href\"/>")

override def toString(): String =

contents.mkString(" <head>\n ", "\n ", "\n </head>")

}

object Head {

val empty: Head[WithoutTitle] = Head(Vector.empty)

}

final class Body(contents: Vector[String]) {

def h1(text: String): Body =

Body(contents :+ s"<h1>$text</h1>")

def p(text: String): Body =

Body(contents :+ s"<p>$text</p>")
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override def toString(): String =

contents.mkString(" <body>\n ", "\n ", "\n </body>")

}

object Body {

val empty: Body = Body(Vector.empty)

}

final class Html[S <: StructureState](

head: Head[?],

body: Body

) {

def head(f: Head[WithoutTitle] => Head[WithTitle])(using

S =:= NeedsHead

): Html[NeedsBody] =

Html(f(Head.empty), body)

def body(f: Body => Body)(using S =:= NeedsBody): Html[Complete] =

Html(head, f(Body.empty))

override def toString(): String = {

s"\n<html>\n${head.toString()}\n${body.toString()}\n</html>"

}

}

object Html {

val empty: Html[NeedsHead] = Html(Head.empty, Body.empty)

}

As always, we should show that is works. Here’s the output from the
motivating example.

Html.empty

.head(_.title("Our Amazing Webpage"))

.body(_.h1("Where Amazing Happens").p("Right here"))

.toString()

// res9: String = """

// <html>

// <head>

// <title>Our Amazing Webpage</title>

// </head>

// <body>

// <h1>Where Amazing Happens</h1>
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// <p>Right here</p>

// </body>

// </html>"""

Return to the exercise

L.3 Commutivitiy

To solve this I defined a given instance called commutative, as shown below.

// An instance exists if A * B = C

trait Multiply[A, B, C]

object Multiply {

given Multiply[Metres, Newtons, NewtonMetres] = new Multiply {}

// A * B == B * A

given commutative[A, B, C](using Multiply[A, B, C]): Multiply[B, A,

C] =

new Multiply {}

}

Now the example works as expected.

Force[Newtons](3) * Length[Metres](4)

// res15: Torque[NewtonMetres] = Torque(value = 12.0)

Return to the exercise
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Solutions for: Case Study: Testing
Asynchronous Code

M.1 Abstracting over Type Constructors

Here’s the implementation:

import cats.Id

trait UptimeClient[F[_]] {

def getUptime(hostname: String): F[Int]

}

trait RealUptimeClient extends UptimeClient[Future] {

def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Id[Int]

}

Note that, because Id[A] is just a simple alias for A, we don’t need to refer to
the type in TestUptimeClient as Id[Int]—we can simply write Int instead:

533
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trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Int

}

Of course, technically speaking we don’t need to redeclare getUptime in
RealUptimeClient or TestUptimeClient. However, writing everything out helps
illustrate the technique.

Return to the exercise

M.2 Abstracting over Type Constructors Part 2

The final code is similar to our original implementation of TestUptimeClient,
except we no longer need the call to Future.successful:

class TestUptimeClient(hosts: Map[String, Int])

extends UptimeClient[Id] {

def getUptime(hostname: String): Int =

hosts.getOrElse(hostname, 0)

}

Return to the exercise

M.3 Abstracting over Monads

The code should look like this:

class UptimeService[F[_]](client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

???

// hostnames.traverse(client.getUptime).map(_.sum)

}

Return to the exercise
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M.4 Abstracting over Monads Part 2

We can write this as an implicit parameter:

import cats.Applicative

import cats.syntax.functor._ // for map

class UptimeService[F[_]](client: UptimeClient[F])

(implicit a: Applicative[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

or more tersely as a context bound:

class UptimeService[F[_]: Applicative]

(client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

Note that we need to import cats.syntax.functor as well as cats.Applicative
. This is because we’re switching from using future.map to the Cats’ generic
extension method that requires an implicit Functor parameter.

Return to the exercise
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Appendix N

Solutions for: Case Study:
Map‐Reduce

N.1 Implementing foldMap

import cats.Monoid

/** Single-threaded map-reduce function.

* Maps `func` over `values` and reduces using a `Monoid[B]`.

*/

def foldMap[A, B: Monoid](values: Vector[A])(func: A => B): B =

???

Return to the exercise

N.2 Implementing foldMap Part 2

We have to modify the type signature to accept a Monoid for B. With that
change we can use the Monoid empty and |+| syntax as described in Section
7.3.3:
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import cats.Monoid

import cats.syntax.semigroup._ // for |+|

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =

as.map(func).foldLeft(Monoid[B].empty)(_ |+| _)

We can make a slight alteration to this code to do everything in one step:

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =

as.foldLeft(Monoid[B].empty)(_ |+| func(_))

Return to the exercise

N.3 Implementing parallelFoldMap

Here is an annotated solution that splits out each map and fold into a separate
line of code:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

// Calculate the number of items to pass to each CPU:

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

// Create one group for each CPU:

val groups: Iterator[Vector[A]] =

values.grouped(groupSize)

// Create a future to foldMap each group:

val futures: Iterator[Future[B]] =

groups map { group =>

Future {

group.foldLeft(Monoid[B].empty)(_ |+| func(_))

}

}

// foldMap over the groups to calculate a final result:

Future.sequence(futures) map { iterable =>
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iterable.foldLeft(Monoid[B].empty)(_ |+| _)

}

}

val result: Future[Int] =

parallelFoldMap((1 to 1000000).toVector)(identity)

Await.result(result, 1.second)

// res14: Int = 1784293664

We can re‐use our definition of foldMap for a more concise solution. Note
that the local maps and reduces in steps 3 and 4 of Figure 18.4 are actually
equivalent to a single call to foldMap, shortening the entire algorithm as follows:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

val groups: Iterator[Vector[A]] =

values.grouped(groupSize)

val futures: Iterator[Future[B]] =

groups.map(group => Future(foldMap(group)(func)))

Future.sequence(futures) map { iterable =>

iterable.foldLeft(Monoid[B].empty)(_ |+| _)

}

}

val result: Future[Int] =

parallelFoldMap((1 to 1000000).toVector)(identity)

Await.result(result, 1.second)

// res16: Int = 1784293664

Return to the exercise
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N.4 parallelFoldMap with more Cats

We’ll restate all of the necessary imports for completeness:

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.instances.future._ // for Applicative and Monad

import cats.instances.vector._ // for Foldable and Traverse

import cats.syntax.foldable._ // for combineAll and foldMap

import cats.syntax.traverse._ // for traverse

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

Here’s the implementation of parallelFoldMap delegating as much of the
method body to Cats as possible:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

values

.grouped(groupSize)

.toVector

.traverse(group => Future(group.toVector.foldMap(func)))

.map(_.combineAll)

}

val future: Future[Int] =

parallelFoldMap((1 to 1000).toVector)(_ * 1000)
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Await.result(future, 1.second)

// res18: Int = 500500000

The call to vector.grouped returns an Iterable[Iterator[Int]]. We sprinkle
calls to toVector through the code to convert the data back to a form that Cats
can understand. The call to traverse creates a Future[Vector[Int]] containing
one Int per batch. The call to map then combines the match using the combineAll
method from Foldable.

Return to the exercise
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Appendix O

Solutions for: Case Study: Data
Validation

O.1 Basic Combinators

We need a Semigroup for E. Then we can combine values of E using the combine
method or its associated |+| syntax:

import cats.Semigroup

import cats.instances.list._ // for Semigroup

import cats.syntax.semigroup._ // for |+|

val semigroup = Semigroup[List[String]]

// Combination using methods on Semigroup

semigroup.combine(List("Badness"), List("More badness"))

// res3: List[String] = List("Badness", "More badness")

// Combination using Semigroup syntax

List("Oh noes") |+| List("Fail happened")

// res4: List[String] = List("Oh noes", "Fail happened")

Note we don’t need a full Monoid because we don’t need the identity element.
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We should always try to keep our constraints as small as possible!

Return to the exercise

O.2 Basic Combinators Part 2

We want to report all the errors we can, so we should prefer not short‐
circuiting whenever possible.

In the case of the and method, the two checks we’re combining are
independent of one another. We can always run both rules and combine any
errors we see.

Return to the exercise

O.3 Basic Combinators Part 3

There are at least two implementation strategies.

In the first we represent checks as functions. The Check data type becomes a
simple wrapper for a function that provides our library of combinator methods.
For the sake of disambiguation, we’ll call this implementation CheckF:

import cats.Semigroup

import cats.syntax.either._ // for asLeft and asRight

import cats.syntax.semigroup._ // for |+|

final case class CheckF[E, A](func: A => Either[E, A]) {

def apply(a: A): Either[E, A] =

func(a)

def and(that: CheckF[E, A])

(implicit s: Semigroup[E]): CheckF[E, A] =

CheckF { a =>

(this(a), that(a)) match {

case (Left(e1), Left(e2)) => (e1 |+| e2).asLeft
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case (Left(e), Right(_)) => e.asLeft

case (Right(_), Left(e)) => e.asLeft

case (Right(_), Right(_)) => a.asRight

}

}

}

Let’s test the behaviour we get. First we’ll setup some checks:

import cats.instances.list._ // for Semigroup

val a: CheckF[List[String], Int] =

CheckF { v =>

if(v > 2) v.asRight

else List("Must be > 2").asLeft

}

val b: CheckF[List[String], Int] =

CheckF { v =>

if(v < -2) v.asRight

else List("Must be < -2").asLeft

}

val check: CheckF[List[String], Int] =

a and b

Now run the check with some data:

check(5)

// res5: Either[List[String], Int] = Left(value = List("Must be < -2")

)

check(0)

// res6: Either[List[String], Int] = Left(

// value = List("Must be > 2", "Must be < -2")

// )

Excellent! Everything works as expected! We’re running both checks and
accumulating errors as required.

What happens if we try to create checks that fail with a type that we can’t
accumulate? For example, there is no Semigroup instance for Nothing. What
happens if we create instances of CheckF[Nothing, A]?
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val a: CheckF[Nothing, Int] =

CheckF(v => v.asRight)

val b: CheckF[Nothing, Int] =

CheckF(v => v.asRight)

We can create checks just fine but when we come to combine them we get an
error we might expect:

val check = a and b

// error:

// No given instance of type cats.kernel.Semigroup[Nothing] was found

for parameter s of method and in class CheckF

Now let’s see another implementation strategy. In this approach we model
checks as an algebraic data type, with an explicit data type for each combinator.
We’ll call this implementation Check:

sealed trait Check[E, A] {

import Check._

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Either[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)) match {

case (Left(e1), Left(e2)) => (e1 |+| e2).asLeft

case (Left(e), Right(_)) => e.asLeft

case (Right(_), Left(e)) => e.asLeft

case (Right(_), Right(_)) => a.asRight

}

}

}

object Check {

final case class And[E, A](
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left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Either[E, A]) extends Check[E, A]

def pure[E, A](f: A => Either[E, A]): Check[E, A] =

Pure(f)

}

Let’s see an example:

val a: Check[List[String], Int] =

Check.pure { v =>

if(v > 2) v.asRight

else List("Must be > 2").asLeft

}

val b: Check[List[String], Int] =

Check.pure { v =>

if(v < -2) v.asRight

else List("Must be < -2").asLeft

}

val check: Check[List[String], Int] =

a and b

While the ADT implementation is more verbose than the function wrapper
implementation, it has the advantage of cleanly separating the structure of
the computation (the ADT instance we create) from the process that gives it
meaning (the apply method). From here we have a number of options:

• inspect and refactor checks after they are created;
• move the apply “interpreter” out into its own module;
• implement alternative interpreters providing other functionality (for
example visualizing checks).

Because of its flexibility, we will use the ADT implementation for the rest of
this case study.

Return to the exercise
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O.4 Basic Combinators Part 4

The implementation of apply for And is using the pattern for applicative
functors. Either has an Applicative instance, but it doesn’t have the semantics
we want. It fails fast instead of accumulating errors.

If we want to accumulate errors Validated is a more appropriate abstraction.
As a bonus, we get more code reuse because we can lean on the applicative
instance of Validated in the implementation of apply.

Here’s the complete implementation:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.apply._ // for mapN

sealed trait Check[E, A] {

import Check._

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

}

}

object Check {

final case class And[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Check[E, A]

}

Return to the exercise
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O.5 Basic Combinators Part 5

This reuses the same technique for and. We have to do a bit more work in
the apply method. Note that it’s OK to short‐circuit in this case because the
choice of rules is implicit in the semantics of “or”.

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.data.Validated._ // for Valid and Invalid

sealed trait Check[E, A] {

import Check._

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def or(that: Check[E, A]): Check[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}
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object Check {

final case class And[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Or[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Check[E, A]

}

Return to the exercise

O.6 Checks

If you follow the same strategy as Predicate you should be able to create code
similar to the below:

import cats.Semigroup

import cats.data.Validated

sealed trait Check[E, A, B] {

import Check._

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =

Map[E, A, B, C](this, f)

}

object Check {

final case class Map[E, A, B, C](

check: Check[E, A, B],

func: B => C) extends Check[E, A, C] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, C] =
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check(in).map(func)

}

final case class Pure[E, A](

pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, A] =

pred(in)

}

def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =

Pure(pred)

}

Return to the exercise

O.7 Checks Part 2

It’s the same implementation strategy as before with one wrinkle: Validated
doesn’t have a flatMap method. To implement flatMap we must momentarily
switch to Either and then switch back to Validated. The withEither method
on Validated does exactly this. From here we can just follow the types to
implement apply.

import cats.Semigroup

import cats.data.Validated

sealed trait Check[E, A, B] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def flatMap[C](f: B => Check[E, A, C]) =

FlatMap[E, A, B, C](this, f)

// other methods...

}

final case class FlatMap[E, A, B, C](

check: Check[E, A, B],
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func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => func(b)(a).toEither))

}

// other data types...

Return to the exercise

O.8 Checks Part 3

Here’s a minimal definition of andThen and its corresponding AndThen class:

sealed trait Check[E, A, B] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def andThen[C](that: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, that)

}

final case class AndThen[E, A, B, C](

check1: Check[E, A, B],

check2: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check1(a).withEither(_.flatMap(b => check2(b).toEither))

}

Return to the exercise

O.9 Recap

Here’s our final implementaton, including some tidying and repackaging of the
code:
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import cats.Semigroup

import cats.data.Validated

import cats.data.Validated._ // for Valid and Invalid

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.syntax.validated._ // for valid and invalid

Here is our complete implementation of Predicate, including the and and or

combinators and a Predicate.apply method to create a Predicate from a
function:

sealed trait Predicate[E, A] {

import Predicate._

import Validated._

def and(that: Predicate[E, A]): Predicate[E, A] =

And(this, that)

def or(that: Predicate[E, A]): Predicate[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(_) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(_) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}

object Predicate {
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final case class And[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Predicate[E, A]

def apply[E, A](f: A => Validated[E, A]): Predicate[E, A] =

Pure(f)

def lift[E, A](err: E, fn: A => Boolean): Predicate[E, A] =

Pure(a => if(fn(a)) a.valid else err.invalid)

}

Here is a complete implementation of Check. Due to a type inference bug
in Scala’s pattern matching, we’ve switched to implementing apply using
inheritance:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.apply._ // for mapN

import cats.syntax.validated._ // for valid and invalid

sealed trait Check[E, A, B] {

import Check._

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =

Map[E, A, B, C](this, f)

def flatMap[C](f: B => Check[E, A, C]) =

FlatMap[E, A, B, C](this, f)

def andThen[C](next: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, next)

https://issues.scala-lang.org/browse/SI-6680
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}

object Check {

final case class Map[E, A, B, C](

check: Check[E, A, B],

func: B => C) extends Check[E, A, C] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, C] =

check(a) map func

}

final case class FlatMap[E, A, B, C](

check: Check[E, A, B],

func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => func(b)(a).toEither))

}

final case class AndThen[E, A, B, C](

check: Check[E, A, B],

next: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => next(b).toEither))

}

final case class Pure[E, A, B](

func: A => Validated[E, B]) extends Check[E, A, B] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, B] =

func(a)

}

final case class PurePredicate[E, A](

pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, A] =
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pred(a)

}

def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =

PurePredicate(pred)

def apply[E, A, B]

(func: A => Validated[E, B]): Check[E, A, B] =

Pure(func)

}

Return to the exercise

O.10 Recap Part 2

Here’s our reference solution. Implementing this required more thought than
we expected. Switching between Check and Predicate at appropriate places
felt a bit like guesswork till we got the rule into our heads that Predicate
doesn’t transform its input. With this rule in mind things went fairly smoothly.
In later sections we’ll make some changes that make the library easier to use.

import cats.syntax.apply._ // for mapN

import cats.syntax.validated._ // for valid and invalid

Here’s the implementation of checkUsername:

// A username must contain at least four characters

// and consist entirely of alphanumeric characters

val checkUsername: Check[Errors, String, String] =

Check(longerThan(3) and alphanumeric)

And here’s the implementation of checkEmail, built up from a number of smaller
components:
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// An email address must contain a single `@` sign.

// Split the string at the `@`.

// The string to the left must not be empty.

// The string to the right must be

// at least three characters long and contain a dot.

val splitEmail: Check[Errors, String, (String, String)] =

Check(_.split('@') match {

case Array(name, domain) =>

(name, domain).validNel[String]

case _ =>

"Must contain a single @ character".

invalidNel[(String, String)]

})

val checkLeft: Check[Errors, String, String] =

Check(longerThan(0))

val checkRight: Check[Errors, String, String] =

Check(longerThan(3) and contains('.'))

val joinEmail: Check[Errors, (String, String), String] =

Check { case (l, r) =>

(checkLeft(l), checkRight(r)).mapN(_ + "@" + _)

}

val checkEmail: Check[Errors, String, String] =

splitEmail andThen joinEmail

Finally, here’s a check for a User that depends on checkUsername and checkEmail:

final case class User(username: String, email: String)

def createUser(

username: String,

email: String): Validated[Errors, User] =

(checkUsername(username), checkEmail(email)).mapN(User.apply)

We can check our work by creating a couple of example users:
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createUser("Noel", "noel@underscore.io")

// res5: Validated[Errors, User] = Valid(

// a = User(username = "Noel", email = "noel@underscore.io")

// )

createUser("", "dave@underscore.io@io")

// res6: Validated[Errors, User] = Invalid(

// e = NonEmptyList(

// head = "Must be longer than 3 characters",

// tail = List("Must contain a single @ character")

// )

// )

One distinct disadvantage of our example is that it doesn’t tell us where the
errors came from. We can either achieve that through judicious manipulation
of error messages, or we can modify our library to track error locations as well
as messages. Tracking error locations is outside the scope of this case study,
so we’ll leave this as an exercise to the reader.

Return to the exercise

O.11 Kleislis

Here’s an abbreviated definition of run. Like apply, the method must accept
an implicit Semigroup:

import cats.Semigroup

import cats.data.Validated

sealed trait Predicate[E, A] {

def run(implicit s: Semigroup[E]): A => Either[E, A] =

(a: A) => this(a).toEither

def apply(a: A): Validated[E, A] =

??? // etc...

// other methods...

}

Return to the exercise
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O.12 Kleislis Part 2

Working around limitations of type inference can be quite frustrating when
writing this code,Working outwhen to convert between Predicates, functions,
and Validated, and Either simplifies things, but the process is still complex:

import cats.data.{Kleisli, NonEmptyList}

import cats.instances.either._ // for Semigroupal

Here is the preamble we suggested in the main text of the case study:

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

NonEmptyList(s, Nil)

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

def check[A, B](func: A => Result[B]): Check[A, B] =

Kleisli(func)

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

Kleisli[Result, A, A](pred.run)

Our base predicate definitions are essenitally unchanged:

def longerThan(n: Int): Predicate[Errors, String] =

Predicate.lift(

error(s"Must be longer than $n characters"),

str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

Predicate.lift(

error(s"Must be all alphanumeric characters"),

str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

Predicate.lift(
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error(s"Must contain the character $char"),

str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char only once"),

str => str.filter(c => c == char).size == 1)

Our username and email examples are slightly different in that we make use
of check() and checkPred() in different situations:

val checkUsername: Check[String, String] =

checkPred(longerThan(3) and alphanumeric)

val splitEmail: Check[String, (String, String)] =

check(_.split('@') match {

case Array(name, domain) =>

Right((name, domain))

case _ =>

Left(error("Must contain a single @ character"))

})

val checkLeft: Check[String, String] =

checkPred(longerThan(0))

val checkRight: Check[String, String] =

checkPred(longerThan(3) and contains('.'))

val joinEmail: Check[(String, String), String] =

check {

case (l, r) =>

(checkLeft(l), checkRight(r)).mapN(_ + "@" + _)

}

val checkEmail: Check[String, String] =

splitEmail andThen joinEmail

Finally, we can see that our createUser example works as expected using
Kleisli:
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final case class User(username: String, email: String)

def createUser(

username: String,

email: String): Either[Errors, User] = (

checkUsername.run(username),

checkEmail.run(email)

).mapN(User.apply)

createUser("Noel", "noel@underscore.io")

// res2: Either[Errors, User] = Right(

// value = User(username = "Noel", email = "noel@underscore.io")

// )

createUser("", "dave@underscore.io@io")

// res3: Either[Errors, User] = Left(

// value = NonEmptyList(head = "Must be longer than 3 characters",

tail = List())

// )

Return to the exercise
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Appendix P

Solutions for: Case Study: CRDTs

P.1 GCounter Implementation

Hopefully the description above was clear enough that you can get to an
implementation like the one below.

final case class GCounter(counters: Map[String, Int]) {

def increment(machine: String, amount: Int) = {

val value = amount + counters.getOrElse(machine, 0)

GCounter(counters + (machine -> value))

}

def merge(that: GCounter): GCounter =

GCounter(that.counters ++ this.counters.map {

case (k, v) =>

k -> (v max that.counters.getOrElse(k, 0))

})

def total: Int =

counters.values.sum

}

Return to the exercise

563
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P.2 BoundedSemiLattice Instances

It’s common to place the instances in the companion object of
BoundedSemiLattice so they are in the implicit scope without importing
them.

Implementing the instance for Set provides good practice with implicit
methods.

object wrapper {

trait BoundedSemiLattice[A] extends CommutativeMonoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

object BoundedSemiLattice {

implicit val intInstance: BoundedSemiLattice[Int] =

new BoundedSemiLattice[Int] {

def combine(a1: Int, a2: Int): Int =

a1 max a2

val empty: Int =

0

}

implicit def setInstance[A]: BoundedSemiLattice[Set[A]] =

new BoundedSemiLattice[Set[A]]{

def combine(a1: Set[A], a2: Set[A]): Set[A] =

a1 union a2

val empty: Set[A] =

Set.empty[A]

}

}

}; import wrapper._

Return to the exercise
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P.3 Generic GCounter

Here’s aworking implementation. Note the use of |+| in the definition of merge,
which significantly simplifies the process of merging and maximising counters:

import cats.instances.list._ // for Monoid

import cats.instances.map._ // for Monoid

import cats.syntax.semigroup._ // for |+|

import cats.syntax.foldable._ // for combineAll

final case class GCounter[A](counters: Map[String,A]) {

def increment(machine: String, amount: A)

(implicit m: CommutativeMonoid[A]): GCounter[A] = {

val value = amount |+| counters.getOrElse(machine, m.empty)

GCounter(counters + (machine -> value))

}

def merge(that: GCounter[A])

(implicit b: BoundedSemiLattice[A]): GCounter[A] =

GCounter(this.counters |+| that.counters)

def total(implicit m: CommutativeMonoid[A]): A =

this.counters.values.toList.combineAll

}

Return to the exercise

P.4 Abstracting GCounter to a Type Class

Here’s the complete code for the instance. Write this definition in the
companion object for GCounter to place it in global implicit scope:

import cats.instances.list._ // for Monoid

import cats.instances.map._ // for Monoid

import cats.syntax.semigroup._ // for |+|

import cats.syntax.foldable._ // for combineAll

implicit def mapGCounterInstance[K, V]: GCounter[Map, K, V] =
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new GCounter[Map, K, V] {

def increment(map: Map[K, V])(key: K, value: V)

(implicit m: CommutativeMonoid[V]): Map[K, V] = {

val total = map.getOrElse(key, m.empty) |+| value

map + (key -> total)

}

def merge(map1: Map[K, V], map2: Map[K, V])

(implicit b: BoundedSemiLattice[V]): Map[K, V] =

map1 |+| map2

def total(map: Map[K, V])

(implicit m: CommutativeMonoid[V]): V =

map.values.toList.combineAll

}

Return to the exercise

P.5 Abstracting a Key Value Store

Here’s the code for the instance. Write the definition in the companion object
for KeyValueStore to place it in global implicit scope:

implicit val mapKeyValueStoreInstance: KeyValueStore[Map] =

new KeyValueStore[Map] {

def put[K, V](f: Map[K, V])(k: K, v: V): Map[K, V] =

f + (k -> v)

def get[K, V](f: Map[K, V])(k: K): Option[V] =

f.get(k)

override def getOrElse[K, V](f: Map[K, V])

(k: K, default: V): V =

f.getOrElse(k, default)

def values[K, V](f: Map[K, V]): List[V] =

f.values.toList

}

Return to the exercise
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