
Functional

Programming

Strategies

Functional

Programming

Strategies
Noel Welsh

Draft built on 2026-01-21

© Copyright 2022–2026 Noel Welsh. Licensed under CC BY-SA 4.0

Portions of this work are based on Scala with Cats, by Dave
Pereira-Gurnell and Noel Welsh. Scala with Cats is licensed under
CC BY-SA 3.0.

Artwork by Jenny Clements.

Published by Inner Product Consulting Ltd, UK.

This book is dedicated to those who laid the path that I have
followed, to those who will take up where I have left off, and to
those who have joined me along the way.

Contents

Preface . ⁠xvii
Preface from Scala with Cats . ⁠xviii
Versions . ⁠xix

Template Projects . ⁠xix
Conventions Used in This Book . ⁠xx

Typographical Conventions . ⁠xx
Source Code . ⁠xx
Callout Boxes . ⁠xxi

License . ⁠xxi
1. Functional Programming Strategies . ⁠1

1.1. Three Levels for Thinking About Code ⁠3
1.2. Functional Programming . ⁠5

1.2.1. What Functional Programming Is ⁠6
1.2.2. What Functional Programming Isn’t ⁠8
1.2.3. Why It Matters . ⁠10
1.2.4. The Evidence for Functional Programming . . . ⁠11
1.2.5. Final Words . ⁠13

Part I: Foundations . 15
2. Types as Constraints . ⁠17

2.1. Sets and Constraints . ⁠17
2.2. Building Constraints . ⁠19
2.3. Opaque Types . ⁠22

2.3.1. Best Practices . ⁠26
2.3.2. Beyond Opaque Types . ⁠28

2.4. Conclusions . ⁠28
3. Algebraic Data Types . ⁠31

3.1. Building Algebraic Data Types . ⁠31
3.1.1. Sums and Products . ⁠32
3.1.2. Closed Worlds . ⁠33

3.2. Algebraic Data Types in Scala . ⁠33
3.2.1. Algebraic Data Types in Scala 3 ⁠34

3.2.2. Algebraic Data Types in Scala 2 ⁠35
3.2.3. Examples . ⁠37
3.2.4. Representing ADTs in Scala 3 ⁠39

3.3. Structural Recursion . ⁠40
3.3.1. Pattern Matching . ⁠40
3.3.2. The Recursion in Structural Recursion ⁠41
3.3.3. Exhaustivity Checking . ⁠46
3.3.4. Dynamic Dispatch . ⁠47
3.3.5. Folds as Structural Recursions ⁠50

3.4. Structural Corecursion . ⁠53
3.4.1. Unfolds as Structural Corecursion ⁠57

3.5. The Algebra of Algebraic Data Types ⁠64
3.6. Conclusions . ⁠67

4. Objects as Codata . ⁠69
4.1. Data and Codata . ⁠70
4.2. Codata in Scala . ⁠73
4.3. Structural Recursion and Corecursion for Codata ⁠77

4.3.1. Efficiency and Effects . ⁠85
4.4. Relating Data and Codata . ⁠89
4.5. Data and Codata Extensibility . ⁠96
4.6. Conclusions . ⁠101

5. Contextual Abstraction . ⁠103
5.1. The Mechanics of Contextual Abstraction ⁠104

5.1.1. Using Clauses . ⁠104
5.1.2. Given Instances . ⁠105
5.1.3. Given Scope and Imports . ⁠106

5.2. Anatomy of a Type Class . ⁠112
5.2.1. The Type Class . ⁠112
5.2.2. Type Class Instances . ⁠113
5.2.3. Type Class Use . ⁠114

5.3. Type Class Composition . ⁠118
5.3.1. Type Class Composition in Scala 2 ⁠120

5.4. What Type Classes Are . ⁠121
5.5. Exercise: Display Library . ⁠123

5.5.1. Using the Library . ⁠124

5.5.2. Better Syntax . ⁠124
5.6. Type Classes and Variance . ⁠125

5.6.1. Variance . ⁠125
5.6.2. Covariance . ⁠126
5.6.3. Contravariance . ⁠127
5.6.4. Invariance . ⁠128
5.6.5. Variance and Instance Selection ⁠128

5.7. Conclusions . ⁠132
6. Reified Interpreters . ⁠135

6.1. Regular Expressions . ⁠136
6.2. Interpreters and Reification . ⁠146

6.2.1. The Structure of Interpreters ⁠146
6.2.2. Implementing Interpreters with Reification . ⁠147

6.3. Tail Recursive Interpreters . ⁠149
6.3.1. The Problem of Stack Safety ⁠150
6.3.2. Tail Calls and Tail Position ⁠150
6.3.3. Continuation-Passing Style ⁠154
6.3.4. Trampolining . ⁠158
6.3.5. When Tail Recursion is Easy ⁠163

6.4. Conclusions . ⁠166

Part II: Type Classes . 169
7. Using Cats . ⁠171

7.1. Quick Start . ⁠171
7.2. Using Cats . ⁠172

7.2.1. Defining Custom Instances ⁠173
7.3. Example: Eq . ⁠175

7.3.1. Equality, Liberty, and Fraternity ⁠176
7.3.2. Comparing Ints . ⁠176
7.3.3. Comparing Options . ⁠177
7.3.4. Comparing Custom Types . ⁠178

7.4. Conclusions . ⁠179
8. Monoids and Semigroups . ⁠181

8.1. Definition of a Monoid . ⁠183
8.2. Definition of a Semigroup . ⁠184

8.3. Monoids in Cats . ⁠186
8.3.1. The Monoid Type Class . ⁠186
8.3.2. Monoid Instances . ⁠187
8.3.3. Monoid Syntax . ⁠188

8.4. Applications of Monoids . ⁠189
8.4.1. Big Data . ⁠190
8.4.2. Distributed Systems . ⁠190
8.4.3. Monoids in the Small . ⁠191

8.5. Summary . ⁠191
9. Functors . ⁠193

9.1. Examples of Functors . ⁠193
9.2. More Examples of Functors . ⁠194

9.2.1. Futures . ⁠195
9.2.2. Functions (?!) . ⁠197

9.3. Definition of a Functor . ⁠199
9.4. Higher Kinds and Type Constructors ⁠201
9.5. Functors in Cats . ⁠203

9.5.1. The Functor Type Class and Instances ⁠203
9.5.2. Functor Syntax . ⁠204
9.5.3. Instances for Custom Types ⁠207

9.6. Contravariant and Invariant Functors ⁠208
9.6.1. Contravariant Functors and the contramap

Method . ⁠209
9.6.2. Invariant functors and the imap method ⁠212

9.7. Contravariant and Invariant in Cats ⁠215
9.7.1. Contravariant in Cats . ⁠216
9.7.2. Invariant in Cats . ⁠217

9.8. Aside: Partial Unification . ⁠218
9.8.1. Limitations of Partial Unification ⁠220

9.9. Conclusions . ⁠222
10. Monads . ⁠225

10.1. What is a Monad? . ⁠225
10.1.1. Options as Monads . ⁠226
10.1.2. Lists as Monads . ⁠228
10.1.3. Futures as Monads . ⁠229

10.1.4. Definition of a Monad . ⁠230
10.1.5. Exercise: Getting Func-y . ⁠232

10.2. Monads in Cats . ⁠232
10.2.1. The Monad Type Class . ⁠232
10.2.2. Default Instances . ⁠233
10.2.3. Monad Syntax . ⁠235

10.3. The Identity Monad . ⁠237
10.3.1. Exercise: Monadic Secret Identities ⁠239

10.4. Either . ⁠240
10.4.1. Cats Utilities . ⁠242

10.5. Aside: Error Handling and MonadError ⁠246
10.5.1. The MonadError Type Class ⁠247
10.5.2. Raising and Handling Errors ⁠248
10.5.3. Instances of MonadError . ⁠250
10.5.4. Exercise: Abstracting . ⁠250

10.6. The Eval Monad . ⁠251
10.6.1. Eager, Lazy, Memoized, Oh My! ⁠251
10.6.2. Eval’s Models of Evaluation ⁠253
10.6.3. Eval as a Monad . ⁠255
10.6.4. Trampolining and Eval.defer ⁠257

10.7. The Writer Monad . ⁠259
10.7.1. Creating and Unpacking Writers ⁠260
10.7.2. Composing and Transforming Writers ⁠262

10.8. The Reader Monad . ⁠265
10.8.1. Creating and Unpacking Readers ⁠266
10.8.2. Composing Readers . ⁠266
10.8.3. When to Use Readers? . ⁠269

10.9. The State Monad . ⁠270
10.9.1. Creating and Unpacking State ⁠270
10.9.2. Composing and Transforming State ⁠271

10.10. Defining Custom Monads . ⁠277
10.11. Conclusions . ⁠280

11. Monad Transformers . ⁠283
11.1. Composing Monads . ⁠283
11.2. A Transformative Example . ⁠285

11.3. Monad Transformers in Cats . ⁠286
11.3.1. The Monad Transformer Classes ⁠286
11.3.2. Building Monad Stacks . ⁠287
11.3.3. Constructing and Unpacking Instances ⁠290
11.3.4. Default Instances . ⁠291
11.3.5. Usage Patterns . ⁠292

11.4. Conclusions . ⁠296
12. Semigroupal and Applicative . ⁠297

12.1. Semigroupal . ⁠298
12.1.1. Joining Two Contexts . ⁠299
12.1.2. Joining Three or More Contexts ⁠300
12.1.3. Semigroupal Laws . ⁠300

12.2. Semigroupal Syntax . ⁠301
12.2.1. Fancy Functors and Apply Syntax ⁠302

12.3. Semigroupal Applied to Different Types ⁠303
12.3.1. Semigroupal Applied to List ⁠303
12.3.2. Semigroupal Applied to Either ⁠304
12.3.3. Semigroupal Applied to Monads ⁠304

12.4. Parallel . ⁠306
12.5. Apply and Applicative . ⁠309

12.5.1. The Hierarchy of Sequencing Type Classes . ⁠310
12.6. Summary . ⁠312

13. Foldable and Traverse . ⁠315
13.1. Foldable . ⁠315

13.1.1. Folds and Folding . ⁠315
13.1.2. Foldable in Cats . ⁠318

13.2. Traverse . ⁠322
13.2.1. Traversing with Futures . ⁠323
13.2.2. Traversing with Applicatives ⁠325
13.2.3. Traverse in Cats . ⁠328

13.3. Conclusions . ⁠329

Part III: Interpreters . 331
14. Indexed Types . ⁠333

14.1. Phantom Types . ⁠334

14.2. Indexed Codata . ⁠336
14.2.1. API Protocols . ⁠339
14.2.2. Beyond Equality Constraints ⁠344

14.3. Indexed Data . ⁠346
14.3.1. The Probability Monad . ⁠348

14.4. Conclusions . ⁠354
15. Tagless Final Interpreters . ⁠361

15.1. Codata Interpreters . ⁠361
15.1.1. The Terminal . ⁠362
15.1.2. Color Codes . ⁠363
15.1.3. The Trouble with Escape Codes ⁠364
15.1.4. Programs and Interpreters . ⁠366
15.1.5. Composition and Reasoning ⁠372
15.1.6. Codata and Extensibility . ⁠373

15.2. Tagless Final Interpreters . ⁠374
15.3. Algebraic User Interfaces . ⁠381
15.4. A Better Encoding . ⁠387
15.5. Conclusions . ⁠394

16. Optimizing Interpreters and Compilers . ⁠397
16.1. Algebraic Manipulation . ⁠397
16.2. From Continuations to Stacks . ⁠408
16.3. Compilers and Virtual Machines . ⁠412

16.3.1. Virtual and Abstract Machines ⁠413
16.3.2. Compilation . ⁠414

16.4. From Interpreter to Stack Machine ⁠415
16.4.1. Effectful Interpreters . ⁠420
16.4.2. Further Optimization . ⁠421

16.5. Conclusions . ⁠425

Part IV: Case Studies . 429
17. Creating Usable Code . ⁠431
18. Case Study: Testing Asynchronous Code . ⁠433

18.1. Abstracting over Type Constructors ⁠435
18.2. Abstracting over Monads . ⁠436
18.3. Summary . ⁠437

19. Error Handling . ⁠439
20. Case Study: Map-Reduce . ⁠441

20.1. Parallelizing map and fold . ⁠442
20.2. Implementing foldMap . ⁠444
20.3. Parallelising foldMap . ⁠446

20.3.1. Futures, Thread Pools, and
ExecutionContexts . ⁠448

20.3.2. Dividing Work . ⁠450
20.3.3. Implementing parallelFoldMap ⁠450
20.3.4. parallelFoldMap with more Cats ⁠451

20.4. Summary . ⁠451
21. Case Study: Data Validation . ⁠453

21.1. Sketching the Library Structure . ⁠454
21.2. The Check Datatype . ⁠456
21.3. Basic Combinators . ⁠458
21.4. Transforming Data . ⁠459

21.4.1. Predicates . ⁠460
21.4.2. Checks . ⁠462
21.4.3. Recap . ⁠464

21.5. Kleislis . ⁠465
21.6. Summary . ⁠469

22. Case Study: CRDTs . ⁠471
22.1. Eventual Consistency . ⁠471
22.2. The GCounter . ⁠472

22.2.1. Simple Counters . ⁠472
22.2.2. GCounters . ⁠474
22.2.3. Exercise: GCounter Implementation ⁠476

22.3. Generalisation . ⁠476
22.3.1. Implementation . ⁠478
22.3.2. Exercise: BoundedSemiLattice Instances ⁠479
22.3.3. Exercise: Generic GCounter ⁠479

22.4. Abstracting GCounter to a Type Class ⁠480
22.5. Abstracting a Key Value Store . ⁠481
22.6. Summary . ⁠483

23. Acknowledgements . ⁠485

23.1. Acknowledgements from Scala with Cats ⁠486
23.1.1. Backers . ⁠486

Bibliography . ⁠489

Preface

Some twenty years ago I started my first job in the UK. This job
involved a commute by train, giving me about an hour a day to
read without distraction. Around about the same time I first heard
about Structure and Interpretation of Computer Programs [1],
referred to as the “wizard book” and spoken of in reverential
terms. It sounded like the just the thing for a recent graduate
looking to become a better developer. I purchased a copy and
spent the journey reading it, doing most of the exercises in my
head. Structure and Interpretation of Computer Programs was
already an old book at this time, and it’s programming style was
archaic. However it’s core concepts were timeless and it’s fair to
say it absolutely blew my mind, putting me on a path I’m still on
today.

Another notable stop on this path occured some ten years ago
when Dave and I started writing Scala with Cats. In Scala with Cats
we attempted to explain the core type classes found in the Cats
library, and their use in building software. I’m proud of the book
we wrote together, but time and experience showed that type
classes are only a small piece of the puzzle of building software in
a functional programming style. We needed a much wider scope if
we were to show people how to effectively build software with all
the tools that functional programming provides. Still, writing a
book is a lot of work, and we were busy with other projects, so
Scala with Cats remained largely untouched for many years.

Around 2020 I got the itch to return to Scala with Cats. My initial
plan was simply to update the book for Scala 3. Dave was busy
with other projects so I decided to go alone. As the writing got
underway I realized I really wanted to cover the additional topics I
thought were missing. If Scala with Cats was a good book, I
wanted to aim to write a great book; one that would contain
almost everything I had learned about building software. The title

xvii

Scala with Cats no longer fit the content, and hence I adopted a
new name for what is largely a new book. The result, Functional

Programming Strategies in Scala with Cats, is what you are reading
now. I hope you find it useful, and I hope that just maybe some
young developer will find this book inspiring the same way I
found Structure and Interpretation of Computer Programs inspiring
all those years ago.

Preface from Scala with Cats

The aims of this book are two-fold: to introduce monads, functors,
and other functional programming patterns as a way to structure
program design, and to explain how these concepts are
implemented in Cats1.

Monads, and related concepts, are the functional programming
equivalent of object-oriented design patterns—architectural
building blocks that turn up over and over again in code. They
differ from object-oriented patterns in two main ways:

• they are formally, and thus precisely, defined; and
• they are extremely (extremely) general.

This generality means they can be difficult to understand. Everyone
finds abstraction difficult. However, it is generality that allows
concepts like monads to be applied in such a wide variety of
situations.

In this book we aim to show the concepts in a number of different
ways, to help you build a mental model of how they work and
where they are appropriate. We have extended case studies, a
simple graphical notation, many smaller examples, and of course
the mathematical definitions. Between them we hope you’ll find
something that works for you.

1https://typelevel.org/cats

xviii

https://typelevel.org/cats

Ok, let’s get started!

Versions

This book is written for Scala 3.7.3 and Cats 2.13.0. Here is a
minimal build.sbt containing the relevant dependencies and
settings2:

scalaVersion := "3.7.3"

libraryDependencies +=

 "org.typelevel" %% "cats-core" % "2.13.0"

scalacOptions ++= Seq(

 "-Xfatal-warnings"

)

Template Projects

For convenience, we have created a Giter8 template to get you
started. To clone the template type the following:

$ sbt new scalawithcats/cats-seed.g8

This will generate a sandbox project with Cats as a dependency.
See the generated README.md for instructions on how to run the
sample code and/or start an interactive Scala console.

2We assume you are using SBT 1.0.0 or newer

xix

Conventions Used in This Book

This book contains a lot of technical information and program
code. We use the following typographical conventions to reduce
ambiguity and highlight important concepts:

Typographical Conventions

New terms and phrases are introduced in italics. After their initial
introduction they are written in normal roman font.

Terms from program code, filenames, and file contents, are written
in monospace font. Note that we do not distinguish between
singular and plural forms. For example, we might write String or
Strings to refer to java.lang.String.

References to external resources are written as hyperlinks3, which
also render as footnotes for situations when you cannot
conveniently follow links. References to API documentation are
written using a combination of hyperlinks and monospace font, for
example: scala.Option4.

Source Code

Source code blocks are written as follows. Syntax is highlighted
appropriately where applicable:

object MyApp extends App {

 // Print a fine message to the user!

 println("Hello world!")

}

3https://scalawithcats.com
4http://www.scala-lang.org/api/current/scala/Option.html

xx

https://scalawithcats.com
http://www.scala-lang.org/api/current/scala/Option.html

Most code passes through mdoc5 to ensure it compiles. mdoc uses
the Scala console behind the scenes, so we sometimes show
console-style output as comments:

"Hello Cats!".toUpperCase

// res0: String = "HELLO CATS!"

Callout Boxes

We use two types of callout box to highlight particular content:

Tip callouts indicate handy summaries, recipes, or best
practices.

Advanced callouts provide additional information on corner
cases or underlying mechanisms. Feel free to skip these on
your first read-through—come back to them later for extra
information.

License

This work is licensed under CC BY-SA 4.06.

Portions of this work are based on Scala with Cats by Dave
Pereira-Gurnell and Noel Welsh, which is licensed under CC BY-
SA 3.07.

5https://scalameta.org/mdoc/
6http://creativecommons.org/licenses/by-sa/4.0/
7https://creativecommons.org/licenses/by-sa/3.0/

xxi

https://scalameta.org/mdoc/
http://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

1. Functional

Programming

Strategies

This is a book on strategies for creating code in a functional
programming (FP) style, seen through a Scala lens. If you
understand most of the mechanics of Scala, but feel there is
something missing in your understanding of how to use the
language effectively, this book is for you. If you want to learn
about functional programming, and are prepared to learn some
Scala, this book is also for you. It covers the usual functional
programming abstractions like monads and monoids, but more
than that it tries to teach you how to think like a functional
programmer. It’s a book as much about process as it is about the
code that results from process, and in particular it focuses on what
I call metacognitive programming strategies.

Functional programmers love fancy words for simple ideas, so it’s
no surprise I’m drawn to metacognitive programming strategies.
Let’s unpack that phrase. Metacognition means thinking about
thinking. A lot of research has shown the benefits of
metacognition in learning and its importance in developing
expertise (see, for example, [15,53,70]). Metacognition is not just
one thing—it’s not sufficient to just tell someone to think about
their thinking. Rather, metacognition is a collection of different
strategies, some of which are general and some of which are
domain specific. From this we get the idea of metacognitive
programming strategies—explicitly naming and describing
different thinking strategies that proficient programmers use.

Let’s think a little about metacognitive strategies you might
already use when coding. My experience is that most developers

1

struggle to answer this. Software teams usually have many well-
defined processes around coding, such as daily stand-ups and
kanban boards. Developers have a huge amount of language
specific knowledge. However, the part inbetween deciding what
should be done and working code is often very fuzzy. When
developers can answer this question they often mention test
driven development and pair programming, and design patterns
such as the builder pattern. These date from the nineties, the
former from Extreme Programming [4] and the latter from the
Design Patterns book [31]. In my experience they are used quite
informally, if at all.

The question then becomes: what metacognitive strategies can
programmers use? I believe that functional programming is
particularly well suited to answer this question. One major theme
in functional programming research is finding and naming useful
code structures. Once we have discovered a useful abstraction we
can get the programmer to ask themselves “would this abstraction
solve this problem?” This is essentially what the design patterns
community did but there is an important difference. The academic
FP community strongly values formal models, which means that
the building blocks of FP have a precision that design patterns
lack. However there is more to strategies than categorizing their
output. There is also the actual process of how the code comes to
be. Code doesn’t usually spring fully formed from our keyboard,
and in the iterative refinement of code we also find structure. Here
the academic FP community has explored various algorithms for
deriving code. As working programmers we must usually execute
these algorithms by hand, but the benefit still remains.

I believe metacognitive programming strategies are useful for both
beginners and experts. For beginners we can make programming a
more systematic and repeatable process. Producing code no longer
requires magic in the majority of cases, but rather the application
of well defined steps. For experts, the benefit is exactly the same.
At least that is my experience (and I believe I’ve been

2

programming long enough to call myself an expert.) By having an
explicit process I can run it exactly the same way every day, which
makes my code simpler to write and read, and saves my brain
cycles for more important problems. In some ways this is an
attempt to bring to programming the benefit that process and
standardization has brought to manufacturing, particularly the
“Toyota Way”. In Toyota’s process individuals are expected to
think about how their work is done and how it can be improved.
This is, in effect, metacognition for assembly lines. This is only
possible if the actual work itself does not require their full
attention. The dramatic improvements in productivity and quality
in car manufacturing that Toyota pioneered speak to the
effectiveness of this approach. Software development is more
varied than car manufacturing but we should still expect some
benefit, particularly given the primitive state of our current
industry.

Over the last ten or so years of programming and teaching
programming I’ve collected a wide range of strategies. Some come
from others (for example, How to Design Programs [27] and its
many offshoots remain very influential for me) and some I’ve
found myself. Ultimately I don’t think anything here is new; rather
my contribution is in collecting and presenting these strategies as
one coherent whole, in a way that I hope is accessible to the
working programmer.

1.1. Three Levels for Thinking

About Code

Let’s start thinking about thinking about programming, with a
model that describes three different levels that we can use to think
about code. The levels, from highest to lowest, are paradigm,
theory, and craft. Each level provides guidance for the ones below.

3

The paradigm level refers to the programming paradigm, such as
object-oriented or functional programming. You’re probably
familiar with these terms, but what exactly is a programming
paradigm? To me, the core of a programming paradigm is a set of
principles that define, usually somewhat loosely, the properties of
good code. A paradigm is also, implicitly, a claim that code that
follows these principles will be better than code that does not. For
functional programming I believe these principles are composition
and reasoning. I’ll explain these shortly. Object-oriented
programmers might point to, say, the SOLID principles as guiding
their coding decisions.

The importance of the paradigm is that it provides criteria for
choosing between different implementation strategies. There are
many possible solutions for any programming problem, and we
can use the principles in the paradigm to decide which approach to
take. For example, if we’re a functional programmer we can
consider how easily we can reason about a particular
implementation, or how composable it is. Without the paradigm
we have no basis for making a choice.

The theory level translates the broad principles of the paradigm to
specific well defined techniques that apply to many languages
within the paradigm. We are still, however, at a level above the
code. Design patterns are an example in the object-oriented world.
Algebraic data types are an example in functional programming.
Most languages that are in the functional programming paradigm,
such as Haskell and O’Caml, support algebraic data types, as do
many languages that straddle multiple paradigms, such as Rust,
Scala, and Swift.

The theory level is where we find most of our programming
strategies.

At the craft level we get to actual code, and the language specific
nuance that goes into it. An example in Scala is the
implementation of algebraic data types in terms of sealed trait

4

and final case class in Scala 2, or enum in Scala 3. There are
many concerns at this level that are important for writing
idiomatic code, such as placing constructors on companion objects
in Scala, that are not relevant at the higher levels.

In the next section I’ll describe the functional programming
paradigm. The remainder of this book is primarily concerned with
theory and craft. The theory is language agnostic but the craft is
firmly in the world of Scala. Before we move onto the functional
programming paradigm are two points I want to emphasize:

1. Paradigms are social constructs. They change over time. Object-
oriented programming as practiced today differs from the style
originally used in Simula and Smalltalk, and functional
programming today is very different from the original LISP
code.

2. The three level organization is just a tool for thought. The real
world it is more complicated.

1.2. Functional Programming

This is a book about the techniques and practices of functional
programming (FP). This naturally leads to the question: what is FP
and what does it mean to write code in a functional style? It’s
common to view functional programming as a collection of
language features, such as first class functions, or to define it as a
programming style using immutable data and pure functions.
(Pure functions always return the same output given the same
input.) This was my view when I started down the FP route, but I
now believe the true goals of FP are enabling local reasoning and
composition. Language features and programming style are in
service of these goals. Let me attempt to explain the meaning and
value of local reasoning and composition.

5

1.2.1. What Functional Programming Is

I believe that functional programming is a hypothesis about
software quality: that it is easier to write and maintain software
that can be understood before it is run, and is built of small
reusable components. The first property is known as local
reasoning, and the second as composition. Let’s address each in
turn.

Local reasoning means we can understand pieces of code in
isolation. When we see the expression 1 + 1 we know what it
means regardless of the weather, the database, or the current
status of our Kubernetes cluster. None of these external events can
change it. This is a trivial and slightly silly example, but it
illustrates the point. A goal of functional programming is to extend
this ability across our code base.

It can help to understand local reasoning by looking at what it is
not. Shared mutable state is out because relying on shared state
means that other code can change what our code does without our
knowledge. It means no global mutable configuration, as found in
many web frameworks and graphics libraries for example, as any
random code can change that configuration. Metaprogramming
has to be carefully controlled. No monkey patching8, for example,
as again it allows other code to change our code in non-obvious
ways. As we can see, adapting code to enable local reasoning can
mean quite some sweeping changes. However if we work in a
language that embraces functional programming this style of
programming is the default.

Composition means building big things out of smaller things.
Numbers are compositional. We can take any number and add one,
giving us a new number. Lego is also compositional. We compose
Lego by sticking it together. In the particular sense we’re using
composition we also require the original elements we combine

8https://en.wikipedia.org/wiki/Monkey_patch

6

https://en.wikipedia.org/wiki/Monkey_patch

don’t change in any way when they are composed. When we
create by 2 by adding 1 and 1 we get a new result that doesn’t
change what 1 means.

We can find compositional ways to model common programming
tasks once we start looking for them. React components are one
example familiar to many front-end developers: a component can
consist of many components. HTTP routes can be modelled in a
compositional way. A route is a function from an HTTP request to
either a handler function or a value indicating the route did not
match. We can combine routes as a logical or: try this route or, if it
doesn’t match, try this other route. Processing pipelines are
another example that often use sequential composition: perform
this pipeline stage and then this other pipeline stage.

1.2.1.1. Types

Types are not strictly part of functional programming but
statically typed FP is the most popular form of FP and sufficiently
important to warrant a mention. Types help compilers generate
efficient code but types in FP are as much for the programmer as
they are the compiler. Types express properties of programs, and
the type checker automatically ensures that these properties hold.
They can tell us, for example, what a function accepts and what it
returns, or that a value is optional. We can also use types to
express our beliefs about a program and the type checker will tell
us if those beliefs are correct. For example, we can use types to tell
the compiler we do not expect an error at a particular point in our
code and the type checker will let us know if this is the case. In
this way types are another tool for reasoning about code.

Type systems push programs towards particular designs, as to
work effectively with the type checker requires designing code in
a way the type checker can understand. As modern type systems
come to more languages they naturally tend to shift programmers
in those languages towards a FP style of coding.

7

1.2.2. What Functional Programming Isn’t

In my view functional programming is not about immutability, or
keeping to “the substitution model of evaluation”, and so on. These
are tools in service of the goals of enabling local reasoning and
composition, but they are not the goals themselves. Code that is
immutable always allows local reasoning, for example, but it is not
necessary to avoid mutation to still have local reasoning. Here is
an example of summing a collection of numbers.

def sum(numbers: List[Int]): Int = {

 var total = 0

 numbers.foreach(x => total = total + x)

 total

}

In the implementation we mutate total. This is ok though! We
cannot tell from the outside that this is done, and therefore all
users of sum can still use local reasoning. Inside sum we have to be
careful when we reason about total but this block of code is small
enough that it shouldn’t cause any problems.

In this case we can reason about our code despite the mutation,
but the Scala compiler can determine that this is ok. Scala allows
mutation but it’s up to us to use it appropriately. A more
expressive type system, perhaps with features like Rust’s, would
be able to tell that sum doesn’t allow mutation to be observed by
other parts of the system9. Another approach, which is the one

9The example I gave is fairly simple. A compiler that used escape analysis10
could recognize that no reference to total is possible outside sum and hence
sum is pure (or referentially transparent). Escape analysis is a well studied
technique. In the general case the problem is a lot harder. We’d often like to
know that a value is only referenced once at various points in our program,
and hence we can mutate that value without changes being observable in
other parts of the program. This might be used, for example, to pass an
accumulator through various processing stages. To do this requires a
programming language with what is called a substructural type system11. Rust

8

https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Substructural_type_system

taken by Haskell, is to disallow all mutation and thus guarantee it
cannot cause problems.

Mutation also interferes with composition. For example, if a value
relies on internal state then composing it may produce unexpected
results. Consider Scala’s Iterator. It maintains internal state that
is used to generate the next value. If we have two Iterators we
might want to combine them into one Iterator that yields values
from the two inputs. The zip method does this.

This works if we pass two distinct generators to zip.

val it = Iterator(1, 2, 3, 4)

val it2 = Iterator(1, 2, 3, 4)

it.zip(it2).next()

// res0: Tuple2[Int, Int] = (1, 1)

However if we pass the same generator twice we get a surprising
result.

val it3 = Iterator(1, 2, 3, 4)

it3.zip(it3).next()

// res1: Tuple2[Int, Int] = (1, 2)

The usual functional programming solution is to avoid mutable
state but we can envisage other possibilities. For example, an effect
tracking system12 would allow us to avoid combining two
generators that use the same memory region. These systems are
mostly still research projects, however.

has such a system, with affine types. Linear types are in development for
Haskell.

10https://en.wikipedia.org/wiki/Escape_analysis
11https://en.wikipedia.org/wiki/Substructural_type_system
12https://en.wikipedia.org/wiki/Effect_system

9

https://en.wikipedia.org/wiki/Effect_system
https://en.wikipedia.org/wiki/Effect_system

So in my opinion immutability (and purity, referential
transparency, and no doubt more fancy words that I have
forgotten) have become associated with functional programming
because they guarantee local reasoning and composition, and until
recently we didn’t have the language tools to automatically
distinguish safe uses of mutation from those that cause problems.
Restricting ourselves to immutability is the easiest way to ensure
the desirable properties of functional programming, but as
languages evolve this might come to be regarded as a historical
artifact.

1.2.3. Why It Matters

I have described local reasoning and composition but have not
discussed their benefits. Why are they are desirable? The answer is
that they make efficient use of knowledge. Let me expand on this.

We care about local reasoning because it allows our ability to
understand code to scale with the size of the code base. We can
understand module A and module B in isolation, and our
understanding does not change when we bring them together in
the same program. By definition if both A and B allow local
reasoning there is no way that B (or any other code) can change
our understanding of A, and vice versa. If we don’t have local
reasoning every new line of code can force us to revisit the rest of
the code base to understand what has changed. This means it
becomes exponentially harder to understand code as it grows in
size as the number of interactions (and hence possible behaviours)
grows exponentially. We can say that local reasoning is
compositional. Our understanding of module A calling module B is
just our understanding of A, our understanding of B, and whatever
calls A makes to B.

We introduced numbers and Lego as examples of composition.
They have an interesting property in common: the operations that

10

we can use to combine them (for example, addition, subtraction,
and so on for numbers; for Lego the operation is “sticking bricks
together”) give us back the same kind of thing. A number
multiplied by a number is a number. Two bits of Lego stuck
together is still Lego. This property is called closure: when you
combine things you end up with the same kind of thing. Closure
means you can apply the combining operations (sometimes called
combinators) an arbitrary number of times. No matter how many
times you add one to a number you still have a number and can
still add or subtract or multiply or…you get the idea. If we
understand module A, and the combinators that A provides are
closed, we can build very complex structures using A without
having to learn new concepts! This is also one reason functional
programmers tend to like abstractions such a monads (beyond
liking fancy words): they allow us to use one mental model in lots
of different contexts.

In a sense local reasoning and composition are two sides of the
same coin. Local reasoning is compositional; composition allows
local reasoning. Both make code easier to understand.

1.2.4. The Evidence for Functional

Programming

I’ve made arguments in favour of functional programming and I
admit I am biased—I do believe it is a better way to develop code
than imperative programming. However, is there any evidence to
back up my claim? There has not been much research on the
effectiveness of functional programming, but there has been a
reasonable amount done on static typing. I feel static typing,
particularly using modern type systems, serves as a good proxy for
functional programming so let’s look at the evidence there.

In the corners of the Internet I frequent the common refrain is that

11

static typing has neglible effect on productivity13. I decided to look
into this and was surprised that the majority of the results I found
support the claim that static typing increases productivity. For
example, one literature review [85] finds a majority of results in
favour of static typing, and in particular finds support amongst the
more recent studies. However the majority of these studies are
very small and use relatively inexperienced developers—which is
noted in the review by Dan Luu. My belief is that functional
programming comes into its own on larger systems. Furthermore,
programming languages, like all tools, require proficiency to use
effectively. I’m not convinced very junior developers have
sufficient skill to demonstrate a significant difference between
languages.

To me the most useful evidence of the effectiveness of functional
programming is that industry is adopting functional programming
en masse. Consider, say, the widespread and growing adoption of
Typescript and React. If we are to argue that FP as embodied by
Typescript or React has no value we are also arguing that the
thousands of Javascript developers who have switched to using
them are deluded. At some point this argument becomes
untenable.

This doesn’t mean we’ll all be using Haskell in five years. More
likely we’ll see something like the shift to object-oriented
programming of the nineties: Smalltalk was the paradigmatic
example of OO, but it was more familiar languages like C++ and
Java that brought OO to the mainstream. In the case of FP this
probably means languages like Scala, Swift, Kotlin, or Rust, and
mainstream languages like Javascript and Java continuing to adopt
more FP features.

13https://danluu.com/empirical-pl/

12

https://danluu.com/empirical-pl/

1.2.5. Final Words

I’ve given my opinion on functional programming—that the real
goals are local reasoning and composition, and programming
practices like immutability are in service of these. Other people
may disagree with this definition, and that’s ok. Words are defined
by the community that uses them, and meanings change over time.

Functional programming emphasises formal reasoning, and there
are some implications that I want to briefly touch on.

Firstly, I find that FP is most valuable in the large. For a small
system it is possible to keep all the details in our head. It’s when a
program becomes too large for anyone to understand all of it that
local reasoning really shows its value. This is not to say that FP
should not be used for small projects, but rather that if you are,
say, switching from an imperative style of programming you
shouldn’t expect to see the benefit when working on toy projects.

The formal models that underlie functional programming allow
systematic construction of code. This is in some ways the reverse
of reasoning: instead of taking code and deriving properties, we
start from some properties and derive code. This sounds very
academic but is in fact very practical, and how I develop most of
my code.

Finally, reasoning is not the only way to understand code. It’s
valuable to appreciate the limitations of reasoning, other methods
for gaining understanding, and using a variety of strategies
depending on the situation.

13

14

Part I: Foundations

In this first part of the book we’re building the foundational
strategies on which the rest of the book will build and elaborate. In
Chapter 2 we discuss the role of types as representing constraints,
and see how we can separate representation and operations. In
Chapter 3 we look at algebraic data types. Algebraic data types are
our main way of modelling data, where we are concerned with
what things are. We turn to codata in Chapter 4, which is the
opposite, or dual, or algebraic data. Codata gives us a way to
model things by what they can do. Abstracting over context, and
the particular case of type classes, are the focus of Chapter 5. Type
classes allow us to extend existing types with new functionality,
and to abstract over types that are not related by the inheritance
hierarchy. The fundamentals of interpreters are discussed in
Chapter 6, and are the final chapter of this part. Interpreters give a
clear distinction between description and action, and are a
fundamental tool for achieving composition when working with
effects.

These five strategies all describe code artifacts. For example, we
can label part of code as an algebraic data type or a type class.
We’ll also see strategies that help us write code but don’t
necessarily end up directly reflected in it, such as following the
types.

15

16

2. Types as Constraints

Our very first strategy is using types as constraints. We’ll start
by discussing two different ways we can think of types: by a type
is, sometimes known as an extensional view; and by what a type
can do, sometimes known as an intensional view. The latter view
is less familiar, but is necessary to get the most from an expressive
type system and is the core of the strategy. Hence we’ll spend
some time elaborating on this idea and discussing examples.

Once we understand the concept of types as constraints, we’ll look
at a Scala 3 feature, known as opaque types. Opaque types allow
us to create a distinct type that has the same runtime
representation as another type. As such, they provide a way to
decouple representation from operations, and allow us to work
with a purely intensional view.

2.1. Sets and Constraints

What is a type? Here we’ll address this question from the
programmer’s perspective, but I want to note that there is a
subfield within mathematics and philosophy known as type
theory. There are some references in the conclusions if you want
to follow that direction.

The most common view is that types define a set of values. For
example, an Int in Scala is 32-bits, and as such defines a set of
4,294,967,296 possible values. When we define a type by
enumerating all the possible values of that type, we are working
with an extensional definition. This is a natural approach to take,
not least because we need to tell the programming language how
to represent values in memory, and the extensional view provides
this.

17

The extensional view, however, doesn’t provide any
encapsulation or information hiding. Knowing the
representation can be a problem when that integer represents, say,
an index into an array, or an age, or a timestamp. In these cases we
have access to a whole range of operations that aren’t meaningful
on the data. For example, neither indices nor ages can be negated,
but nonetheless we can negate any index or age that is represented
as an Int. Similarly, we can perform bitwise operations on
machine integers, but this is not semantically meaningful for, say,
a timestamp. Furthermore, as we’ll see in Chapter 14, it can be
useful to have types that have no representation, which the
extensional view doesn’t have much to say about.

This brings us to an alternate view of types, the intensional view.
Instead of thinking of a type in terms of its representation, we can
think of a type in terms of the conditions, invariants, or
constraints that hold for elements of that type. This may in turn
imply a set of operations that are valid on our types. So, for
example, we can think of age (in years) as a non-negative integer
with an increment operation, but no decrement operation (we,
unfortunately, cannot get younger.) Similarly, indices are non-
negative integers within the range of the array they refer to,
names are non-empty strings, and email addresses are case
insensitive strings with a username and domain separated by an @.

We might argue that our Int example above is defined by a
constraint: namely it’s an integer that fits into 32-bits. This is true!
This constraint also implies which operations are available on Int.
We cannot, for example, try to convert an Int to upper case; this is
meaningless. Remember that we’re taking two different views on
the same concept. It’s expected that we can translate between
these views in many cases. The problem is the purely extensional
view couples operations and representation. We cannot represent,
say, a timestamp as an Int and not make meaningless bitwise
operations available if we only have the extensional view.

18

Decoupling operations and representation sounds a lot like
programming to an interface. Indeed this is true, and we’ll look at
this in much more detail in Chapter 4. In this chapter we’ll look at
opaque types, which directly decouple type and representation,
allowing us to reuse a representation as a different type. However,
before doing so I want to spend more time on the mindset shift
that the intensional view promotes.

2.2. Building Constraints

Most applications work by progressively adding structure to
inputs. We might receive data from, say, the network or a database.
We perform some checks on that data and remove instances that
are invalid. We then do some more work, which entails further
checks, and so on.

For example, imagine we’re implementing a sign up flow. We start
by asking for a user name and email address. Basic checks could be
requiring names that are not empty, and email addresses that
contain an @. We won’t even let the user submit the form if these
checks fail. Once the form is submitted we’ll move on to further
checks. For example, we might validate email addresses by sending
them a verification email.

How should we represent these multiple levels of validation? For
example, how do we distinguish a string representing a name from
one that is an email address? How about an unverified email from
a verified one? The most common approach that I’ve seen, across
many code bases, is to use ad hoc naming conventions. For
example, we might use the name email and verifiedEmail to
distinguish the different kinds of email addresses in method
parameters and data structure, while still representing both as

19

strings.14

Types provide a compelling alternative to naming schemes. They
enforce consistency of nomenclature, while also representing this
information in a form the compiler can check. For example, if we
have EmailAddress and VerifiedEmailAddress types, not only do
we have standard names, but the compiler will tell us if we try to
use an EmailAddress where a VerifiedEmailAddress is required,
or a String where an EmailAddress is required. Furthermore,
when we see an EmailAddress we know it’s already been through
some validation, so we don’t needlessly repeat validation, or
worse, forget to do it. This brings us to two principles:

1. Types should represent what we know about values, or in other
words the invariants or constraints on values. A String could
be any sequence of characters. A VerifiedEmailAddress is also
a sequence of characters, but it’s one that represents an email
address that we have verified is active.

2. Whenever we establish an additional invariant or constraint we
should change the type to reflect this additional information. So
for example, an email address might start out as a String,
become an EmailAddress if we have verified it looks like an
email, and then become a VerifiedEmailAddress when we’ve
successfully sent it a verification email and received a response.

A corollary of this approach is that we push constraints upstream.
Let me explain. In a code base where validation is done on an ad-
hoc basis, we often end up with methods that can fail. For
example, a method to get the domain from an email, where the
email is represented as a String, might have the signature

14Hungarian notation15 is a more formal approach to this idea of encoding
type information in names. Hungarian notation was popular within Microsoft
and its ecosystem, but to the best of my knowledge it is no longer in common
use.

15https://en.wikipedia.org/wiki/Hungarian_notation

20

https://en.wikipedia.org/wiki/Hungarian_notation

def domain(email: String): Option[String]

indicating that the String might not be a valid email. In this case
we push the error handling, reflecting the constraint that we only
work with valid email addresses, onto the downstream code that
deals with the result of calling this method.

When we work with types as constraints the signature becomes

def domain(email: EmailAddress): String

There is now no possibility of error, as an email address must
contain a domain. However, we have pushed the constraint,
obtaining an EmailAddress, onto the upstream code that calls this
method. At some point we must have conversions that could fail,
which requires error handling, but this approach pushes error
handling to the edges of the program. This tends to result in a
better user experience, as the user is immediately notified of
problems, and also makes the code simpler to work with as overall
less error handling is required.

Although this strategy is easiest to explain in the context of
validation, it’s not restricted to this use case. As an example,
imagine writing an API for updates to a database table. Some
columns allow nulls and some do not. When updating a nullable
column our API could accept an Option, with the None case
meaning the column is set to null. When updating a non-nullable
column we could also accept an Option, with the None case
meaning we retain the column’s existing value. These two
different meaning of the same type are a sure way to introduce
errors, with users nulling out columns they intended to leave
unchanged. The solution is the same: use different types for the
different kinds of columns. Here the constraints are not on the
values represented by the type, but on the behaviour associated
with them.

21

2.3. Opaque Types

Let’s now look at opaque types. Opaque types are a Scala 3 feature
that decouple the representation of a type from the set of allowed
operations on that type. In simpler words, they allow us to create a
type (e.g. an EmailAddress) that has the same runtime
representation as another type (e.g. a String), but is distinct from
that type in all other ways.

Here’s a definition of EmailAddress as an opaque type.

opaque type EmailAddress = String

This is enough to define the type EmailAddress as represented by
a String. However, it’s a useless definition as it lacks any way to
construct an EmailAddress. To properly understand how we can
define a constructor, we need to understand that opaque types
divide our code base into two distinct parts: where our type is
transparent, which is where we know the underlying
representation, and the remainder where it is opaque. The rule is
pretty simple: an opaque type is transparent within the scope in
which it is defined, so within an enclosing object or class. If there
is no enclosing scope, as in the example above, it is transparent
only within the file in which it is defined. Everywhere else it is
opaque.

Knowing this we can define a constructor. Following Scala
convention we will define it as the apply method on the
EmailAddress companion object.

opaque type EmailAddress = String

object EmailAddress {

 def apply(address: String): EmailAddress = {

 assert(

 {

 val idx = address.indexOf('@')

 idx != -1 && address.lastIndexOf('@') == idx

22

 },

 "Email address must contain exactly one @ symbol."

)

 address.toLowerCase

 }

}

The constructor does a basic check on the input (ensuring it
contains only one @ character) and converts the input to lower
case, as email addresses are case insensitive. I used an assert to do
the check, but in a real application we’d probably want a result
type that indicates something can go wrong. More on this below.
Finally, notice that the constructor returns just the address,
showing that the representation doesn’t change. Here’s an
example, showing the result type EmailAddress

val email = EmailAddress("someone@example.com")

// email: EmailAddress = "someone@example.com"

This shows that an EmailAddress is represented as a String, but
as far as the type system is concerned it is not a String. We
cannot, for example, call methods defined on String on an
instance of EmailAddress.16

email.toUpperCase

// Compiler says NO!

We can view this as an efficiency gain. Our EmailAddress uses
exactly the same amount of memory as the underlying String that
represents it, yet it is a different type. Alternatively, we can view it
as a semantic gain. An EmailAddress is a sequence of characters,
the same as a String, but it has additional constraints. In this case

16Scala usually runs on the JVM, and the JVM was not designed to support
opaque types. This means there are, unfortunately, a few ways to poke holes
in the abstraction boundary created by an opaque type. If we use
isInstanceOf we can test for the underlying representation. Using the
methods defined on Object (Any in Scala), namely equals, hashCode, and
toString, also allow us to peek inside.

23

we verify it contains exactly one @ character, and ensure it is case
insensitive.

We’ve seen how to define opaque types and their constructors.
What about other methods? For example, for an EmailAddress we
might want methods to get the username and domain. We can use
extension methods to do this. As with the constructor, we just
need to define these extension methods in a place where the type
is transparent.

opaque type EmailAddress = String

extension (address: EmailAddress) {

 def username: String =

 address.substring(0, address.indexOf('@'))

 def domain: String =

 address.substring(address.indexOf('@') + 1, address.size)

}

object EmailAddress {

 def apply(address: String): EmailAddress = {

 assert(

 {

 val idx = address.indexOf('@')

 idx != -1 && address.lastIndexOf('@') == idx

 },

 "Email address must contain exactly one @ symbol."

)

 address.toLowerCase

 }

}

With this definition we can use the extension methods as we’d
expect.

email.username

// res3: String = "someone"

email.domain

// res4: String = "example.com"

There are two other features of opaque types that we should
mention:

1. they can have type parameters; and

24

2. they can have type bounds.

Let’s see an example of these two features used together. Earlier
we saw an example of using an Option to represent two different
types of database columns: nullable columns, where None mean to
set the column to null, and non-nullable, where None means to
keep the existing value. We can define these as opaque types with
a type parameter.

// null is a reserved word in Scala, so we use the name nil

// instead.

opaque type Nilable[+A] = Option[A]

object Nilable {

 def apply[A](value: A): Nilable[A] = Some(value)

 def fromOption[A](option: Option[A]): Nilable[A] = option

 val nil: Nilable[Nothing] = None

}

opaque type Default[+A] = Option[A]

object Default {

 def apply[A](value: A): Default[A] = Some(value)

 def fromOption[A](option: Option[A]): Default[A] = option

 val default: Default[Nothing] = None

}

This works just as we’d expect, but we users will probably want to
use the Option API on Nilable and Default. We can avoid
tediously reimplementing it as extension methods by declaring
that Nilable and Default are subtypes of Option.

opaque type Nilable[+A] <: Option[A] = Option[A]

object Nilable {

 def apply[A](value: A): Nilable[A] = Some(value)

 def fromOption[A](option: Option[A]): Nilable[A] = option

 val nil: Nilable[Nothing] = None

}

25

opaque type Default[+A] <: Option[A] = Option[A]

object Default {

 def apply[A](value: A): Default[A] = Some(value)

 def fromOption[A](option: Option[A]): Default[A] = option

 val default: Default[Nothing] = None

}

The type bound Default[+A] <: Option[A] says that Default is a
subtype of Option, and crucially this information is publically
available. Therefore all of the methods on Option are available on
Default.

We can verify this with a few examples.

Nilable(1).orElse(Nilable.nil)

// res7: Option[Int] = Some(value = 1)

Default(1).map(_ + 1)

// res8: Option[Int] = Some(value = 2)

Notice that the results have type Option, because the methods on
Option that we call have return type Option. We can easily
convert back to Nilable or Default as required by using the
fromOption constructor.

2.3.1. Best Practices

We’ve seen all the important technical details for opaque types, so
let’s now discuss some of the best practices of using them.

The first point I want to address is illustrated by the constructor
for EmailAddress. There is a constraint on the String input to the
constructor: it must contain an @ character. This is a constraint and
we should represent this as a type! We could create another
opaque type, called something like StringWithAnAtCharacter, but
this approach leads to infinite regress. We cannot push constraints

26

upstream indefinitely. At some point we have to return a result
that indicates the possibility of error. So our constructor would be
better if it returned, say, an Option or Either to indicate that
construction can fail.

There are cases where we know the constructor cannot fail, but we
don’t have a convenient way of proving this to the compiler. For
example, if we’re loading email addresses from a list that is known
to be good, it would be nice to avoid having to writing useless
error handling code. For this reason I recommend including a
constructor that doesn’t do any validation. I usually call this
method unsafeApply, to indicate to the reader that certain checks
are not being done. These changes are shown below. For simplicity
I’ve used Option as the result type to indicate the possibility of
failure.

type EmailAddress = String

object EmailAddress {

 def apply(address: String): Option[EmailAddress] = {

 val idx = address.indexOf('@')

 if idx != -1 && address.lastIndexOf('@') == idx

 then Some(address.toLowerCase)

 else None

 }

 def unsafeApply(address: String): EmailAddress = address

}

We’ll almost certainly need to convert from our opaque type back
to its underlying type at some point in our code. I’ve seen a few
conventions for naming such a method; value and get are popular.
However, I prefer a more descriptive toType, replacing Type with
the concrete type name, as this extends to conversions to other
types. For EmailAddress this means an extension method
toString, as shown below. Notice that the method simply returns
the address value, once showing the distinction between the type
and it’s representation as a value.

27

extension (address: EmailAddress) {

 def toString: String = address

}

2.3.2. Beyond Opaque Types

Opaque types are a lightweight way to add structure—to use types
to represent constraints—to our code. However there are two cases
where they aren’t appropriate.

The first case is when the data requires more structure that we can
represent with an opaque type. For example, a (two-dimensional)
point requires two coordinates, so there is no single type that we
can use17. In these cases we’re probably looking for an algebraic
data type, which is discussed in Chapter 3.

The second case is when we need to reimplement one of the
methods, most commonly toString, that opaque types cannot
override. For example, we might want to ensure that types
representing personal information, such as addresses and
passwords, cannot be accidentally exposed in logs. Overriding
toString helps ensure this, but we cannot do this for opaque
types.

2.4. Conclusions

In this chapter we’ve looked at using types to represent
constraints, which allows the compiler to help us ensure these
constraints are met throughout our program. We call this strategy
“types as constraints”. We constrasted this strategy to the better
known view of types that focuses on representation. Finally, we

17We could use an Array[Double] or Tuple2[Double, Double], but it’s
simpler to just define a class in the usual way.

28

saw opaque types as a lightweight tool that decouples types from
their representation, allowing us to define a type that uses the
same representation as some other type.

The view of types as constraints is perhaps best presented in
Alexis King’s blog post Parse, don’t validate18. Types Are Not Sets
[58] is a very early paper (typewritten in two column justified text,
a truly virtuoso performance on the type writer!) that also
presents the intensional view of types. I feel it ends a bit abruptly,
but has the seed of many ideas that will only be fully developed
much later. You can see the suggestion of opaque types as
discussed in this chapter, and also module systems and existential
types.

From a programming language perspective, Types and

Programming Languages [69] is the standard reference on type
systems. They define a type system as “a tractable syntactic
method for proving the absence of certain program behaviours by
classifying phrases by the kinds of values they compute”. The
introduction provides a very nice overview of the role of type
systems in programming languages, as well as pointers to the
broader study of type systems in mathematics and philosophy.

Having said that types are not sets, it feels only fair to mention
there are type systems that do treat types as sets. The Design

Principles of the Elixir Type System [12] describes one such system.
These type systems emphasize the extensional view, and have a
very different feel to conventional type systems.

I’m very far from an expert in mathematical type theory. As such, I
found A Comparison of Type Theory with Set Theory [46] useful to
relate type theory to something I better understand, set theory.

18https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

29

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

30

3. Algebraic Data Types

This chapter has our first example of a programming strategy:
algebraic data types. Any data we can describe using logical
ands and logical ors is an algebraic data type. Once we recognize
an algebraic data type we get three things for free:

• the Scala representation of the data;
• a structural recursion skeleton to transform the algebraic data

type into any other type; and
• a structural corecursion skeleton to construct the algebraic

data type from any other type.

The key point is this: from an implementation independent
representation of data we can automatically derive most of the
interesting implementation specific parts of working with that
data.

We’ll start with some examples of data, from which we’ll extract
the common structure that motivates algebraic data types. We will
then look at their representation in Scala 2 and Scala 3. Next we’ll
turn to structural recursion for transforming algebraic data types,
followed by structural corecursion for constructing them. We’ll
finish by looking at the algebra of algebraic data types, which is
interesting but not essential.

3.1. Building Algebraic Data Types

Let’s start with some examples of data from a few different
domains. These are simplified description but they are all
representative of real applications.

A user in a discussion forum will typically have a screen name, an
email address, and a password. Users also typically have a specific

31

role: normal user, moderator, or administrator, for example. From
this we get the following data:

• a user is a screen name, an email address, a password, and a role;
and

• a role is normal, moderator, or administrator.

A product in an e-commerce store might have a stock keeping unit
(a unique identifier for each variant of a product), a name, a
description, a price, and a discount.

In two-dimensional vector graphics it’s typical to represent shapes
as a path, which is a sequence of actions of a virtual pen. The
possible actions are usually straight lines, Bezier curves, or
movement that doesn’t result in visible output. A straight line has
an end point (the starting point is implicit), a Bezier curve has two
control points and an end point, and a move has an end point.

What is common between all the examples above is that the
individual elements—the atoms, if you like—are connected by
either a logical and or a logical or. For example, a user is a screen
name and an email address and a password and a role. A 2D action
is a straight line or a Bezier curve or a move. This is the core of
algebraic data types: an algebraic data type is data that is
combined using logical ands or logical ors. Conversely, whenever
we can describe data in terms of logical ands and logical ors we
have an algebraic data type.

3.1.1. Sums and Products

Being functional programmers we can’t let a simple concept go
without attaching some fancy jargon:

• a product type means a logical and; and
• a sum type means a logical or.

So algebraic data types consist of sum and product types.

32

3.1.2. Closed Worlds

Algebraic data types are closed worlds, which means they cannot
be extended after they have been defined. In practical terms this
means we have to modify the source code where we define the
algebraic data type if we want to add or remove elements.

The closed world property is important because it gives us
guarantees we would not otherwise have. In particular, it allows
the compiler to check that we handle all possible cases when we
use an algebraic data type. This is known as exhaustivity

checking. This is an example of how functional programming
prioritizes reasoning about code—in this case automated reasoning
by the compiler—over other properties such as extensibility. We’ll
learn more about exhaustivity checking soon.

3.2. Algebraic Data Types in Scala

Now we know what algebraic data types are, we will turn to their
representation in Scala. The important point here is that the
translation to Scala is entirely determined by the structure of the
data; no thinking is required! This means the work is in finding
the structure of the data that best represents the problem at hand.
Work out the structure of the data and the code directly follows
from it.

As algebraic data types are defined in terms of logical ands and
logical ors, to represent algebraic data types in Scala we must
know how to represent these two concepts. Scala 3 simplifies the
representation of algebraic data types compared to Scala 2, so we’ll
look at each language version separately.

33

I’m assuming that you’re familiar with the language features we
use to represent algebraic data types in Scala, so I won’t be going
over them.

3.2.1. Algebraic Data Types in Scala 3

In Scala 3 a logical and (a product type) is represented by a final
case class. If we define a product type A is B and C, the
representation in Scala 3 is

final case class A(b: B, c: C)

Not everyone makes their case classes final, but they should. A
non-final case class can still be extended by a class, which breaks
the closed world criteria for algebraic data types.

A logical or (a sum type) is represented by an enum. For the sum
type A is B or C, the Scala 3 representation is

enum A {

 case B

 case C

}

There are a few wrinkles to be aware of.

If we have a sum of products, such as:

• A is B or C; and
• B is D and E; and
• C is F and G

the representation is

enum A {

 case B(d: D, e: E)

 case C(f: F, g: G)

}

34

In other words we don’t write final case class inside an enum.
You also can’t nest an enum inside an enum. Nested logical ors can
be rewritten into a single logical or containing only logical ands
(known as disjunctive normal form) so this is not a limitation in
practice. However the Scala 2 representation is still available in
Scala 3 should you want more expressivity.

3.2.2. Algebraic Data Types in Scala 2

A logical and (product type) has the same representation in Scala 2
as in Scala 3. If we define a product type A is B and C, the
representation in Scala 2 is

final case class A(b: B, c: C)

A logical or (a sum type) is represented by a sealed abstract
class. For the sum type A is a B or C the Scala 2 representation is

sealed abstract class A

final case class B() extends A

final case class C() extends A

Scala 2 has several little tricks to defining algebraic data types.

Firstly, instead of using a sealed abstract class you can use a
sealed trait. There isn’t much practical difference between the
two. When teaching beginners I’ll often use sealed trait to avoid
having to introduce abstract class. I believe sealed abstract
class has slightly better performance and Java interoperability,
but I haven’t tested this. I also think sealed abstract class is
closer, semantically, to the meaning of a sum type.

For extra style points we can extend Product with
Serializable from sealed abstract class. Compare the
reported types below with and without this little addition.

35

Let’s first see the code without extending Product and
Serializable.

sealed abstract class A

final case class B() extends A

final case class C() extends A

val list = List(B(), C())

// list: List[A extends Product with Serializable] = List(B(),

C())

Notice how the type of list includes Product and Serializable.

Now we have extending Product and Serializable.

sealed abstract class A extends Product with Serializable

final case class B() extends A

final case class C() extends A

val list = List(B(), C())

// list: List[A] = List(B(), C())

Much easier to read!

You’ll only see this in Scala 2. Scala 3 has the concept of
transparent traits, which aren’t reported in inferred types, so
you’ll see the same output in Scala 3 no matter whether you add
Product and Serializable or not.

Finally, we can use a case object instead of a case class when
we’re defining some type that holds no data. For example, reading
from a text stream, such as a terminal, can return a character or
the end-of-file. We can model this as

sealed abstract class Result

final case class Character(value: Char) extends Result

case object Eof extends Result

36

As the end-of-file indicator Eof has no associated data we use a
case object. There is no need to mark the case object as final,
as objects cannot be extended.

3.2.3. Examples

Let’s make the discussion above more concrete with some
examples.

3.2.3.1. Role and User

In the discussion forum example, we said a role is normal,
moderator, or administrator. This is a logical or, so we can directly
translate it to Scala using the appropriate pattern. In Scala 3 we
write

enum Role {

 case Normal

 case Moderator

 case Administrator

}

In Scala 2 we write

sealed abstract class Role extends Product with Serializable

case object Normal extends Role

case object Moderator extends Role

case object Administrator extends Role

The cases within a role don’t hold any data, so we used a case
object in the Scala 2 code.

We defined a user as a screen name, an email address, a password,
and a role. In both Scala 3 and Scala 2 this becomes

final case class User(

 screenName: String,

37

 emailAddress: String,

 password: String,

 role: Role

)

I’ve used String to represent most of the data within a User, but
in real code we might want to define distinct types for each field.

3.2.3.2. Paths

We defined a path as a sequence of actions of a virtual pen. The
possible actions are straight lines, Bezier curves, or movement that
doesn’t result in visible output. A straight line has an end point
(the starting point is implicit), a Bezier curve has two control
points and an end point, and a move has an end point.

This has a straightforward translation to Scala. We can represent
paths as the following in both Scala 3 and Scala 2.

final case class Path(actions: Seq[Action])

An action is a logical or, so we have different representations in
Scala 3 and Scala 2. In Scala 3 we’d write

enum Action {

 case Line(end: Point)

 case Curve(cp1: Point, cp2: Point, end: Point)

 case Move(end: Point)

}

where Point is a suitable representation of a two-dimensional
point.

In Scala 2 we have to go with the more verbose

sealed abstract class Action extends Product with Serializable

final case class Line(end: Point) extends Action

final case class Curve(cp1: Point, cp2: Point, end: Point)

38

 extends Action

final case class Move(end: Point) extends Action

3.2.4. Representing ADTs in Scala 3

We’ve seen that the Scala 3 representation of algebraic data types,
using enum, is more compact than the Scala 2 representation.
However the Scala 2 representation is still available. Should you
ever use the Scala 2 representation in Scala 3? There are a few
cases where you may want to:

• Scala 3′s doesn’t currently support nested enums (enums within
enums). This may change in the future, but right now it can be
more convenient to use the Scala 2 representation to express this
without having to convert to disjunctive normal form.

• Scala 2′s representation can express things that are almost, but
not quite, algebraic data types. For example, if you define a
method on an enum you must be able to define it for all the
members of the enum. Sometimes you want a case of an enum to
have methods that are only defined for that case. To implement
this you’ll need to use the Scala 2 representation instead.

Exercise: Tree

To gain a bit of practice defining algebraic data types, code the
following description in Scala (your choice of version, or do both.)

A Tree with elements of type A is:

• a Leaf with a value of type A; or
• a Node with a left and right child, which are both Trees with

elements of type A.

39

3.3. Structural Recursion

Structural recursion is our second programming strategy.
Algebraic data types tell us how to create data given a certain
structure. Structural recursion tells us how to transform an
algebraic data types into any other type. Given an algebraic data
type, the transformation can be implemented using structural
recursion.

As with algebraic data types, there is distinction between the
concept of structural recursion and the implementation in Scala.
This is more obvious because there are two ways to implement
structural recursion in Scala: via pattern matching or via dynamic
dispatch. We’ll look at each in turn.

3.3.1. Pattern Matching

I’m assuming you’re familiar with pattern matching in Scala, so I’ll
only talk about how to implement structural recursion using
pattern matching. Remember there are two kinds of algebraic data
types: sum types (logical ors) and product types (logical ands). We
have corresponding rules for structural recursion implemented
using pattern matching:

1. For each branch in a sum type we have a distinct case in the
pattern match; and

2. Each case corresponds to a product type with the pattern
written in the usual way.

Let’s see this in code, using an example ADT that includes both
sum and product types:

• A is B or C; and
• B is D and E; and
• C is F and G

40

which we represent (in Scala 3) as

enum A {

 case B(d: D, e: E)

 case C(f: F, g: G)

}

Following the rules above means a structural recursion would look
like

anA match {

 case B(d, e) => ???

 case C(f, g) => ???

}

The ??? bits are problem specific, and we cannot give a general
solution for them. However we’ll soon see strategies to help create
them.

3.3.2. The Recursion in Structural Recursion

At this point you might be wondering where the recursion in
structural recursion comes from. This is an additional rule for
recursion: whenever the data is recursive the method is recursive
in the same place.

Let’s see this in action for a real data type.

We can define a list with elements of type A as:

• the empty list; or
• a pair containing an A and a tail, which is a list of A.

This is exactly the definition of List in the standard library. Notice
it’s an algebraic data type as it consists of sums and products. It is
also recursive: in the pair case the tail is itself a list.

We can directly translate this to code, using the strategy for
algebraic data types we saw previously. In Scala 3 we write

41

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

}

Let’s implement map for MyList. We start with the method
skeleton specifying just the name and types.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 ???

}

Our first step is to recognize that map can be written using a
structural recursion. MyList is an algebraic data type, map is
transforming this algebraic data type, and therefore structural
recursion is applicable. We now apply the structural recursion
strategy, giving us

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 this match {

 case Empty() => ???

 case Pair(head, tail) => ???

 }

}

I forgot the recursion rule! The data is recursive in the tail of
Pair, so map is recursive there as well.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

42

 this match {

 case Empty() => ???

 case Pair(head, tail) => ??? tail.map(f)

 }

}

I left the ??? to indicate that we haven’t finished with that case.

Now we can move on to the problem specific parts. Here we have
three strategies to help us:

1. reasoning independently by case;
2. assuming the recursion is correct; and
3. following the types

The first two are specific to structural recursion, while the final
one is a general strategy we can use in many situations. Let’s
briefly discuss each and then see how they apply to our example.

The first strategy is relatively simple: when we consider the
problem specific code on the right hand side of a pattern matching
case, we can ignore the code in any other pattern match cases. So,
for example, when considering the case for Empty above we don’t
need to worry about the case for Pair, and vice versa.

The next strategy is a little bit more complicated, and has to do
with recursion. Remember that the structural recursion strategy
tells us where to place any recursive calls. This means we don’t
have to think through the recursion. Instead we assume the
recursive call will correctly compute what it claims, and only
consider how to further process the result of the recursion. The
result is guaranteed to be correct so long as we get the non-
recursive parts correct.

In the example above we have the recursion tail.map(f). We can
assume this correctly computes map on the tail of the list, and we
only need to think about what we should do with the remaining
data: the head and the result of the recursive call.

43

It’s this property that allows us to consider cases independently.
Recursive calls are the only thing that connect the different cases,
and they are given to us by the structural recursion strategy.

Our final strategy is following the types. It can be used in many
situations, not just structural recursion, so I consider it a separate
strategy. The core idea is to use the information in the types to
restrict the possible implementations. We can look at the types of
inputs and outputs to help us.

Now let’s use these strategies to finish the implementation of map.
We start with

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 this match {

 case Empty() => ???

 case Pair(head, tail) => ??? tail.map(f)

 }

}

Our first strategy is to consider the cases independently. Let’s start
with the Empty case. There is no recursive call here, so reasoning
about recursion doesn’t come into play. Let’s instead use the types.
There is no input here other than the Empty case we have already
matched, so we cannot use the input types to further restrict the
code. Let’s instead consider the output type. We’re trying to create
a MyList[B]. There are only two ways to create a MyList[B]: an
Empty or a Pair. To create a Pair we need a head of type B, which
we don’t have. So we can only use Empty. This is the only possible

code we can write. The types are sufficiently restrictive that we
cannot write incorrect code for this case.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

44

 def map[B](f: A => B): MyList[B] =

 this match {

 case Empty() => Empty()

 case Pair(head, tail) => ??? tail.map(f)

 }

}

Now let’s move to the Pair case. We can apply both the structural
recursion reasoning strategy and following the types. Let’s use
each in turn.

The case for Pair is

case Pair(head, tail) => ??? tail.map(f)

Remember we can consider this independently of the other case.
We assume the recursion is correct. This means we only need to
think about what we should do with the head, and how we should
combine this result with tail.map(f). Let’s now follow the types
to finish the code. Our goal is to produce a MyList[B]. We already
the following available:

• tail.map(f), which has type MyList[B];
• head, with type A;
• f, with type A => B; and
• the constructors Empty and Pair.

We could return just Empty, matching the case we’ve already
written. This has the correct type but we might expect it is not the
correct answer because it does not use the result of the recursion,
head, or f in any way.

We could return just tail.map(f). This has the correct type but
we might expect it is not correct because we don’t use head or f in
any way.

45

We can call f on head, producing a value of type B, and then
combine this value and the result of the recursive call using Pair
to produce a MyList[B]. This is the correct solution.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 this match {

 case Empty() => Empty()

 case Pair(head, tail) => Pair(f(head), tail.map(f))

 }

}

If you’ve followed this example you’ve hopefully see how we can
use the three strategies to systematically find the correct
implementation. Notice how we interleaved the recursion strategy
and following the types to guide us to a solution for the Pair case.
Also note how following the types alone gave us three possible
implementations for the Pair case. In this code, and as is usually
the case, the solution was the implementation that used all of the
available inputs.

3.3.3. Exhaustivity Checking

Remember that algebraic data types are a closed world: they
cannot be extended once defined. The Scala compiler can use this
to check that we handle all possible cases in a pattern match, so
long as we write the pattern match in a way the compiler can
work with. This is known as exhaustivity checking.

Here’s a simple example. We start by defining a straight-forward
algebraic data type.

// Some of the possible units for lengths in CSS

enum CssLength {

46

 case Em(value: Double)

 case Rem(value: Double)

 case Pt(value: Double)

}

If we write a pattern match using the structural recursion strategy,
the compiler will complain if we’re missing a case.

import CssLength.*

CssLength.Em(2.0) match {

 case Em(value) => value

 case Rem(value) => value

}

// -- [E029] Pattern Match Exhaustivity Warning:

// 1 |CssLength.Em(2.0) match {

// |^^^^^^^^^^^^^^^^^

// |match may not be exhaustive.

// |

// |It would fail on pattern case: CssLength.Pt(_)

// |

// | longer explanation available when compiling with `-

explain`

Exhaustivity checking is incredibly useful. For example, if we add
or remove a case from an algebraic data type, the compiler will tell
us all the pattern matches that need to be updated.

3.3.4. Dynamic Dispatch

Using dynamic dispatch to implement structural recursion is an
implementation technique that may feel more natural to people
with a background in object-oriented programming.

The dynamic dispatch approach consists of:

1. defining an abstract method at the root of the algebraic data
types; and

47

2. implementing that abstract method at every leaf of the
algebraic data type.

This implementation technique is only available if we use the Scala
2 encoding of algebraic data types.

Let’s see it in the MyList example we just looked at. Our first step
is to rewrite the definition of MyList to the Scala 2 style.

sealed abstract class MyList[A] extends Product with Serializable

final case class Empty[A]() extends MyList[A]

final case class Pair[A](head: A, tail: MyList[A]) extends

MyList[A]

Next we define an abstract method for map on MyList.

sealed abstract class MyList[A] extends Product with Serializable

{

 def map[B](f: A => B): MyList[B]

}

final case class Empty[A]() extends MyList[A]

final case class Pair[A](head: A, tail: MyList[A]) extends

MyList[A]

Then we implement map on the concrete subtypes Empty and Pair.

sealed abstract class MyList[A] extends Product with Serializable

{

 def map[B](f: A => B): MyList[B]

}

final case class Empty[A]() extends MyList[A] {

 def map[B](f: A => B): MyList[B] =

 Empty()

}

final case class Pair[A](head: A, tail: MyList[A]) extends

MyList[A] {

 def map[B](f: A => B): MyList[B] =

 Pair(f(head), tail.map(f))

}

We can use exactly the same strategies we used in the pattern
matching case to create this code. The implementation technique
is different but the underlying concept is the same.

48

Given we have two implementation strategies, which should we
use? If we’re using enum in Scala 3 we don’t have a choice; we
must use pattern matching. In other situations we can choose
between the two. I prefer to use pattern matching when I can, as it
puts the entire method definition in one place. However, Scala 2 in
particular has problems inferring types in some pattern matches.
In these situations we can use dynamic dispatch instead. We’ll
learn more about this when we look at generalized algebraic data
types.

Exercise: Methods for Tree

In a previous exercise we created a Tree algebraic data type:

enum Tree[A] {

 case Leaf(value: A)

 case Node(left: Tree[A], right: Tree[A])

}

Or, in the Scala 2 encoding:

sealed abstract class Tree[A] extends Product with Serializable

final case class Leaf[A](value: A) extends Tree[A]

final case class Node[A](left: Tree[A], right: Tree[A]) extends

Tree[A]

Let’s get some practice with structural recursion and write some
methods for Tree. Implement

• size, which returns the number of values (Leafs) stored in the
Tree;

• contains, which returns true if the Tree contains a given
element of type A, and false otherwise; and

• map, which creates a Tree[B] given a function A => B

Use whichever you prefer of pattern matching or dynamic
dispatch to implement the methods.

49

3.3.5. Folds as Structural Recursions

Let’s finish by looking at the fold method as an abstraction over
structural recursion. If you did the Tree exercise above, you will
have noticed that we wrote the same kind of code again and again.
Here are the methods we wrote. Notice the left-hand sides of the
pattern matches are all the same, and the right-hand sides are very
similar.

def size: Int =

 this match {

 case Leaf(value) => 1

 case Node(left, right) => left.size + right.size

 }

def contains(element: A): Boolean =

 this match {

 case Leaf(value) => element == value

 case Node(left, right) => left.contains(element) ||

right.contains(element)

 }

def map[B](f: A => B): Tree[B] =

 this match {

 case Leaf(value) => Leaf(f(value))

 case Node(left, right) => Node(left.map(f), right.map(f))

 }

This is the point of structural recursion: to recognize and formalize
this similarity. However, as programmers we might want to
abstract over this repetition. Can we write a method that captures
everything that doesn’t change in a structural recursion, and
allows the caller to pass arguments for everything that does
change? It turns out we can. For any algebraic data type we can
define at least one method, called a fold, that captures all the parts
of structural recursion that don’t change and allows the caller to
specify all the problem specific parts.

Let’s see how this is done using the example of MyList. Recall the
definition of MyList is

50

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

}

We know the structural recursion skeleton for MyList is

def doSomething[A](list: MyList[A]) =

 list match {

 case Empty() => ???

 case Pair(head, tail) => ??? doSomething(tail)

 }

Implementing fold for MyList means defining a method

def fold[A, B](list: MyList[A]): B =

 list match {

 case Empty() => ???

 case Pair(head, tail) => ??? fold(tail)

 }

where B is the type the caller wants to create.

To complete fold we add method parameters for the problem
specific (???) parts. In the case for Empty, we need a value of type
B (notice that I’m following the types here).

def fold[A, B](list: MyList[A], empty: B): B =

 list match {

 case Empty() => empty

 case Pair(head, tail) => ??? fold(tail, empty)

 }

For the Pair case, we have the head of type A and the recursion
producing a value of type B. This means we need a function to
combine these two values.

def foldRight[A, B](list: MyList[A], empty: B, f: (A, B) => B): B

=

 list match {

51

 case Empty() => empty

 case Pair(head, tail) => f(head, foldRight(tail, empty, f))

 }

This is foldRight (and I’ve renamed the method to indicate this).
You might have noticed there is another valid solution. Both empty
and the recursion produce values of type B. If we follow the types
we can come up with

def foldLeft[A,B](list: MyList[A], empty: B, f: (A, B) => B): B =

 list match {

 case Empty() => empty

 case Pair(head, tail) => foldLeft(tail, f(head, empty), f)

 }

which is foldLeft, the tail-recursive variant of fold for a list.
(We’ll talk about tail-recursion in a later chapter.)

We can follow the same process for any algebraic data type to
create its folds. The rules are:

• a fold is a function from the algebraic data type and additional
parameters to some generic type that I’ll call B below for
simplicity;

• the fold has one additional parameter for each case in a logical
or;

• each parameter is a function, with result of type B and
parameters that have the same type as the corresponding
constructor arguments except recursive values are replaced with
B; and

• if the constructor has no arguments (for example, Empty) we can
use a value of type B instead of a function with no arguments.

Returning to MyList, it has:

• two cases, and hence two parameters to fold (other than the
parameter that is the list itself);

• Empty is a constructor with no arguments and hence we use a
parameter of type B; and

52

• Pair is a constructor with one parameter of type A and one
recursive parameter, and hence the corresponding function has
type (A, B) => B.

Exercise: Tree Fold

Implement a fold for Tree defined earlier. There are several
different ways to traverse a tree (pre-order, post-order, and in-
order). Just choose whichever seems easiest.

Exercise: Using Fold

Prove to yourself that you can replace structural recursion with
calls to fold, by redefining size, contains, and map for Tree using
only fold.

3.4. Structural Corecursion

Structural corecursion is the opposite—more correctly, the dual—of
structural recursion. Whereas structural recursion tells us how to
take apart an algebraic data type, structural corecursion tells us
how to build up, or construct, an algebraic data type. Whereas we
can use structural recursion whenever the input of a method or
function is an algebraic data type, we can use structural
corecursion whenever the output of a method or function is an
algebraic data type.

Duality in Functional Programming

Two concepts or structures are duals if one can be
translated in a one-to-one fashion to the other. Duality is

53

one of the main themes of this book. By relating concepts as
duals we can transfer knowledge from one domain to
another.

Duality is often indicated by attaching the co- prefix to one
of the structures or concepts. For example, corecursion is
the dual of recursion, and sum types, also known as
coproducts, are the dual of product types.

Structural recursion works by considering all the possible inputs
(which we usually represent as patterns), and then working out
what we do with each input case. Structural corecursion works by
considering all the possible outputs, which are the constructors of
the algebraic data type, and then working out the conditions under
which we’d call each constructor.

Let’s return to the list with elements of type A, defined as:

• the empty list; or
• a pair containing an A and a tail, which is a list of A.

In Scala 3 we write

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

}

We can use structural corecursion if we’re writing a method that
produces a MyList. A good example is map:

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 ???

}

54

The output of this method is a MyList, which is an algebraic data
type. Since we need to construct a MyList we can use structural
corecursion. The structural corecursion strategy says we write
down all the constructors and then consider the conditions that
will cause us to call each constructor. So our starting point is to
just write down the two constructors, and put in dummy
conditions.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 if ??? then Empty()

 else Pair(???, ???)

}

We can also apply the recursion rule: where the data is recursive
so is the method.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 if ??? then Empty()

 else Pair(???, ???.map(f))

}

To complete the left-hand side we can use the strategies we’ve
already seen:

• we can use structural recursion to tell us there are two possible
conditions; and

• we can follow the types to align these conditions with the code
we have already written.

In short order we arrive at the correct solution

55

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

 def map[B](f: A => B): MyList[B] =

 this match {

 case Empty() => Empty()

 case Pair(head, tail) => Pair(f(head), tail.map(f))

 }

}

There are a few interesting points here. Firstly, we should
acknowledge that map is both a structural recursion and a
structural corecursion. This is not always the case. For example,
foldLeft and foldRight are not structural corecursions because
they are not constrained to only produce an algebraic data type.
Secondly, note that when we walked through the process of
creating map as a structural recursion we implicitly used the
structural corecursion pattern, as part of following the types. We
recognised that we were producing a List, that there were two
possibilities for producing a List, and then worked out the correct
conditions for each case. Formalizing structural corecursion as a
separate strategy allows us to be more conscious of where we
apply it. Finally, notice how I switched from an if expression to a
pattern match expression as we progressed through defining map.
This is perfectly fine. Both kinds of expression achieve the same
effect. Pattern matching is a little bit safer due to exhaustivity
checking. If we wanted to continue using an if we’d have to
define a method (for example, isEmpty) that allows us to
distinguish an Empty element from a Pair. This method would
have to use pattern matching in its implementation, so avoiding
pattern matching directly is just pushing it elsewhere.

56

3.4.1. Unfolds as Structural Corecursion

Just as we could abstract structural recursion as a fold, for any
given algebraic data type we can abstract structural corecursion as
an unfold. Unfolds are much less commonly used than folds, but
they are still a nice tool to have.

Let’s work through the process of deriving unfold, using MyList as
our example again.

enum MyList[A] {

 case Empty()

 case Pair(head: A, tail: MyList[A])

}

The corecursion skeleton is

if ??? then MyList.Empty()

else MyList.Pair(???, recursion(???))

Our starting point is writing the skeleton for unfold. It’s a little bit
unusual in that I’ve added a parameter seed. This is the
information we use to create an element. We’ll need this, but we
cannot derive it from our strategies, so I’ve added it in here as a
starting assumption.

def unfold[A, B](seed: A): MyList[B] =

 ???

Now we start using our strategies to fill in the missing pieces. I’m
using the corecursion skeleton and I’ve applied the recursion rule
immediately in the code below, to save a bit of time in the
derivation.

def unfold[A, B](seed: A): MyList[B] =

 if ??? then MyList.Empty()

 else MyList.Pair(???, unfold(seed))

57

We can abstract the condition using a function from A =>
Boolean.

def unfold[A, B](seed: A, stop: A => Boolean): MyList[B] =

 if stop(seed) then MyList.Empty()

 else MyList.Pair(???, unfold(seed, stop))

Now we need to handle the case for Pair. We have a value of type
A (seed), so to create the head element of Pair we can ask for a
function A => B

def unfold[A, B](seed: A, stop: A => Boolean, f: A => B):

MyList[B] =

 if stop(seed) then MyList.Empty()

 else MyList.Pair(f(seed), unfold(???, stop, f))

Finally we need to update the current value of seed to the next
value. That’s a function A => A.

def unfold[A, B](seed: A, stop: A => Boolean, f: A => B, next: A

=> A): MyList[B] =

 if stop(seed) then MyList.Empty()

 else MyList.Pair(f(seed), unfold(next(seed), stop, f, next))

At this point we’re done. Let’s see that unfold is useful by
declaring some other methods in terms of it. We’re going to
declare map, which we’ve already seen is a structural corecursion,
using unfold. We will also define fill and iterate, which are
methods that construct lists and correspond to the methods with
the same names on List in the Scala standard library.

To make this easier to work with I’m going to declare unfold as a
method on the MyList companion object. I have made a slight
tweak to the definition to make type inference work a bit better. In
Scala, types inferred for one method parameter cannot be used for
other method parameters in the same parameter list. However,
types inferred for one method parameter list can be used in
subsequent lists. Separating the function parameters from the seed

58

parameter means that the value inferred for A from seed can be
used for inference of the function parameters’ input parameters.

I have also declared some destructor methods, which are methods
that take apart an algebraic data type. For MyList these are head,
tail, and the predicate isEmpty. We’ll talk more about these a bit
later.

Here’s our starting point.

enum MyList[A] {

 case Empty()

 case Pair(_head: A, _tail: MyList[A])

 def isEmpty: Boolean =

 this match {

 case Empty() => true

 case _ => false

 }

 def head: A =

 this match {

 case Pair(head, _) => head

 }

 def tail: MyList[A] =

 this match {

 case Pair(_, tail) => tail

 }

}

object MyList {

 def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next:

A => A): MyList[B] =

 if stop(seed) then MyList.Empty()

 else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

}

Now let’s define the constructors fill and iterate, and map, in
terms of unfold. I think the constructors are a bit simpler, so I’ll do
those first.

object MyList {

 def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next:

59

A => A): MyList[B] =

 if stop(seed) then MyList.Empty()

 else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

 def fill[A](n: Int)(elem: => A): MyList[A] =

 ???

 def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =

 ???

}

Here I’ve just added the method skeletons, which are taken
straight from the List documentation. To implement these
methods we can use one of two strategies:

• reasoning about loops in the way we might in an imperative
language; or

• reasoning about structural recursion over the natural numbers.

Let’s talk about each in turn.

You might have noticed that the parameters to unfold are almost
exactly those you need to create a for-loop in a language like Java.
A classic for-loop, of the for(i = 0; i < n; i++) kind, has four
components:

1. the initial value of the loop counter;
2. the stopping condition of the loop;
3. the statement that advances the counter; and
4. the body of the loop that uses the counter.

These correspond to the seed, stop, next, and f parameters of
unfold respectively.

Loop variants and invariants are the standard way of reasoning
about imperative loops. I’m not going to describe them here, as
you have probably already learned how to reason about loops
(though perhaps not using these terms). Instead I’m going to
discuss the second reasoning strategy, which relates writing
unfold to something we’ve already discussed: structural recursion.

60

Our first step is to note that natural numbers (the integers 0 and
larger) are conceptually algebraic data types even though the
implementation in Scala—using Int—is not. A natural number is
either:

• zero; or
• 1 + a natural number.

It’s the simplest possible algebraic data type that is both a sum and
a product type.

Once we see this, we can use the reasoning tools for structural
recursion for creating the parameters to unfold. Let’s show how
this works with fill. The n parameter tells us how many elements
there are in the List we’re creating. The elem parameter creates
those elements, and is called once for each element. So our starting
point is to consider this as a structural recursion over the natural
numbers. We can take n as seed, and stop as the function x => x
== 0. These are the standard conditions for a structural recursion
over the natural numbers. What about next? Well, the definition of
natural numbers tells us we should subtract one in the recursive
case, so next becomes x => x - 1. We only need f, and that
comes from the definition of how fill is supposed to work. We
create the value from elem, so f is just _ => elem

object MyList {

 def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next:

A => A): MyList[B] =

 if stop(seed) then MyList.Empty()

 else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))

 def fill[A](n: Int)(elem: => A): MyList[A] =

 unfold(n)(_ == 0, _ => elem, _ - 1)

 def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =

 ???

}

We should check that our implementation works as intended. We
can do this by comparing it to List.fill.

61

List.fill(5)(1)

// res6: List[Int] = List(1, 1, 1, 1, 1)

MyList.fill(5)(1)

// res7: MyList[Int] = MyList(1, 1, 1, 1, 1)

Here’s a slightly more complex example, using a stateful method
to create a list of ascending numbers. First we define the state and
method that uses it.

var counter = 0

def getAndInc(): Int = {

 val temp = counter

 counter = counter + 1

 temp

}

Now we can create it to create lists.

List.fill(5)(getAndInc())

// res8: List[Int] = List(0, 1, 2, 3, 4)

counter = 0

MyList.fill(5)(getAndInc())

// res10: MyList[Int] = MyList(0, 1, 2, 3, 4)

Exercise: Iterate

Implement iterate using the same reasoning as we did for fill.
This is slightly more complex than fill as we need to keep two
bits of information: the value of the counter and the value of type
A.

Exercise: Map

Once you’ve completed iterate, try to implement map in terms of
unfold. You’ll need to use the destructors to implement it.

Now a quick discussion on destructors. The destructors do two
things:

62

1. distinguish the different cases within a sum type; and
2. extract elements from each product type.

So for MyList the minimal set of destructors is isEmpty, which
distinguishes Empty from Pair, and head and tail. The extractors
are partial functions in the conceptual, not Scala, sense; they are
only defined for a particular product type and throw an exception
if used on a different case. You may have also noticed that the
functions we passed to fill are exactly the destructors for natural
numbers.

The destructors are another part of the duality between structural
recursion and corecursion. Structural recursion is:

• defined by pattern matching on the constructors; and
• takes apart an algebraic data type into smaller pieces.

Structural corecursion instead is:

• defined by conditions on the input, which may use destructors;
and

• build up an algebraic data type from smaller pieces.

One last thing before we leave unfold. If we look at the usual
definition of unfold we’ll probably find the following definition.

def unfold[A, B](in: A)(f: A => Option[(A, B)]): List[B]

This is equivalent to the definition we used, but a bit more
compact in terms of the interface it presents. We used a more
explicit definition that makes the structure of the method clearer.

63

3.5. The Algebra of Algebraic Data

Types

A question that sometimes comes up is where the “algebra” in
algebraic data types comes from. I want to talk about this a little
bit and show some of the algebraic manipulations that can be done
on algebraic data types.

The term algebra is used in the sense of abstract algebra, an area of
mathematics. Abstract algebra deals with algebraic structures. An
algebraic structure consists of a set of values, operations on that
set, and properties that those operations must maintain. An
example is the set of integers, the operations addition and
multiplication, and the familiar properties of these operations such

as associativity, which says that 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐. The
abstract in abstract algebra means that it doesn’t deal with
concrete values like integers—that would be far too easy to
understand—and instead with abstractions with wacky names like
semigroup, monoid, and ring. The example of integers above is an
instance of a ring. We’ll see a lot more of these soon enough!

Algebraic data types also correspond to the algebraic structure
called a ring. A ring has two operations, which are conventionally

written + and ×. You’ll perhaps guess that these correspond to
sum and product types respectively, and you’d be absolutely
correct. What about the properties of these operations? We’ll they
are similar to what we know from basic algebra:

• + and × are associative, so 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 and

likewise for ×;
• 𝑎 + 𝑏 = 𝑏 + 𝑎, known as commutivitiy;
• there is an identity 0 such that 𝑎 + 0 = 𝑎;
• there is an identity 1 such that 𝑎 × 1 = 𝑎;
• there is distribution, so that 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

64

So far, so abstract. Let’s make it concrete by looking at actual
examples in Scala.

Remember the algebraic data types work with types, so the

operations + and × take types as parameters. So Int × String is
equivalent to

final case class IntAndString(int: Int, string: String)

We can use tuples to avoid creating lots of names.

type IntAndString = (Int, String)

We can do the same thing for +. Int + String is

enum IntOrString {

 case IsInt(int: Int)

 case IsString(string: String)

}

or just

type IntOrString = Either[Int, String]

Exercise: Identities

Can you work out which Scala type corresponds to the identity 1
for product types?

What about the Scala type corresponding to the identity 0 for sum
types?

What about the distribution law? This allows us to manipulate
algebraic data types to form equivalent, but perhaps more useful,
representations. Consider this example of a user data type.

final case class Person(name: String, permissions: Permissions)

enum Permissions {

65

 case User

 case Moderator

}

Written in mathematical notation, this is

Person = String × Permissions

Permissions = User +Moderator

Performing substitution gets us

Person = String × (User +Moderator)

Applying distribution results in

Person = (String × User) + (String ×Moderator)

which in Scala we can represent as

enum Person {

 case User(name: String)

 case Moderator(name: String)

}

Is this representation more useful? I can’t say without the context
of where the data is being used. However I can say that knowing
this manipulation is possible, and correct, is useful.

There is a lot more that could be said about algebraic data types,
but at this point I feel we’re really getting into the weeds. I’ll finish
up with a few pointers to other interesting facts:

• Exponential types exist. They are functions! A function A => B

is equivalent to 𝑏𝑎.
• Quotient types also exist, but they are a bit weird. Read up about

them if you’re interested.
• Another interesting algebraic manipulation is taking the

derivative of an algebraic data type. This gives us a kind of
iterator, known as a zipper, for that type.

66

3.6. Conclusions

We have covered a lot of material in this chapter. Let’s recap the
key points.

Algebraic data types allow us to express data types by combining
existing data types with logical and and logical or. A logical and
constructs a product type while a logical or constructs a sum type.
Algebraic data types are the main way to represent data in Scala.

Structural recursion gives us a skeleton for transforming any given
algebraic data type into any other type. Structural recursion can be
abstracted into a fold method.

We use several reasoning principles to help us complete the
problem specific parts of a structural recursion:

1. reasoning independently by case;
2. assuming recursion is correct; and
3. following the types.

Following the types is a very general strategy that is can be used
in many other situations.

Structural corecursion gives us a skeleton for creating any given
algebraic data type from any other type. Structural corecursion
can be abstracted into an unfold method. When reasoning about
structural corecursion we can reason as we would for an
imperative loop, or, if the input is an algebraic data type, use the
principles for reasoning about structural recursion.

Notice that the two main themes of functional programming—
composition and reasoning—are both already apparent. Algebraic
data types are compositional: we compose algebraic data types
using sum and product. We’ve seen many reasoning principles in
this chapter.

I haven’t covered everything there is to know about algebraic data
types; I think doing so would be a book in its own right. Below are

67

some references that you might find useful if you want to dig in
further, as well as some biographical remarks.

Algebraic data types are standard in introductory material on
functional programming. Structural recursion is certainly
extremely common in functional programming, but strangely
seems to rarely be explicitly defined as I’ve done here. I learned
about both from How to Design Programs [27].

I’m not aware of any approachable yet thorough treatment of
either algebraic data types or structural recursion. Both seem to
have become assumed background of any researcher in the field of
programming languages, and relatively recent work is caked in
layers of mathematics and obtuse notation that I find difficult
reading. The infamous Functional Programming with Bananas,

Lenses, Envelopes and Barbed Wire [56] is an example of such work.
I suspect the core ideas of both date back to at least the emergence
of computability theory in the 1930s, well before any digital
computers existed.

The earliest reference I’ve found to structural recursion is Proving

Properties of Programs by Structural Induction [9]. Algebraic data
types don’t seem to have been fully developed, along with pattern
matching, until NPL19 in 1977. NPL was quickly followed by the
more influential language Hope20, which spread the concept to
other programming languages.

Corecursion is a bit better documented in the contemporary
literature. How to Design Co-Programs [35] covers the main ideas
we have looked at here, while The Under-appreciated Unfold [32]
discusses uses of unfold.

The Derivative of a Regular Type is its Type of One-Hole Contexts
[55] describes the derivative of algebraic data types.

19https://en.wikipedia.org/wiki/NPL_(programming_language)
20https://en.wikipedia.org/wiki/Hope_(programming_language)

68

https://en.wikipedia.org/wiki/NPL_(programming_language)
https://en.wikipedia.org/wiki/Hope_(programming_language)

4. Objects as Codata

In this chapter we will look at codata, the dual of algebraic data
types. Algebraic data types focus on how things are constructed.
Codata, in contrast, focuses on how things are used. We define
codata by specifying the operations that can be performed on the
type. This is very similar to the use of interfaces in object-oriented
programming, and this is the first reason that we are interested in
codata: codata puts object-oriented programming into a coherent
conceptual framework with the other strategies we are discussing.

We’re not only interested in codata as a lens to view object-
oriented programming. Codata also has properties that algebraic
data does not. Codata allows us to create structures with an
infinite number of elements, such as a list that never ends or a
server loop that runs indefinitely. Codata has a different form of
extensibility to algebraic data. Whereas we can easily write new
functions that transform algebraic data, we cannot add new cases
to the definition of an algebraic data type without changing the
existing code. The reverse is true for codata. We can easily create
new implementations of codata, but functions that transform
codata are limited by the interface the codata defines.

In the previous chapter we saw structural recursion and structural
corecursion as strategies to guide us in writing programs using
algebraic data types. The same holds for codata. We can use codata
forms of structural recursion and corecursion to guide us in
writing programs that consume and produce codata respectively.

We’ll begin our exploration of codata by more precisely defining it
and seeing some examples. We’ll then talk about representing
codata in Scala, and the relationship to object-oriented
programming. Once we can create codata, we’ll see how to work
with it using structural recursion and corecursion, using an
example of an infinite structure. Next we will look at transforming

69

algebraic data to codata, and vice versa. We will finish by
examining differences in extensibility.

A quick note about terminology before we proceed. We might
expect to use the term algebraic codata for the dual of algebraic
data, but conventionally just codata is used. I assume this is
because data is usually understood to have a wider meaning than
just algebraic data, but codata is not used outside of programming
language theory. For simplicity and symmetry, within this chapter
I’ll just use the term data to refer to algebraic data types.

4.1. Data and Codata

Data describes what things are, while codata describes what things
can do.

We have seen that data is defined in terms of constructors
producing elements of the data type. Let’s take a very simple
example: a Bool is either True or False. We know we can
represent this in Scala as

enum Bool {

 case True

 case False

}

The definition tells us there are two ways to construct an element
of type Bool. Furthermore, if we have such an element we can tell
exactly which case it is, by using a pattern match for example.
Similarly, if the instances themselves hold data, as in List for
example, we can always extract all the data within them. Again,
we can use pattern matching to achieve this.

Codata, in contrast, is defined in terms of operations we can
perform on the elements of the type. These operations are
sometimes called destructors (which we’ve already encountered),

70

observations, or eliminators. A common example of codata is a
data structure such as a set. We might define the operations on a
Set with elements of type A as:

• contains, which takes a Set[A] and an element A and returns a
Boolean indicating if the set contains the element;

• insert, which takes a Set[A] and an element A and returns a
Set[A] containing all the elements from the original set and the
new element; and

• union, which takes a Set[A] and a set Set[A] and returns a
Set[A] containing all the elements of both sets.

In Scala we could implement this definition as

trait Set[A] {

 /** True if this set contains the given element */

 def contains(elt: A): Boolean

 /** Construct a new set containing all elements in this set and

the given element */

 def insert(elt: A): Set[A]

 /** Construct the union of this and that set */

 def union(that: Set[A]): Set[A]

}

This definition does not tell us anything about the internal
representation of the elements in the set. It could use a hash table,
a tree, or something more exotic. It does, however, tell us what we
can do with the set. We know we can take the union but not the
intersection, for example.

If you come from the object-oriented world you might recognize
the description of codata above as programming to an interface. In
some ways codata is just taking concepts from the object-oriented
world and presenting them in a way that is consistent with the
rest of the functional programming paradigm. However, this does
not mean adopting all the features of object-oriented
programming. We won’t use state, which is difficult to reason

71

about. We also won’t use implementation inheritance either, for
the same reason. In our subset of object-oriented programming
we’ll either be defining interfaces (which may have default
implementations of some methods) or final classes that implement
those interfaces. Interestingly, this subset of object-oriented
programming is often recommended by advocates of object-
oriented programming21.

Let’s now be a little more precise in our definition of codata, which
will make the duality between data and codata clearer. Remember
the definition of data: it is defined in terms of sums (logical ors)
and products (logical ands). We can transform any data into a sum
of products, which is disjunctive normal form. Each product in the
sum is a constructor, and the product itself is the parameters that
the constructor accepts. Finally, we can think of constructors as
functions which take some arbitrary input and produce an element
of data. Our end point is a sum of functions from arbitrary input to
data.

More concretely, if we are constructing an element of some data
type A we call one of the constructors

• A1: (B, C, ...) => A; or
• A2: (D, E, ...) => A; or
• A3: (F, G, ...) => A; and so on.

Now we’ll turn to codata. Codata is defined as a product of
functions, these functions being the destructors. The input to a
destructor is always an element of the codata type and possibly
some other parameters. The output is usually something that is
not of the codata type. Thus constructing an element of some
codata type A means defining

• A1: (A, B, ...) => C; and
• A2: (A, D, ...) => E; and

21For example, Effective Java [6] suggests developers “minimize mutability”
and “favor composition over [implementation] inheritance”. Together these
form the subset of object-oriented programming that we consider to be codata.

72

• A3: (A, F, ...) => G; and so on.

This hopefully makes the duality between the two clearer.

Now we understand what codata is, we will turn to representing
codata in Scala.

4.2. Codata in Scala

We have already seen an example of codata, which I have repeated
below.

trait Set[A] {

 def contains(elt: A): Boolean

 def insert(elt: A): Set[A]

 def union(that: Set[A]): Set[A]

}

The abstract definition of this, which is a product of functions,
defines a Set with elements of type A as:

• a function contains taking a Set[A] and an element A and
returning a Boolean,

• a function insert taking a Set[A] and an element A and
returning a Set[A], and

• a function union taking a Set[A] and a set Set[A] and returning
a Set[A].

Notice that the first parameter of each function is the type we are
defining, Set[A].

The translation to Scala is:

• the overall type becomes a trait; and

73

• each function becomes a method on that trait. The first
parameter is the hidden this parameter, and other parameters
become normal parameters to the method.

This gives us the Scala representation we started with.

This is only half the story for codata. We also need to actually
implement the interface we’ve just defined. There are three
approaches we can use:

1. a final subclass, in the case where we want to name the
implementation;

2. an anonymous subclass; or
3. more rarely, an object.

Neither final nor anonymous subclasses can be further extended,
meaning we cannot create deep inheritance hierarchies. This in
turn avoids the difficulties that come from reasoning about deep
hierarchies. Using a class rather than a case class means we
don’t expose implementation details like constructor arguments.

Some examples are in order. Here’s a simple example of Set, which
uses a List to hold the elements in the set.

final class ListSet[A](elements: List[A]) extends Set[A] {

 def contains(elt: A): Boolean =

 elements.contains(elt)

 def insert(elt: A): Set[A] =

 ListSet(elt :: elements)

 def union(that: Set[A]): Set[A] =

 elements.foldLeft(that) { (set, elt) => set.insert(elt) }

}

object ListSet {

 def empty[A]: Set[A] = ListSet(List.empty)

}

This uses the first implementation approach, a final subclass.
Where would we use an anonymous subclass? They are most
useful when implementing methods that return our codata type.

74

Let’s take union as an example. It returns our codata type, Set, and
we could implement it as shown below.

trait Set[A] {

 def contains(elt: A): Boolean

 def insert(elt: A): Set[A]

 def union(that: Set[A]): Set[A] = {

 val self = this

 new Set[A] {

 def contains(elt: A): Boolean =

 self.contains(elt) || that.contains(elt)

 def insert(elt: A): Set[A] =

 // Arbitrary choice to insert into self

 self.insert(elt).union(that)

 }

 }

}

This uses an anonymous subclass to implement union on the Set
trait, and hence defines the method for all subclasses. I haven’t
made the method final so that subclasses can override it with a
more efficient implementation. This does open up the danger of
implementation inheritance. This is an example of where theory
and craft diverge. In theory we never want implementation
inheritance, but in practice it can be useful as an optimization.

It can also be useful to implement utility methods defined purely
in terms of the destructors. Let’s say we wanted to implement a
method containsAll that checks if a Set contains all the
elements in an Iterable collection.

def containsAll(elements: Iterable[A]): Boolean

We can implement this purely in terms of contains on Set and
forall on Iterable.

75

trait Set[A] {

 def contains(elt: A): Boolean

 def insert(elt: A): Set[A]

 def union(that: Set[A]): Set[A]

 def containsAll(elements: Iterable[A]): Boolean =

 elements.forall(elt => this.contains(elt))

}

Once again we could make this a final method. In this case it’s
probably more justified as it’s difficult to imagine a more efficient
implementation.

Data and codata are both realized in Scala as variations of the
same language features of classes and objects. This means we can
define types that have properties of both data and codata. We have
actually already done this. When we define data we must define
names for the fields within the data, thus defining destructors.
Most languages are same, not making a hard distinction between
data and codata.

Part of the appeal, I think, of classes and objects is that they can
express so many conceptually different abstractions with the same
language constructs. This gives them a surface appearance of
simplicity; it seems we need to learn only one abstraction to solve
a huge of number of coding problems. However this apparent
simplicity hides real complexity, as this variety of uses forces us to
reverse engineer the conceptual intention from the code.

76

4.3. Structural Recursion and

Corecursion for Codata

In this section we’ll build a library for streams, also known as lazy
lists. These are the codata equivalent of lists. Whereas a list must
have a finite length, streams have an infinite length. We’ll use this
example to explore structural recursion and structural corecursion
as applied to codata.

Let’s start by reviewing structural recursion and corecursion. The
key idea is to use the input or output type, respectively, to drive
the process of writing the method. We’ve already seen how this
works with data, where we emphasized structural recursion. With
codata it’s more often the case that structural corecursion is used.
The steps for using structural corecursion are:

1. recognize the output of the method or function is codata;
2. write down the skeleton to construct an instance of the codata

type, usually using an anonymous subclass; and
3. fill in the methods, where strategies such as structural recursion

or following the types can help.

It’s important that all computations are defined within the
methods, and so only run when the methods are called. Once we
start creating streams the importance of this will become clear.

For structural recursion the steps are:

1. recognize the input of the method or function is codata;
2. note the codata’s destructors as possible sources of values in

writing the method; and
3. complete the method, using strategies such as following the

types or structural corecursion and the methods identified
above.

77

Now on to creating streams. Our first step is to define our stream
type. As this is codata, it is defined in terms of its destructors. The
destructors that define a Stream of elements of type A are:

• a head of type A; and
• a tail of type Stream[A].

Note these are almost the destructors of List. We haven’t defined
isEmpty as a destructor because our streams never end and thus
this method would always return false22.

We can translate this to Scala, as we’ve previously seen, giving us

trait Stream[A] {

 def head: A

 def tail: Stream[A]

}

Now we can create an instance of Stream. Let’s create a never-
ending stream of ones. We will start with the skeleton below and
apply strategies to complete the code.

val ones: Stream[Int] = ???

The first strategy is structural corecursion. We’re returning an
instance of codata, so we can insert the skeleton to construct a
Stream.

val ones: Stream[Int] =

 new Stream[Int] {

 def head: Int = ???

 def tail: Stream[Int] = ???

 }

22A lot of real implementations, such as the LazyList in the Scala standard
library, do define such a method which allows them to represent finite and
infinite lists in the same structure. We’re not doing this for simplicity and
because we want to work with codata in its purest form.

78

Here I’ve used the anonymous subclass approach, so I can just
write all the code in one place.

The next step is to fill in the method bodies. The first method,
head, is trivial. The answer is 1 by definition.

val ones: Stream[Int] =

 new Stream[Int] {

 def head: Int = 1

 def tail: Stream[Int] = ???

 }

It’s not so obvious what to do with tail. We want to return a
Stream[Int] so we could apply structural corecursion again.

val ones: Stream[Int] =

 new Stream[Int] {

 def head: Int = 1

 def tail: Stream[Int] =

 new Stream[Int] {

 def head: Int = 1

 def tail: Stream[Int] = ???

 }

 }

This approach doesn’t seem like it’s going to work. We’ll have to
write this out an infinite number of times to correctly implement
the method, which might be a problem.

Instead we can follow the types. We need to return a Stream[Int].
We have one in scope: ones. This is exactly the Stream we need to
return: the infinite stream of ones!

val ones: Stream[Int] =

 new Stream[Int] {

 def head: Int = 1

 def tail: Stream[Int] = ones

 }

You might be alarmed to see the circular reference to ones in tail.
This works because it is within a method, and so is only evaluated

79

when that method is called. This delaying of evaluation is what
allows us to represent an infinite number of elements, as we only
ever evaluate a finite portion of them. This is a core difference
from data, which is fully evaluated when it is constructed.

Let’s check that our definition of ones does indeed work. We can’t
extract all the elements from an infinite Stream (at least, not in
finite time) so in general we’ll have to resort to checking a finite
sequence of elements.

ones.head

// res0: Int = 1

ones.tail.head

// res1: Int = 1

ones.tail.tail.head

// res2: Int = 1

This all looks correct. We’ll often want to check our
implementation in this way, so let’s implement a method, take, to
make this easier.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

 def take(count: Int): List[A] =

 count match {

 case 0 => Nil

 case n => head :: tail.take(n - 1)

 }

}

We can use either the structural recursion or structural
corecursion strategies for data to implement take. Since we’ve
already covered these in detail I won’t go through them here. The
important point is that take only uses the destructors when
interacting with the Stream.

Now we can more easily check our implementations are correct.

80

ones.take(5)

// res4: List[Int] = List(1, 1, 1, 1, 1)

For our next task we’ll implement map. Implementing a method on
Stream allows us to see both structural recursion and corecursion
for codata in action. As usual we begin by writing out the method
skeleton.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

 def map[B](f: A => B): Stream[B] =

 ???

}

Now we have a choice of strategy to use. Since we haven’t used
structural recursion yet, let’s start with that. The input is codata, a
Stream, and the structural recursion strategy tells us we should
consider using the destructors. Let’s write them down to remind
us of them.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

 def map[B](f: A => B): Stream[B] = {

 this.head ???

 this.tail ???

 }

}

To make progress we can follow the types or use structural
corecursion. Let’s choose corecursion to see another example of it
in use.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

81

 def map[B](f: A => B): Stream[B] = {

 this.head ???

 this.tail ???

 new Stream[B] {

 def head: B = ???

 def tail: Stream[B] = ???

 }

 }

}

Now we’ve used structural recursion and structural corecursion, a
bit of following the types is in order. This quickly arrives at the
correct solution.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

 def map[B](f: A => B): Stream[B] = {

 val self = this

 new Stream[B] {

 def head: B = f(self.head)

 def tail: Stream[B] = self.tail.map(f)

 }

 }

}

There are two important points. Firstly, notice how I gave the
name self to this. This is so I can access the value inside the new
Stream we are creating, where this would be bound to this new
Stream. Next, notice that we access self.head and self.tail
inside the methods on the new Stream. This maintains the correct
semantics of only performing computation when it has been asked
for. If we perform computation outside of the methods we create
the possibility of infinite loops.

As our final example, let’s return to constructing Stream, and
implement the universal constructor unfold. We start with the
skeleton for unfold, remembering the seed parameter.

82

trait Stream[A] {

 def head: A

 def tail: Stream[A]

}

object Stream {

 def unfold[A, B](seed: A): Stream[B] =

 ???

}

It’s natural to apply structural corecursion to make progress.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

}

object Stream {

 def unfold[A, B](seed: A): Stream[B] =

 new Stream[B]{

 def head: B = ???

 def tail: Stream[B] = ???

 }

}

Now we can follow the types, adding parameters as we need them.
This gives us the complete method shown below.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

}

object Stream {

 def unfold[A, B](seed: A, f: A => B, next: A => A): Stream[B] =

 new Stream[B]{

 def head: B =

 f(seed)

 def tail: Stream[B] =

 unfold(next(seed), f, next)

 }

}

We can use this to implement some interesting streams. Here’s a
stream that alternates between 1 and -1.

83

val alternating = Stream.unfold(

 true,

 x => if x then 1 else -1,

 x => !x

)

We can check it works.

alternating.take(5)

// res11: List[Int] = List(1, -1, 1, -1, 1)

Exercise: Stream Combinators

It’s time for you to get some practice with structural recursion and
structural corecursion using codata. Implement filter, zip, and
scanLeft on Stream. They have the same semantics as the same
methods on List, and the signatures shown below.

trait Stream[A] {

 def head: A

 def tail: Stream[A]

 def filter(pred: A => Boolean): Stream[A]

 def zip[B](that: Stream[B]): Stream[(A, B)]

 def scanLeft[B](zero: B)(f: (B, A) => B): Stream[B]

}

We can do some neat things with the methods defined above. For
example, here is the stream of natural numbers.

val naturals = Stream.ones.scanLeft(0)((b, a) => b + a)

As usual, we should check it works.

naturals.take(5)

// res15: List[Int] = List(0, 1, 2, 3, 4)

84

We could also define naturals using unfold. More interesting is
defining it in terms of itself.

val naturals: Stream[Int] =

 new Stream {

 def head = 1

 def tail = naturals.map(_ + 1)

 }

This might be confusing. If so, spend a bit of time thinking about
it. It really does work!

naturals.take(5)

// res17: List[Int] = List(1, 2, 3, 4, 5)

4.3.1. Efficiency and Effects

You may have noticed that our implement recomputes values,
possibly many times. A good example is the implementation of
filter. This recalculates the head and tail on each call, which
could be a very expensive operation.

def filter(pred: A => Boolean): Stream[A] = {

 val self = this

 new Stream[A] {

 def head: A = {

 def loop(stream: Stream[A]): A =

 if pred(stream.head) then stream.head

 else loop(stream.tail)

 loop(self)

 }

 def tail: Stream[A] = {

 def loop(stream: Stream[A]): Stream[A] =

 if pred(stream.head) then stream.tail.filter(pred)

 else loop(stream.tail)

 loop(self)

 }

85

 }

}

We know that delaying the computation until the method is called
is important, because that is how we can handle infinite and self-
referential data. However we don’t need to redo this computation
on successive calls. We can instead cache the result from the first
call and use that next time. Scala makes this easy with lazy val,
which is a val that is not computed until its first call. Additionally,
Scala’s use of the uniform access principle means we can
implement a method with no parameters using a lazy val. Here’s
a quick example demonstrating it in use.

def always[A](elt: => A): Stream[A] =

 new Stream[A] {

 lazy val head: A = elt

 lazy val tail: Stream[A] = always(head)

 }

val twos = always(2)

As usual we should check our work.

twos.take(5)

// res18: List[Int] = List(2, 2, 2, 2, 2)

We get the same result whether we use a method or a lazy val,
because we are assuming that we are only dealing with pure
computations that have no dependency on state that might
change. In this case a lazy val simply consumes additional space
to save on time.

Recomputing a result every time it is needed is known as call-by-

name, while caching the result the first time it is computed is
known as call-by-need. These two different evaluation

strategies can be applied to individual values, as we’ve done here,
or across an entire programming. Haskell, for example, uses call-
by-need; all values in Haskell are only computed the first time

86

they are needed. call-by-need is also commonly known as lazy

evaluation. Another alternative, called call-by-value, computes
results when they are defined instead of waiting until they are
needed. This is the default in Scala.

We can illustrate the difference between call-by-name and call-by-
need if we use an impure computation. For example, we can define
a stream of random numbers. Random number generators depend
on some internal state.

Here’s the call-by-name implementation, using the methods we
have already defined.

import scala.util.Random

val randoms: Stream[Double] =

 Stream.unfold(Random, r => r.nextDouble(), r => r)

Notice that we get different results each time we take a section of
the Stream. We would expect these results to be the same.

randoms.take(5)

// res19: List[Double] = List(

// 0.9958715526508084,

// 0.9905054125578865,

// 0.7149026161241467,

// 0.41489341880053754,

// 0.8332214254923472

//)

randoms.take(5)

// res20: List[Double] = List(

// 0.018009030082648647,

// 0.19401791161758175,

// 0.4181208758067497,

// 0.5886545798244842,

// 0.5689310383336211

//)

Now let’s define the same stream in a call-by-need style, using
lazy val.

87

val randomsByNeed: Stream[Double] =

 new Stream[Double] {

 lazy val head: Double = Random.nextDouble()

 lazy val tail: Stream[Double] = randomsByNeed

 }

This time we get the same result when we take a section, and each
number is the same.

randomsByNeed.take(5)

// res21: List[Double] = List(

// 0.4977714927617243,

// 0.4977714927617243,

// 0.4977714927617243,

// 0.4977714927617243,

// 0.4977714927617243

//)

randomsByNeed.take(5)

// res22: List[Double] = List(

// 0.4977714927617243,

// 0.4977714927617243,

// 0.4977714927617243,

// 0.4977714927617243,

// 0.4977714927617243

//)

If we wanted a stream that had a different random number for
each element but those numbers were constant, we could redefine
unfold to use call-by-need.

def unfoldByNeed[A, B](seed: A, f: A => B, next: A => A):

Stream[B] =

 new Stream[B]{

 lazy val head: B =

 f(seed)

 lazy val tail: Stream[B] =

 unfoldByNeed(next(seed), f, next)

 }

Now redefining randomsByNeed using unfoldByNeed gives us the
result we are after. First, redefine it.

88

val randomsByNeed2 =

 unfoldByNeed(Random, r => r.nextDouble(), r => r)

Then check it works.

randomsByNeed2.take(5)

// res23: List[Double] = List(

// 0.4974976362208684,

// 0.4577160700892696,

// 0.12697756949708894,

// 0.8164660001821396,

// 0.19197356060616477

//)

randomsByNeed2.take(5)

// res24: List[Double] = List(

// 0.4974976362208684,

// 0.4577160700892696,

// 0.12697756949708894,

// 0.8164660001821396,

// 0.19197356060616477

//)

These subtleties are one of the reasons that functional
programmers try to avoid using state as far as possible.

4.4. Relating Data and Codata

In this section we’ll explore the relationship between data and
codata, and in particular converting one to the other. We’ll look at
it in two ways: firstly a very surface-level relationship between the
two, and then a deep connection via fold.

Remember that data is a sum of products, where the products are
constructors and we can view constructors as functions. So we can
view data as a sum of functions. Meanwhile, codata is a product of
functions. We can easily make a direct correspondence between
the functions-as-constructors and the functions in codata. What
about the difference between the sum and the product that

89

remains. Well, when we have a product of functions we only call
one at any point in our code. So the logical or is in the choice of
function to call.

Let’s see how this works with a familiar example of data, List. As
an algebraic data type we can define

enum List[A] {

 case Pair(head: A, tail: List[A])

 case Empty()

}

The codata equivalent is

trait List[A] {

 def pair(head: A, tail: List[A]): List[A]

 def empty: List[A]

}

In the codata implementation we are explicitly representing the
constructors as methods, and pushing the choice of constructor to
the caller. In a few chapters we’ll see a use for this relationship, but
for now we’ll leave it and move on.

The other way to view the relationship is a connection via fold.
We’ve already learned how to derive the fold for any algebraic
data type. For Bool, defined as

enum Bool {

 case True

 case False

}

the fold method is

enum Bool {

 case True

 case False

 def fold[A](t: A)(f: A): A =

90

 this match {

 case True => t

 case False => f

 }

}

We know that fold is universal: we can write any other method in
terms of it. It therefore provides a universal destructor and is the
key to treating data as codata. This example of fold is something
we use all the time, except we usually call it if.

Here’s the codata version of Bool, with fold renamed to if. (Note
that Scala allows us to define methods with the same name as key
words, in this case if, but we have to surround them in backticks
to use them.)

trait Bool {

 def `if`[A](t: A)(f: A): A

}

Now we can define the two instances of Bool purely as codata.

val True = new Bool {

 def `if`[A](t: A)(f: A): A = t

}

val False = new Bool {

 def `if`[A](t: A)(f: A): A = f

}

Let’s see this in use by defining and in terms of if, and then
creating some examples. First the definition of and.

def and(l: Bool, r: Bool): Bool =

 new Bool {

 def `if`[A](t: A)(f: A): A =

 l.`if`(r)(False).`if`(t)(f)

 }

91

Now the examples. This is simple enough that we can try the
entire truth table.

and(True, True).`if`("yes")("no")

// res1: String = "yes"

and(True, False).`if`("yes")("no")

// res2: String = "no"

and(False, True).`if`("yes")("no")

// res3: String = "no"

and(False, False).`if`("yes")("no")

// res4: String = "no"

Exercise: Or and Not

Test your understanding of Bool by implementing or and not in
the same way we implemented and above.

Notice that, once again, computation only happens on demand. In
this case, nothing happens until if is actually called. Until that
point we’re just building up a representation of what we want to
happen. This again points to how codata can handle infinite data,
by only computing the finite amount required by the actual
computation.

The rules here for converting from data to codata are:

1. On the interface (trait) defining the codata, define a method
with the same signature as fold.

2. Define an implementation of the interface for each product case
in the data. The data’s constructor arguments become
constructor arguments on the codata classes. If there are no
constructor arguments, as in Bool, we can define values instead
of classes.

3. Each implementation implements the case of fold that it
corresponds to.

Let’s apply this to a slightly more complex example: List. We’ll
start by defining it as data and implementing fold. I’ve chosen to
implement foldRight but foldLeft would be just as good.

92

enum List[A] {

 case Pair(head: A, tail: List[A])

 case Empty()

 def foldRight[B](empty: B)(f: (A, B) => B): B =

 this match {

 case Pair(head, tail) => f(head, tail.foldRight(empty)(f))

 case Empty() => empty

 }

}

Now let’s implement it as codata. We start by defining the
interface with the fold method. In this case I’m calling it
foldRight as it’s going to exactly mirror the foldRight we just
defined.

trait List[A] {

 def foldRight[B](empty: B)(f: (A, B) => B): B

}

Now we define the implementations. There is one for Pair and one
for Empty, which are the two cases in data definition of List.
Notice that in this case the classes have constructor arguments,
which correspond to the constructor arguments on the
correspnding product types.

final class Pair[A](head: A, tail: List[A]) extends List[A] {

 def foldRight[B](empty: B)(f: (A, B) => B): B =

 ???

}

final class Empty[A]() extends List[A] {

 def foldRight[B](empty: B)(f: (A, B) => B): B =

 ???

}

I didn’t implement the bodies of foldRight so I could show this as
a separate step. The implementation here directly mirrors
foldRight on the data implementation, and we can use the same
strategies to implement the codata equivalents. That is to say, we

93

can use the recursion rule, reasoning by case, and following the
types. I’m going to skip these details as we’ve already gone
through them in depth. The final code is shown below.

final class Pair[A](head: A, tail: List[A]) extends List[A] {

 def foldRight[B](empty: B)(f: (A, B) => B): B =

 f(head, tail.foldRight(empty)(f))

}

final class Empty[A]() extends List[A] {

 def foldRight[B](empty: B)(f: (A, B) => B): B =

 empty

}

This code is almost the same as the dynamic dispatch
implementation, which again shows the relationship between
codata and object-oriented code.

The transformation from data to codata goes under several names:
refunctionalization, Church encoding, and Böhm-Berarducci

encoding. The latter two terms specifically refer to
transformations into the untyped and typed lambda calculus
respectively. The lambda calculus is a simple model programming
language that contains only functions. We’re going to take a quick
detour to show that we can, indeed, encode lists using just
functions. This demonstrates that objects and functions have
equivalent power.

The starting point is creating a type alias List, which defines a list
as a fold. This uses a polymorphic function type, which is new in
Scala 3. Inspect the type signature and you’ll see it is the same as
foldRight above.

type List[A, B] = (B, (A, B) => B) => B

Now we can define Pair and Empty as functions. The first
parameter list is the constructor arguments, and the second
parameter list is the parameters for foldRight.

94

val Empty: [A, B] => () => List[A, B] =

 [A, B] => () => (empty, f) => empty

val Pair: [A, B] => (A, List[A, B]) => List[A, B] =

 [A, B] => (head: A, tail: List[A, B]) => (empty, f) =>

 f(head, tail(empty, f))

Finally, let’s see an example to show it working. We will first
define the list containing 1, 2, 3. Due to a restriction in
polymorphic function types, I have to add the useless empty
parameter.

val list: [B] => () => List[Int, B] =

 [B] => () => Pair(1, Pair(2, Pair(3, Empty())))

Now we can compute the sum and product of the elements in this
list.

val sum = list()(0, (a, b) => a + b)

// sum: Int = 6

val product = list()(1, (a, b) => a * b)

// product: Int = 6

It works!

The purpose of this little demonstration is to show that functions
are just objects (in the codata sense) with a single method. Scala
this makes apparent, as functions are objects with an apply
method.

We’ve seen that data can be translated to codata. The reverse is
also possible: we simply tabulate the results of each possible
method call. In other words, the data representation is
memoisation, a lookup table, or a cache.

Although we can convert data to codata and vice versa, there are
good reasons to choose one over the other. We’ve already seen one
reason: with codata we can represent infinite structures. In this

95

next section we’ll see another difference: the extensibility that data
and codata permit.

4.5. Data and Codata Extensibility

We have seen that codata can represent types with an infinite
number of elements, such as Stream. This is one expressive
difference from data, which must always be finite. We’ll now look
at another, which is the type of extensibility we get from data and
from codata. Together these gives use guidelines to choose
between the two.

Firstly, let’s define extensibility. It means the ability to add new
features without modifying existing code. (If we allow
modification of existing code then any extension becomes trivial.)
In particular there are two dimensions along which we can extend
code: adding new functions or adding new elements. We will see
that data and codata have orthogonal extensibility: it’s easy to add
new functions to data but adding new elements is impossible
without modifying existing code, while adding new elements to
codata is straight-forward but adding new functions is not.

Let’s start with a concrete example of both data and codata. For
data we’ll use the familiar List type.

enum List[A] {

 case Empty()

 case Pair(head: A, tail: List[A])

}

For codata, we’ll use Set as our exemplar.

trait Set[A] {

 def contains(elt: A): Boolean

 def insert(elt: A): Set[A]

96

 def union(that: Set[A]): Set[A]

}

We know there are lots of methods we can define on List. The
standard library is full of them! We also know that any method we
care to write can be written using structural recursion. Finally, we
can write these methods without modifying existing code.

Imagine filter was not defined on List. We can easily implement
it as

import List.*

def filter[A](list: List[A], pred: A => Boolean): List[A] =

 list match {

 case Empty() => Empty()

 case Pair(head, tail) =>

 if pred(head) then Pair(head, filter(tail, pred))

 else filter(tail, pred)

 }

We could even use an extension method to make it appear as a
normal method.

extension [A](list: List[A]) {

 def filter(pred: A => Boolean): List[A] =

 list match {

 case Empty() => Empty()

 case Pair(head, tail) =>

 if pred(head) then Pair(head, tail.filter(pred))

 else tail.filter(pred)

 }

}

This shows we can add new functions to data without issue.

What about adding new elements to data? Perhaps we want to add
a special case to optimize single-element lists. This is impossible
without changing existing code. By definition, we cannot add a
new element to an enum without changing the enum. Adding such a
new element would break all existing pattern matches, and so

97

require they all change. So in summary we can add new functions
to data, but not new elements.

Now let’s look at codata. This has the opposite extensibility;
duality strikes again! In the codata case we can easily add new
elements. We simply implement the trait that defines the codata
interface. We saw this when we defined, for example, ListSet.

final class ListSet[A](elements: List[A]) extends Set[A] {

 def contains(elt: A): Boolean =

 elements.contains(elt)

 def insert(elt: A): Set[A] =

 ListSet(elt :: elements)

 def union(that: Set[A]): Set[A] =

 elements.foldLeft(that) { (set, elt) => set.insert(elt) }

}

object ListSet {

 def empty[A]: Set[A] = ListSet(List.empty)

}

What about adding new functionality? If the functionality can be
defined in terms of existing functionality then we’re ok. We can
easily define this functionality, and we can use the extension
method trick to make it appear like a built-in. However, if we want
to define a function that cannot be expressed in terms of existing
functions we are out of luck. Let’s saw we want to define some
kind of iterator over the elements of a Set. We might use a
LazyList, the standard library’s equivalent of Stream we defined
earlier, because we know some sets have an infinite number of
elements. Well, we can’t do this without changing the definition of
Set, which in turn breaks all existing implementations. We cannot
define it in a different way because we don’t know all the possible
implementations of Set.

So in summary we can add new elements to codata, but not new
functions.

98

If we tabulate this we clearly see that data and codata have
orthogonal extensibility.

Extension Data Codata

Add elements No Yes

Add functions Yes No

This difference in extensibility gives us another rule for choosing
between data and codata as an implementation strategy, in
addition to the finite vs infinite distinction we saw earlier. If we
want extensibilty of functions but not elements we should use
data. If we have a fixed interface but an unknown number of
possible implementations we should use codata.

You might wonder if we can have both forms of extensibility.
Achieving this is called the expression problem. There are
various ways to solve the expression problem, and we’ll see one
that works particularly well in Scala in Chapter 15.

Exercise: Sets

In this extended exercise we’ll explore the Set interface we have
already used in several examples, reproduced below.

trait Set[A] {

 /** True if this set contains the given element */

 def contains(elt: A): Boolean

 /** Construct a new set containing the given element */

 def insert(elt: A): Set[A]

 /** Construct the union of this and that set */

 def union(that: Set[A]): Set[A]

}

99

We also saw a simple implementation, storing the elements in the
set in a List.

final class ListSet[A](elements: List[A]) extends Set[A] {

 def contains(elt: A): Boolean =

 elements.contains(elt)

 def insert(elt: A): Set[A] =

 ListSet(elt :: elements)

 def union(that: Set[A]): Set[A] =

 elements.foldLeft(that) { (set, elt) => set.insert(elt) }

}

object ListSet {

 def empty[A]: Set[A] = ListSet(List.empty)

}

The implementation for union is a bit unsatisfactory; it’s doesn’t
use any of our strategies for writing code. We can implement both
union and insert in a generic way that works for all sets (in other
words, is implemented on the Set trait) and uses the strategies
we’ve seen in this chapter. Go ahead and do this.

Your next challenge is to implement Evens, the set of all even
integers, which we’ll represent as a Set[Int]. This is an infinite
set; we cannot directly enumerate all the elements in this set. (We
actually could enumerate all the even elements that are 32-bit
Ints, but we don’t want to as this would use excessive amounts of
space.)

We can generalize this idea to defining sets in terms of indicator

functions, which is a function of type A => Boolean, returning
returns true if the input belows to the set. Implement
IndicatorSet, which is constructed with a single indicator
function parameter.

100

4.6. Conclusions

In this chapter we’ve explored codata, the dual of data. Codata is
defined by its interface—what we can do with it—as opposed to
data, which is defined by what it is. More formally, codata is a
product of destructors, where destructors are functions from the
codata type (and, optionally, some other inputs) to some type. By
avoiding the elements of object-oriented programming that make
it hard to reason about—state and implementation inheritance—
codata brings elements of object-oriented programming that
accord with the other functional programming strategies. In Scala
we define codata as a trait, and implement it as a final class,
anonymous subclass, or an object.

We have two strategies for implementing methods using codata:
structural corecursion, which we can use when the result is
codata, and structural recursion, which we can use when an input
is codata. Structural corecursion is usually the more useful of the
two, as it gives more structure (pun intended) to the method we
are implementing. The reverse is true for data.

We saw that data is connected to codata via fold: any data can
instead be implemented as codata with a single destructor that is
the fold for that data. The reverse is also: we can enumerate all
potential pairs of inputs and outputs of destructors to represent
codata as data. However this does not mean that data and codata
are equivalent. We have seen many examples of codata
representing infinite structures, such as sets of all even numbers
and streams of all natural numbers. We have also seen that data
and codata offer different forms of extensibility: data makes it easy
to add new functions, but adding new elements requires changing
existing code, while it is easy to add new elements to codata but
we change existing code if we add new functions.

Codatatypes in ML [40] is the earliest reference to codata in
programming languages that I could find. This is much more

101

recent than algebraic data, which I think explains why codata is
relatively unknown. There are some excellent recent papers that
deal with codata. I highly recommend Codata in Action [22], which
inspired large portions of this chapter. Exploring Codata: The

Relation to Object-Orientation [81] is also worthwhile. How to add

laziness to a strict language without even being odd [90] is an older
paper that discusses the implementation of streams, and in
particular the difference between a not-quite-lazy-enough
implementation they label odd and the version we saw, which they
call even. These correspond to Stream and LazyList in the Scala
standard library respectively. Classical (Co)Recursion: Programming
[21] is an interesting survey of corecursion in different languages,
and covers many of the same examples that I used here. Finally, if
you really want to get into the weeds of the relationship between
data and codata, Beyond Church encoding: Boehm-Berarducci

isomorphism of algebraic data types and polymorphic lambda-terms
[44] is for you.

102

5. Contextual Abstraction

All but the simplest programs depend on the context in which
they run. The number of available CPU cores is an example of
context provided by the computer. A program might adapt to this
context by changing how work is distributed. Other forms of
context include configuration read from files and environment
variables, and (and we’ll see at lot of this later) values created at
compile-time, such as serialization formats, in response to the type
of some method parameters.

Scala is one of the few languages that provides features for
contextual abstraction, known as implicits in Scala 2 or given

instances in Scala 3. In Scala these features are intimately related
to types; types are used to select between different available given
instances and drive construction of given instances at compile-
time.

Most Scala programmers are less confident with the features for
contextual abstraction than with other parts of the language, and
they are often entirely novel to programmers coming from other
languages. Hence this chapter will start by reviewing the
abstractions formerly known as implicits: given instances and
using clauses. We will then look at one of their major uses, type

classes. Type classes allow us to extend existing types with new
functionality, without using traditional inheritance, and without
altering the original source code. Type classes are the core of
Cats23, which we will be exploring in the next part of this book.

23https://typelevel.org/cats/

103

https://typelevel.org/cats/

5.1. The Mechanics of Contextual

Abstraction

In section we’ll go through the main Scala language features for
contextual abstraction. Once we have a firm understanding of the
mechanics of contextual abstraction we’ll move on to their use.

The language features for contextual abstraction have changed
name from Scala 2 to Scala 3, but they work in largely the same
way. In the table below I show the Scala 3 features, and their Scala
2 equivalents. If you use Scala 2 you’ll find that most of the code
works simply by replacing given with implicit val and using
with implicit.

Scala 3 Scala 2

given instance implicit value

using clause implicit parameter

Let’s now explain how these language features work.

5.1.1. Using Clauses

We’ll start with using clauses. A using clause is a method
parameter list that starts with the using keyword. We use the term
context parameters for the parameters in a using clause.

def double(using x: Int) = x + x

The using keyword applies to all parameters in the list, so in add
below both x and y are context parameters.

def add(using x: Int, y: Int) = x + y

104

We can have normal parameter lists, and multiple using clauses, in
the same method.

def addAll(x: Int)(using y: Int)(using z: Int): Int =

 x + y + z

We cannot pass parameters to a using clause in the normal way.
We must proceed the parameters with the using keyword as
shown below.

double(using 1)

// res0: Int = 2

add(using 1, 2)

// res1: Int = 3

addAll(1)(using 2)(using 3)

// res2: Int = 6

However this is not the typical way to pass parameters. In fact we
don’t usually explicitly pass parameters to using clause at all. We
usually use given instances instead, so let’s turn to them.

5.1.2. Given Instances

A given instance is a value that is defined with the given keyword.
Here’s a simple example.

given theMagicNumber: Int = 3

We can use a given instance like a normal value.

theMagicNumber * 2

// res3: Int = 6

However, it’s more common to use them with a using clause.
When we call a method that has a using clause, and we do not
explicitly supply values for the context parameters, the compiler

105

will look for given instances of the required type. If it finds a given
instance it will automatically use it to complete the method call.

For example, we defined double above with a single Int context
parameter. The given instance we just defined, theMagicNumber,
also has type Int. So if we call double without providing any value
for the context parameter the compiler will provide the value
theMagicNumber for us.

double

// res4: Int = 6

The same given instance will be used for multiple parameters with
the same type in a using clause, as in add defined above.

add

// res5: Int = 6

The above are the most important points for using clauses and
given instances. We’ll now turn to some of the details of their
semantics.

5.1.3. Given Scope and Imports

Given instances are usually not explicitly passed to using clauses.
Their whole reason for existence is to get the compiler to do this
for us. This could make code hard to understand, so we need to be
very clear about which given instances are candidates to be
supplied to a using clause. In this section we’ll look at the given

scope, which is all the places that the compiler will look for given
instances, and the special syntax for importing given instances.

The first rule we should know about the given scope is that it
starts at the call site, where the method with a using clause is
called, not at the definition site where the method is defined.
This means the following code does not compile, because the given

106

instance is not in scope at the call site, even though it is in scope at
the definition site.

object A {

 given a: Int = 1

 def whichInt(using int: Int): Int = int

}

A.whichInt

// error:

// No given instance of type Int was found for parameter int of

method whichInt in object A

// A.whichInt

// ^^^^^^^^

The second rule, which we have been relying on in all our
examples so far, is that the given scope includes the lexical scope
at the call site. The lexical scope is where we usually look up the
values associated with names (like the names of method
parameters or val declarations). This means the following code
works, as a is defined in a scope that includes the call site.

object A {

 given a: Int = 1

 object B {

 def whichInt(using int: Int): Int = int

 }

 object C {

 B.whichInt

 }

}

However, if there are multiple given instances in the same scope
the compiler will not arbitrarily choose one. Instead it fails with an
error telling us the choice is ambiguous.

object A {

 given a: Int = 1

 given b: Int = 2

107

 def whichInt(using int: Int): Int = int

 whichInt

}

// error:

// Ambiguous given instances: both given instance a in object A

and

// given instance b in object A match type Int of parameter int

of

// method whichInt in object A

We can import given instances from other scopes, just like we can
import normal declarations, but we must explicitly say we want to
import given instances. The following code does not work because
we have not explicitly imported the given instances.

object A {

 given a: Int = 1

 def whichInt(using int: Int): Int = int

}

object B {

 import A.*

 whichInt

}

// error:

// No given instance of type Int was found for parameter int of

method whichInt in object A

//

// Note: given instance a in object A was not considered because

it was not imported with `import given`.

// whichInt

// ^

It works when we do explicitly import them using import
A.given.

object A {

 given a: Int = 1

 def whichInt(using int: Int): Int = int

108

}

object B {

 import A.{given, *}

 whichInt

}

One final wrinkle: the given scope includes the companion objects
of any type involved in the type of the using clause. This is best
illustrated with an example. We’ll start by defining a type Sound
that represents the sound made by its type variable A, and a
method soundOf to access that sound.

trait Sound[A] {

 def sound: String

}

def soundOf[A](using s: Sound[A]): String =

 s.sound

Now we’ll define some given instances. Notice that they are
defined on the relevant companion objects.

trait Cat

object Cat {

 given catSound: Sound[Cat] with {

 def sound: String = "meow"

 }

}

trait Dog

object Dog {

 given dogSound: Sound[Dog] with {

 def sound: String = "woof"

 }

}

When we call soundOf we don’t have to explicitly bring the
instances into scope. They are automatically in the given scope by
virtue of being defined on the companion objects of the types we
use (Cat and Dog). If we had defined these instances on the Sound

109

companion object they would also be in the given scope; when
looking for a Sound[A] both the companion objects of Sound and A
are in scope.

soundOf[Cat]

// res12: String = "meow"

soundOf[Dog]

// res13: String = "woof"

We should almost always be defining given instances on
companion objects. This simple organization scheme means that
users do not have to explicitly import them but can easily find the
implementations if they wish to inspect them.

5.1.3.1. Given Instance Priority

Notice that given instance selection is based entirely on types. We
don’t even pass any values to soundOf! This means given instances
are easiest to use when there is only one instance for each type. In
this case we can just put the instances on a relevant companion
object and everything works out.

However, this is not always possible (though it’s often an
indication of a bad design if it is not). For cases where we need
multiple instances for a type, we can use the instance priority rules
to select between them. We’ll look at the three most important
rules below.

The first rule is that explicitly passing an instance takes priority
over everything else.

given a: Int = 1

def whichInt(using int: Int): Int = int

whichInt(using 2)

// res15: Int = 2

110

The second rule is that instances in the lexical scope take priority
over instances in a companion object. Here we define an instance
on the Cat companion object.

trait Sound[A] {

 def sound: String

}

trait Cat

object Cat {

 given catSound: Sound[Cat] with {

 def sound: String = "meow"

 }

}

def soundOf[A](using s: Sound[A]): String =

 s.sound

Now we define an instance in the lexical scope, and we see it is
chosen in preference to the instance on the companion object.

given purr: Sound[Cat] with {

 def sound: String = "purr"

}

soundOf[Cat]

// res17: String = "purr"

The final rule is that instances in a closer lexical scope take
preference over those further away.

{

 given growl: Sound[Cat] with {

 def sound: String = "growl"

 }

 {

 given mew: Sound[Cat] with {

 def sound: String = "mew"

 }

 soundOf[Cat]

 }

111

}

// res18: String = "mew"

We’re now seen most of the details of the workings of given
instances and using clauses. This is a craft level explanation, and it
naturally leads to the question: where would use these tools? This
is what we’ll address next, where we look at type classes and their
implementation in Scala.

5.2. Anatomy of a Type Class

Let’s now look at how type classes are implemented. There are
three important components to a type class: the type class itself,
which defines an interface; type class instances, which implement
the type class for particular types; and the methods that use type
classes. The table below shows the language features that
correspond to each component.

Type Class Concept Language Feature

Type class trait

Type class instance given instance

Type class use using clause

Let’s see how this works in detail.

5.2.1. The Type Class

A type class is an interface or API that represents some
functionality we want implemented. In Scala a type class is
represented by a trait with at least one type parameter. For

112

example, we can represent generic “serialize to JSON” behaviour as
follows:

// Define a very simple JSON AST

enum Json {

 case JsObject(get: Map[String, Json])

 case JsString(get: String)

 case JsNumber(get: Double)

 case JsNull

}

// The "serialize to JSON" behaviour is encoded in this trait

trait JsonWriter[A] {

 def write(value: A): Json

}

JsonWriter is our type class in this example, with the Json
algebraic data type providing supporting code. When we come to
implement instances of JsonWriter, the type parameter A will be
the concrete type of data we are writing.

5.2.2. Type Class Instances

The instances of a type class provide implementations of the type
class for specific types we care about, which can include types
from the Scala standard library and types from our domain model.

In Scala we create type class instances by defining given instances
implementing the type class.

object JsonWriterInstances {

 given stringWriter: JsonWriter[String] with {

 def write(value: String): Json =

 Json.JsString(value)

 }

 final case class Person(name: String, email: String)

 given JsonWriter[Person] with

 def write(value: Person): Json =

113

 Json.JsObject(Map(

 "name" -> Json.JsString(value.name),

 "email" -> Json.JsString(value.email)

))

 // etc...

}

In this example we define two type class instances of JsonWriter,
one for String and one for Person. The definition for String uses
the syntax we saw in the previous section. The definition for
Person uses two bits of syntax that are new in Scala 3. Firstly,
writing given JsonWriter[Person] creates an anonymous given
instance. We declare just the type and don’t need to name the
instance. This is fine because we don’t usually need to refer to
given instances by name. The second bit of syntax is the use of
with to implement a trait directly without having to write out new
JsonWriter[Person] and so on.

In a real implementation we’d usually want to define the instances
on a companion object: the instance for String on the JsonWriter
companion object (because we cannot define it on the String
companion object) and the instance for Person on the Person
companion object. I haven’t done this here because I would need
to redeclare JsonWriter, as a type and its companion object must
be declared at the same time.

5.2.3. Type Class Use

A type class use is any functionality that requires a type class
instance to work. In Scala this means any method that accepts
instances of the type class as part of a using clause.

We’re going to look at two patterns of type class usage, which we
call interface objects and interface syntax. You’ll find these in
Cats and other libraries.

114

5.2.3.1. Interface Objects

The simplest way of creating an interface that uses a type class is
to place methods in an object.

object Json {

 def toJson[A](value: A)(using w: JsonWriter[A]): Json =

 w.write(value)

}

To use this object, we import any type class instances we care
about and call the relevant method:

import JsonWriterInstances.{*, given}

Json.toJson(Person("Dave", "dave@example.com"))

// res1: Json = JsObject(

// get = Map(

// "name" -> JsString(get = "Dave"),

// "email" -> JsString(get = "dave@example.com")

//)

//)

The compiler spots that we’ve called the toJson method without
providing the given instances. It tries to fix this by searching for
given instances of the relevant types and inserting them at the call
site.

5.2.3.2. Interface Syntax

We can alternatively use extension methods to extend existing
types with interface methods24. This is sometimes called syntax
for the type class, which is the term used by Cats. Scala 2 has an
equivalent to extension methods known as implicit classes.

24You may occasionally see extension methods referred to as “type
enrichment” or “pimping”. These are older terms that we don’t use anymore.

115

Here’s an example defining an extension method to add a toJson
method to any type for which we have a JsonWriter instance.

object JsonSyntax {

 extension [A](value: A) {

 def toJson(using w: JsonWriter[A]): Json =

 w.write(value)

 }

}

We use interface syntax by importing it alongside the instances for
the types we need:

import JsonWriterInstances.given

import JsonSyntax.*

Person("Dave", "dave@example.com").toJson

// res2: Json = JsObject(

// get = Map(

// "name" -> JsString(get = "Dave"),

// "email" -> JsString(get = "dave@example.com")

//)

//)

Extension Methods on Traits

In Scala 3 we can define extension methods directly on a
type class trait. Since we’re defining toJson as just calling
write on JsonWriter, we could instead define toJson
directly on JsonWriter and avoid creating an separate
extension method.

trait JsonWriter[A] {

 extension (value: A) def toJson: Json

}

object JsonWriter {

116

 given stringWriter: JsonWriter[String] with {

 extension (value: String)

 def toJson: Json = Json.JsString(value)

 }

 // etc...

}

We do not advocate this approach, because of a limitation in
how Scala searches for extension methods. The following
code fails because Scala only looks within the String
companion object for extension methods, and consequently
does not find the extension method on the instance in the
JsonWriter companion object.

"A string".toJson

// error:

// value toJson is not a member of String

// "A string".toJson

// ^^^^^^^^^^^^^^^^^

This means that users will have to explicitly import at least
the instances for the built-in types (for which we cannot
modify the companion objects).

import JsonWriter.given

"A string".toJson

// res5: Json = JsString(get = "A string")

For consistency we recommend separating the syntax from
the type class instances and always explicitly importing it,
rather than requiring explicit imports for only some
extension methods.

117

5.2.3.3. The summon Method

The Scala standard library provides a generic type class interface
called summon. Its definition is very simple:

def summon[A](using value: A): A =

 value

We can use summon to summon any value in the given scope. We
provide the type we want and summon does the rest:

summon[JsonWriter[String]]

// res6: stringWriter =

repl.MdocSession$MdocApp3$JsonWriter$stringWriter$@c022a05

Most type classes in Cats provide other means to summon
instances. However, summon is a good fallback for debugging
purposes. We can insert a call to summon within the general flow of
our code to ensure the compiler can find an instance of a type class
and ensure that there are no ambiguity errors.

5.3. Type Class Composition

So far we’ve seen type classes as a way to get the compiler to pass
values to methods. This is nice but it does seem like we’ve
introduced a lot of new concepts for a small gain. The real power
of type classes lies in the compiler’s ability to combine given
instances to construct new given instances. This is known as type

class composition.

Type class composition works by a feature of given instances we
have not yet seen: given instances can themselves have context
parameters. However, before we go into this let’s see a
motivational example.

118

Consider defining a JsonWriter for Option. We would need a
JsonWriter[Option[A]] for every A we care about in our
application. We could try to brute force the problem by creating a
library of given instances:

given optionIntWriter: JsonWriter[Option[Int]] with {

 ???

}

given optionPersonWriter: JsonWriter[Option[Person]] with {

 ???

}

// and so on...

This approach clearly doesn’t scale. We end up requiring two
given instances for every type A in our application: one for A and
one for Option[A].

Fortunately, we can abstract the code for handling Option[A] into
a common constructor based on the instance for A:

• if the option is Some(aValue), write aValue using the writer for
A;

• if the option is None, return JsNull.

Here is the same code written out using a parameterized given
instance:

given optionWriter[A](using writer: JsonWriter[A]):

JsonWriter[Option[A]] with {

 def write(option: Option[A]): Json =

 option match {

 case Some(aValue) => writer.write(aValue)

 case None => Json.JsNull

 }

}

This method constructs a JsonWriter for Option[A] by relying on
a context parameter to fill in the A-specific functionality. When the
compiler sees an expression like this:

119

Json.toJson(Option("A string"))

it searches for an given instance JsonWriter[Option[String]]. It
finds the given instance for JsonWriter[Option[A]]:

Json.toJson(Option("A string"))(using optionWriter[String])

and recursively searches for a JsonWriter[String] to use as the
context parameter to optionWriter:

Json.toJson(Option("A string"))(using optionWriter(using

stringWriter))

In this way, given instance resolution becomes a search through
the space of possible combinations of given instance, to find a
combination that creates a type class instance of the correct
overall type.

5.3.1. Type Class Composition in Scala 2

In Scala 2 we can achieve the same effect with an implicit
method with implicit parameters. Here’s the Scala 2 equivalent
of optionWriter above.

implicit def scala2OptionWriter[A]

 (implicit writer: JsonWriter[A]): JsonWriter[Option[A]] =

 new JsonWriter[Option[A]] {

 def write(option: Option[A]): Json =

 option match {

 case Some(aValue) => writer.write(aValue)

 case None => JsNull

 }

 }

Make sure you make the method’s parameter implicit! If you don’t,
you’ll end up defining an implicit conversion. Implicit
conversion is an older programming pattern that is frowned upon

120

in modern Scala code. Fortunately, the compiler will warn you
should you do this.

5.4. What Type Classes Are

We’ve have now seen the mechanics of type classes: they are a
specific arrangement of trait, given instances, and using clauses.
This is a very craft-level explanation. Let’s now raise the level of
the explanation with three different views of type classes.

The first view goes back Chapter 4, where we looked at codata.
The type class itself—the trait—is an example of codata with the
usual advantages of codata (we can easily add implementations)
and disadvantages (we cannot easily change the interface). Given
instances and using clauses add the ability to chose the codata
implementation based on the type of the context parameter and
the instances in the given scope, and to compose instances from
smaller components.

Raising the level of abstraction again, we can say that type classes
allow us to implement functionality (the type class instance)
separately from the type to which it applies, so that the
implementation only needs to be defined at the point of the use—
the call site—not at the point of declaration.

Raising the level again, we can say type classes allow us to
implement ad-hoc polymorphism. I find it easiest to understand
ad-hoc polymorphism in contrast to parametric polymorphism.
Parametric polymorphism is what we get with type parameters,
also known as generic types. It allows us to treat all types in a
uniform way. For example, the following function calculates the
length of any list of an arbitrary type A.

def length[A](list: List[A]): Int =

 list match {

121

 case Nil => 0

 case x :: xs => 1 + length(xs)

 }

We can implement length because we don’t require any particular
functionality from the values of type A that make up the elements
of the list. We don’t call any methods on them, and indeed we
cannot call any methods on them because we don’t know what
concrete type A will be at the point where length is defined25.

Ad-hoc polymorphism allows us to call methods on values with a
generic type. The methods we can call are exactly those defined by
the type class. For example, we can use the Numeric type class
from the standard library to write a method that adds together
elements of any type that implements that type class.

import scala.math.Numeric

def add[A](x: A, y: A)(using n: Numeric[A]): A = {

 n.plus(x, y)

}

So parametric polymorphism can be understood as meaning any
type, while ad-hoc polymorphism means any type that also

implements this functionality. In ad-hoc polymorphism there
doesn’t have to be any particular type relationship between the
concrete types that implement the functionality of interest. This is
in contast to object-oriented style polymorphism where all

25Parametric polymorphism represents an abstraction boundary. At the
point of definition we don’t know the concrete types that A will take; the
concrete types are only known at the point of use. (Once again we see the
distinction between definition site and call site.) This abstraction boundary
allows a kind of reasoning known as free theorems [91]. For example, if we
see a function with type A => A we know it must be the identity function. This
is the only possible function with this type. Unfortunately the JVM allows us
to break the abstraction boundary introduced by parametric polymorphism.
We can call equals, hashCode, and a few other methods on all values, and we
can inspect runtime tags that reflect some type information at run-time.

122

concrete types must be subtypes of the type that defines the
functionality of interest.

5.5. Exercise: Display Library

Scala provides a toString method to let us convert any value to a
String. This method comes with a few disadvantages:

1. It is implemented for every type in the language. There are
situations where we don’t want to be able to view data. For
example, we may want to ensure we don’t log sensitive
information, such as passwords, in plain text.

2. We can’t customize toString for types we don’t control.

Let’s define a Display type class to work around these problems:

1. Define a type class Display[A] containing a single method
display. display should accept a value of type A and return a
String.

2. Create instances of Display for String and Int on the Display
companion object.

3. On the Display companion object create two generic interface
methods:

• display accepts a value of type A and a Display of the
corresponding type. It uses the relevant Display to convert
the A to a String.

• print accepts the same parameters as display and returns
Unit. It prints the displayed A value to the console using
println.

123

5.5.1. Using the Library

The code above forms a general purpose printing library that we
can use in multiple applications. Let’s define an “application” now
that uses the library.

First we’ll define a data type to represent a well-known type of
furry animal:

final case class Cat(name: String, age: Int, color: String)

Next we’ll create an implementation of Display for Cat that
returns content in the following format:

NAME is a AGE year-old COLOR cat.

Finally, use the type class on the console or in a short demo app:
create a Cat and print it to the console:

// Define a cat:

val cat = Cat(/* ... */)

// Print the cat!

5.5.2. Better Syntax

Let’s make our printing library easier to use by adding extension
methods for its functionality:

1. Create an object DisplaySyntax.

2. Define display and print as extension methods on
DisplaySyntax.

3. Use the extension methods to print the example Cat you
created in the previous exercise.

124

5.6. Type Classes and Variance

In this section we’ll discuss how variance interacts with type class
instance selection. Variance is one of the darker corners of Scala’s
type system, so we start by reviewing it before moving on to its
interaction with type classes.

5.6.1. Variance

Variance concerns the relationship between an instance defined on
a type and its subtypes. For example, if we define a
JsonWriter[Option[Int]], will the expression
Json.toJson(Some(1)) select this instance? (Remember that Some
is a subtype of Option).

We need two concepts to explain variance: type constructors, and
subtyping.

Variance applies to any type constructor, which is the F in a type
F[A]. So, for example, List, Option, and JsonWriter are all type
constructors. A type constructor must have at least one type
parameter, and may have more. So Either, with two type
parameters, is also a type constructor.

Subtyping is a relationship between types. We say that B is a
subtype of A if we can use a value of type B anywhere we expect a
value of type A. We may sometimes use the shorthand B <: A to
indicate that B is a subtype of A.

Variance concerns the subtyping relationship between types F[A]
and F[B], given a subtyping relationship between A and B. If B is a
subtype of A then

1. if F[B] <: F[A] we say F is covariant in A; else
2. if F[B] >: F[A] we say F is contravariant in A; else

125

3. if there is no subtyping relationship between F[B] and F[A] we
say F is invariant in A.

When we define a type constructor we can also add variance
annotations to its type parameters. For example, we denote
covariance with a + symbol:

trait F[+A] // the "+" means "covariant"

Similarly, the - variance annotation indicate contravariance. If we
don’t add a variance annotation, the type parameter is invariant.
Let’s now look at covariance, contravariance, and invariance in
detail.

5.6.2. Covariance

Covariance means that the type F[B] is a subtype of the type F[A]
if B is a subtype of A. This is useful for modelling many types,
including collections like List and Option:

trait List[+A]

trait Option[+A]

The covariance of Scala collections allows us to substitute
collections of one type with a collection of a subtype in our code.
For example, we can use a List[Circle] anywhere we expect a
List[Shape] because Circle is a subtype of Shape:

trait Shape

final case class Circle(radius: Double) extends Shape

val circles: List[Circle] = List(Circle(5.0))

val shapes: List[Shape] = circles

126

Generally speaking, covariance is used for outputs: data that we
can later get out of a container type such as List, or is otherwise
returned by some method.

5.6.3. Contravariance

What about contravariance? We write contravariant type
constructors with a - symbol like this:

trait F[-A]

Perhaps confusingly, contravariance means that the type F[B] is a
subtype of F[A] if A is a subtype of B. This is useful for modelling
types that represent inputs, like our JsonWriter type class above:

trait JsonWriter[-A] {

 def write(value: A): Json

}

Let’s unpack this a bit further. Remember that variance is all about
the ability to substitute one value for another. Consider a scenario
where we have two values, one of type Shape and one of type
Circle, and two JsonWriters, one for Shape and one for Circle:

val shape: Shape = ???

val circle: Circle = ???

val shapeWriter: JsonWriter[Shape] = ???

val circleWriter: JsonWriter[Circle] = ???

We also have a method format that expects a JsonWriter instance.

def format[A](value: A, writer: JsonWriter[A]): Json =

 writer.write(value)

Now ask yourself the question: “Which combinations of value and
writer can I pass to format?” We can write a Circle with either

127

writer because all Circles are Shapes. Conversely, we can’t write
a Shape with circleWriter because not all Shapes are Circles.

This relationship is what we formally model using contravariance.
JsonWriter[Shape] is a subtype of JsonWriter[Circle] because
Circle is a subtype of Shape. This means we can use shapeWriter
anywhere we expect to see a JsonWriter[Circle].

5.6.4. Invariance

Invariance is the easiest situation to describe. It’s what we get
when we don’t write a + or - in a type constructor:

trait F[A]

This means the types F[A] and F[B] are never subtypes of one
another, no matter what the relationship between A and B. This is
the default semantics for Scala type constructors.

5.6.5. Variance and Instance Selection

When the compiler searches for a given instance it looks for one
matching the type or subtype. Thus we can use variance
annotations to control type class instance selection to some extent.

There are two issues that tend to arise. Let’s imagine we have an
algebraic data type like:

enum A {

 case B

 case C

}

The issues are:

128

1. Will an instance defined on a supertype be selected if one is
available? For example, can we define an instance for A and
have it work for values of type B and C?

2. Will an instance for a subtype be selected in preference to that
of a supertype. For instance, if we define an instance for A and
B, and we have a value of type B, will the instance for B be
selected in preference to A?

It turns out we can’t have both at once. The three choices give us
behaviour as follows:

Type Class

Variance

Invariant Covariant Contravariant

Supertype
instance used?

No No Yes

More specific
type preferred?

No Yes No

Let’s see some examples, using the following types to show the
subtyping relationship.

trait Animal

trait Cat extends Animal

trait DomesticShorthair extends Cat

Now we’ll define three different type classes for the three types of
variance, and define an instance of each for the Cat types.

trait Inv[A] {

 def result: String

}

object Inv {

 given Inv[Cat] with

 def result = "Invariant"

 def apply[A](using instance: Inv[A]): String =

 instance.result

129

}

trait Co[+A] {

 def result: String

}

object Co {

 given Co[Cat] with

 def result = "Covariant"

 def apply[A](using instance: Co[A]): String =

 instance.result

}

trait Contra[-A] {

 def result: String

}

object Contra {

 given Contra[Cat] with

 def result = "Contravariant"

 def apply[A](using instance: Contra[A]): String =

 instance.result

}

Now the cases that work, all of which select the Cat instance. For
the invariant case we must ask for exactly the Cat type. For the
covariant case we can ask for a supertype of Cat. For
contravariance we can ask for a subtype of Cat.

Inv[Cat]

// res1: String = "Invariant"

Co[Animal]

// res2: String = "Covariant"

Co[Cat]

// res3: String = "Covariant"

Contra[DomesticShorthair]

// res4: String = "Contravariant"

Contra[Cat]

// res5: String = "Contravariant"

Now cases that fail. With invariance any type that is not Cat will
fail. So the supertype fails

130

Inv[Animal]

// error:

// No given instance of type

MdocApp0.this.Inv[MdocApp0.this.Animal] was found for parameter

instance of method apply in object Inv

as does the subtype.

Inv[DomesticShorthair]

// error:

// No given instance of type

MdocApp0.this.Inv[MdocApp0.this.DomesticShorthair] was found for

parameter instance of method apply in object Inv

Covariance fails for any subtype of the type for which the instance
is declared.

Co[DomesticShorthair]

// error:

// No given instance of type

MdocApp0.this.Co[MdocApp0.this.DomesticShorthair] was found for

parameter instance of method apply in object Co

Contravariance fails for any supertype of the type for which the
instance is declared.

Contra[Animal]

// error:

// No given instance of type

MdocApp0.this.Contra[MdocApp0.this.Animal] was found for

parameter instance of method apply in object Contra

It’s clear there is no perfect system. The most common choice is to
use invariant type classes. This allows us to specify more specific
instances for subtypes if we want. It does mean that if we have, for
example, a value of type Some[Int], our type class instance for
Option will not be used. We can solve this problem with a type
annotation like Some(1) : Option[Int] or by using “smart
constructors” like Option.apply and Option.empty which always
return a result of type Option.

131

5.7. Conclusions

In this chapter we took a first look at type classes. We saw the
components that make up a type class:

• A trait, which is the type class

• Type class instances, which are given instances.

• Type class usage, which uses using clauses.

We saw that type classes can be composed from components using
type class composition. This is one form of metaprogramming in
Scala, where we can get the compiler to do work for us based on
our program’s types.

We can view type classes as marrying codata with tools to select
and compose implementations based on type. We can also view
type classes as shifting implementation from the definition site to
the call site. Finally, can see type classes as a mechanism for ad-
hoc polymorphism, allowing us to define common functionality
for otherwise unrelated types.

Type classes were first described in Parametric Overloading in

Polymorphic Programming Languages [42] and How to make ad-hoc

polymorphism less ad hoc [88]. Type Classes as Objects and Implicits
[65] details the encoding of type classes in Scala 2, and compares
Scala’s and Haskell’s approach to type classes. Note that type
classes are not restricted to Haskell and Scala. For examples, Rust’s
traits are essentially type classes.

As we have seen, Scala’s support for type classes is based on
implicit parameters (known as using clauses in Scala 3). Implicit
parameters [51] were motivated by a desire to decompose type
classes into smaller orthogonal language features, but they have
been shown to be useful for other tasks. Scala Implicits Are

Everywhere: A Large-Scale Study of the Use of Scala Implicits in the

Wild [47] surveys different uses of implicits in Scala. There is a

132

particularly mind-bending example in Scala for Generic

Programmers: Comparing Haskell and Scala Support for Generic

Programming [64]. We’ll see some of these different uses in later
chapters.

Scala 3 has a few language features related to contextual
abstraction that we haven’t mentioned in this chapter. Context
functions [62] allow functions to have using clauses. They are
something the community is still exploring, and well defined use
cases only beginning to emerge. Type class derivation26 allows us
to write code that generates type classes instances. Although this
is extremely useful I think it’s conceptually quite simple and
doesn’t warrant space in this book.

26https://docs.scala-lang.org/scala3/reference/contextual/derivation.html

133

https://docs.scala-lang.org/scala3/reference/contextual/derivation.html

134

6. Reified Interpreters

The interpreter strategy is perhaps the most important in all of
functional programming. The central idea is to separate

description from action. When we use the interpreter strategy
our program consists of two parts: the description, instructions, or
program that describes what we want to do, and the interpreter
that carries the actions in the description. In this chapter we’ll
start exploring the design and implementation of interpreters,
focusing on implementations using algebraic data types.

Interpreters arise whenever there is this distinction between
description and action. You may think an interpreter is a complex
piece requiring a lot of development effort, but I hope to show you
this is not the case. You probably already use lots of interpreters in
your daily coding without realizing it. For example, consider the
code below which is taken from a web framework called Krop27

val route =

 Route(

 Request.get(Path.root / "user" / Param.int),

 Response.ok(Entity.text)

).handle(userId => s"You asked for the user

${userId.toString}")

This defines a route, which matches GET requests for the path "/
user/<int>", and responds with an Ok containing text. This kind
of routing library is ubiquitous in web frameworks, is simple to
write, and yet contains everything we need for the interpreter
strategy.

Interpreters are so important because they are the key to enabling
compositionality and reasoning, particularly while allowing
effects. For example, imagine implementing a graphics library
using the interpreter strategy. A program simply describes what

27https://github.com/creativescala/krop

135

https://github.com/creativescala/krop

we want to draw on the screen, but critically it does not draw
anything. The interpreter takes this description and creates the
drawing described by it. We can freely compose descriptions only
because they do not carry out any effects. For example, if we have
a description that describes a circle, and one for a square, we can
compose them by saying we should draw the circle next to the
square thereby creating a new description. If we immediately drew
pictures there would be nothing to compose with. Similarly, it’s
easier to reason about pictures in this system because a program
describes exactly what will appear on the screen, and there is no
state from prior drawing that we need to worry about.

Throughout this chapter we will explore the interpreter strategy
by building a series of interpreters for regular expressions. We’ve
chosen to use regular expressions because they are already
familiar to many and they are simple to work with. This means we
can focus on the details of the interpreter strategy without getting
caught up in problem specific details, but we still end up with a
realistic and useful result.

We’ll start with a basic implementation strategy that uses algebraic
data types and structural recursion. We’ll then look at
transformations to turn our interpreter into a version that avoids
using the stack and hence avoids the possibility of stack overflow.

6.1. Regular Expressions

We’ll start this case study by briefly describing the usual task for
regular expressions—matching text—and then take a more
theoretical view. We’ll then move on to implementation.

We most commonly use regular expressions to determine if a
string matches a particular pattern. The simplest regular
expression is one that matches only one string. In Scala we can
create a regular expression by calling the r method on String.

136

Here’s a regular expression that matches exactly the string
"Scala".

val regexp = "Scala".r

We can see that it matches only "Scala" and fails if we give it a
shorter or longer input.

regexp.matches("Scala")

// res0: Boolean = true

regexp.matches("Sca")

// res1: Boolean = false

regexp.matches("Scalaland")

// res2: Boolean = false

Notice we already have a separation between description and
action. The description is the regular expression itself, created by
calling the r method, and the action is calling the matches method
on the regular expression.

There are some characters that have a special meaning within the
String describing a regular expression. For example, the character
* matches the preceding character zero or more times.

val regexp = "Scala*".r

regexp.matches("Scal")

// res4: Boolean = true

regexp.matches("Scala")

// res5: Boolean = true

regexp.matches("Scalaaaa")

// res6: Boolean = true

We can also use parentheses to group sequences of characters. For
example, if we wanted to match all the strings like "Scala",
"Scalala", "Scalalala" and so on, we could use the following
regular expression.

val regexp = "Scala(la)*".r

137

Let’s check it matches what we’re looking for.

regexp.matches("Scala")

// res8: Boolean = true

regexp.matches("Scalalalala")

// res9: Boolean = true

We should also check it fails to match as expected.

regexp.matches("Sca")

// res10: Boolean = false

regexp.matches("Scalal")

// res11: Boolean = false

regexp.matches("Scalaland")

// res12: Boolean = false

That’s all I’m going to say about Scala’s built-in regular
expressions. If you’d like to learn more there are many resources
online. The JDK documentation28 is one example, which describes
all the features available in the JVM implementation of regular
expressions.

Let’s turn to the theoretical description, such as we might find in a
textbook. A regular expression is:

1. the empty regular expression that matches nothing;
2. a string, which matches exactly that string (including the empty

string);
3. the concatenation of two regular expressions, which matches

the first regular expression and then the second;
4. the union of two regular expressions, which matches if either

expression matches; and
5. the repetition of a regular expression (often known as the

Kleene star), which matches zero or more repetitions of the
underlying expression.

28https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/
regex/Pattern.html

138

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html

This kind of description may seem very abstract if you’re not used
to it. It is very useful for our purposes because it defines a minimal
API that we can easily implement. Let’s walk through the
description and see how each part relates to code.

The empty regular expression is defining a constructor with type
() => Regexp, which we can simplify to a value of type Regexp. In
Scala we put constructors on the companion object, so this tells us
we need

object Regexp {

 val empty: Regexp =

 ???

}

The second part tells us we need another constructor, this one
with type String => Regexp.

object Regexp {

 val empty: Regexp =

 ???

 def apply(string: String): Regexp =

 ???

}

The other three components all take a regular expression and
produce a regular expression. In Scala these will become methods
on the Regexp type. Let’s model this as a trait for now, and define
these methods.

The first method, the concatenation of two regular expressions, is
conventionally called ++ in Scala.

trait Regexp {

 def ++(that: Regexp): Regexp

}

Union is conventionally called orElse.

139

trait Regexp {

 def ++(that: Regexp): Regexp

 def orElse(that: Regexp): Regexp

}

Repetition we’ll call repeat, and define an alias * that matches
how this operation is written in conventional regular expression
notation.

trait Regexp {

 def ++(that: Regexp): Regexp

 def orElse(that: Regexp): Regexp

 def repeat: Regexp

 def `*`: Regexp = this.repeat

}

We’re missing one thing: a method to actually match our regular
expression against some input. Let’s call this method matches.

trait Regexp {

 def ++(that: Regexp): Regexp

 def orElse(that: Regexp): Regexp

 def repeat: Regexp

 def `*`: Regexp = this.repeat

 def matches(input: String): Boolean

}

This completes our API. Now we can turn to implementation.
We’re going to represent Regexp as an algebraic data type, and
each method that returns a Regexp will return an instance of this
algebraic data type. What should be the elements that make up the
algebraic data type? There will be one element for each method,
and the constructor arguments will be exactly the parameters
passed to the method including the hidden this parameter for

methods on the trait.

Here’s the resulting code.

140

enum Regexp {

 def ++(that: Regexp): Regexp =

 Append(this, that)

 def orElse(that: Regexp): Regexp =

 OrElse(this, that)

 def repeat: Regexp =

 Repeat(this)

 def `*`: Regexp = this.repeat

 def matches(input: String): Boolean =

 ???

 case Append(left: Regexp, right: Regexp)

 case OrElse(first: Regexp, second: Regexp)

 case Repeat(source: Regexp)

 case Apply(string: String)

 case Empty

}

object Regexp {

 val empty: Regexp = Empty

 def apply(string: String): Regexp =

 Apply(string)

}

A quick note about this. We can think of every method on an
object as accepting a hidden parameter that is the object itself.
This is this. (If you have used Python, it makes this explicit as the
self parameter.) As we consider this to be a parameter to a
method call, and our implementation strategy is to capture all the
method parameters in a data structure, we must make sure we
capture this when it is available. The only case where we don’t
capture this is when we are defining a constructor on a
companion object.

Notice that we haven’t implemented matches. It doesn’t return a
Regexp so we cannot return an element of our algebraic data type.
What should we do here? Regexp is an algebraic data type and
matches transforms an algebraic data type into a Boolean.

141

Therefore we can use structural recursion! Let’s write out the
skeleton, including the recursion rule.

def matches(input: String): Boolean =

 this match {

 case Append(left, right) =>

 left.matches(???) ??? right.matches(???)

 case OrElse(first, second) =>

 first.matches(???) ??? second.matches(???)

 case Repeat(source) =>

 source.matches(???) ???

 case Apply(string) => ???

 case Empty => ???

 }

Now we can apply the usual strategies to complete the
implementation. Let’s reason independently by case, starting with
the case for Empty. This case is trivial as it always fails to match, so
we just return false.

def matches(input: String): Boolean =

 this match {

 case Append(left, right) => left.matches(???) ???

right.matches(???)

 case OrElse(first, second) => first.matches(???) ???

second.matches(???)

 case Repeat(source) => source.matches(???) ???

 case Apply(string) => ???

 case Empty => false

 }

Let’s move on to the Append case. This should match if the left
regular expression matches the start of the input, and the right
regular expression matches starting where the left regular
expression stopped. This has uncovered a hidden requirement: we
need to keep an index into the input that tells us where we should
start matching from. Using a nested method is the easiest way to
keep around additional information that we need. Here I’ve
created a nested method that returns an Option[Int]. The Int is
the new index to use, and we return an Option to indicate if the
regular expression matched or not.

142

def matches(input: String): Boolean = {

 def loop(regexp: Regexp, idx: Int): Option[Int] =

 regexp match {

 case Append(left, right) =>

 loop(left, idx).flatMap(idx => loop(right, idx))

 case OrElse(first, second) =>

 loop(first, idx) ??? loop(second, ???)

 case Repeat(source) =>

 loop(source, idx) ???

 case Apply(string) =>

 ???

 case Empty =>

 None

 }

 // Check we matched the entire input

 loop(this, 0).map(idx => idx == input.size).getOrElse(false)

}

Now we can go ahead and complete the implementation.

def matches(input: String): Boolean = {

 def loop(regexp: Regexp, idx: Int): Option[Int] =

 regexp match {

 case Append(left, right) =>

 loop(left, idx).flatMap(i => loop(right, i))

 case OrElse(first, second) =>

 loop(first, idx).orElse(loop(second, idx))

 case Repeat(source) =>

 loop(source, idx)

 .flatMap(i => loop(regexp, i))

 .orElse(Some(idx))

 case Apply(string) =>

 Option.when(input.startsWith(string, idx))(idx +

string.size)

 }

 // Check we matched the entire input

 loop(this, 0).map(idx => idx == input.size).getOrElse(false)

}

The implementation for Repeat is a little tricky, so I’ll walk
through the code.

143

case Repeat(source) =>

 loop(source, idx)

 .flatMap(i => loop(regexp, i))

 .orElse(Some(idx))

The first line (loop(source, index)) is seeing if the source
regular expression matches. If it does we loop again, but on regexp
(which is Repeat(source)), not source. This is because we want
to repeat an indefinite number of times. If we looped on source we
would only try twice. Remember that failing to match is still a
success; repeat matches zero or more times. This condition is
handled by the orElse clause.

We should test that our implementation works.

Here’s the example regular expression we started the chapter with.

val regexp = Regexp("Sca") ++ Regexp("la") ++ Regexp("la").repeat

Here are cases that should succeed.

regexp.matches("Scala")

// res14: Boolean = true

regexp.matches("Scalalalala")

// res15: Boolean = true

Here are cases that should fail.

regexp.matches("Sca")

// res16: Boolean = false

regexp.matches("Scalal")

// res17: Boolean = false

regexp.matches("Scalaland")

// res18: Boolean = false

Success! At this point we could add many extensions to our
library. For example, regular expressions usually have a method
(by convention denoted +) that matches one or more times, and
one that matches zero or once (usually denoted ?). These are both

144

conveniences we can build on our existing API. However, our goal
at the moment is to fully understand interpreters and the
implementation technique we’ve used here. So in the next section
we’ll discuss these in detail.

Regular Expression Semantics

Our regular expression implementation handles union
differently to Scala’s built-in regular expressions. Look at
the following example comparing the two.

val r1 = "(z|zxy)ab".r

val r2 = Regexp("z").orElse(Regexp("zxy")) ++ Regexp("ab")

r1.matches("zxyab")

// res19: Boolean = true

r2.matches("zxyab")

// res20: Boolean = false

The reason for this difference is that our implementation
commits to the first branch in a union that successfully
matches some of the input, regardless of how that affects
later matching. We should instead try both branches, but
doing so makes the implementation more complex. The
semantics of regular expressions are not essential to what
we’re trying to do here; we’re just using them as an example
to motivate the programming strategies we’re learning. I
decided the extra complexity of implementing union in the
usual way outweighed the benefits, and so kept the simpler
implementation. Don’t worry, we’ll see how to do it
properly in Chapter 16!

145

6.2. Interpreters and Reification

There are two different programming strategies at play in the
regular expression code we’ve just written:

1. the interpreter strategy; and
2. the interpreter’s implementation strategy of reification.

Remember the essence of the interpreter strategy is to separate
description and action. Therefore, whenever we use the interpreter
strategy we need at least two things: a description and an
interpreter. Descriptions are programs; things that we want to
happen. The interpreter runs the programs, carrying out the
actions described within them.

In the regular expression example, a Regexp value is a program. It
is a description of a pattern we are looking for within a String.
The matches method is an interpreter. It carries out the
instructions in the description, checking the pattern matches the
entire input. We could have other interpreters, such as one that
matches if at least some part of the input matches the pattern.

6.2.1. The Structure of Interpreters

All uses of the interpreter strategy have a particular structure to
their methods. There are three different kinds of methods:

1. constructors, or introduction forms, with type A =>
Program. Here A is any type that isn’t a program, and Program is
the type of programs. Constructors conventionally live on the
Program companion object in Scala. We see that apply is a
constructor of Regexp. It has type String => Regexp, which
matches the pattern A => Program for a constructor. The other
constructor, empty, is just a value of type Regexp. This is

146

equivalent to a method with type () => Regexp and so it also
matches the pattern for a constructor.

2. combinators have at least one program input and a program
output. The type is similar to Program => Program but there
are often additional parameters. All of ++, orElse, and repeat
are combinators in our regular expression example. They all
have a Regexp input (the this parameter) and produce a
Regexp. Some of them have additional parameters, such as ++ or
orElse. For both these methods the single additional parameter
is a Regexp, but it is not the case that additional parameters to a
combinator must be of the program type. Conventionally these
methods live on the Program type.

3. destructors, interpreters, or elimination forms, have type
Program => A. In our regular expression example we have a
single interpreter, matches, but we could easily add more. For
example, we often want to extract elements from the input or
find a match at any location in the input.

This structure is often called an algebra or combinator library
in the functional programming world. When we talk about
constructors and destructors in an algebra we’re talking at a more
abstract level then when we talk about constructors and
destructors on algebraic data types. A constructor of an algebra is
an abstract concept, at the theory level in my taxonomy, that we
can choose to concretely implement at the craft level with the
constructor of an algebraic data type. There are other possible
implementations. We’ll see one later.

6.2.2. Implementing Interpreters with

Reification

Now that we understand the components of an interpreter we can
talk more clearly about the implementation strategy we used. We

147

used a strategy called reification, defunctionalization, deep

embedding, or an initial algebra.

Reification, in an abstract sense, means to make concrete what is
abstract. Concretely, reification in the programming sense means
to turn methods or functions into data. When using reification in
the interpreter strategy we reify all the components that produce
the Program type. This means reifying constructors and
combinators.

Here are the rules for reification:

1. We define some type, which we’ll call Program, to represent
programs.

2. We implement Program as an algebraic data type.
3. All constructors and combinators become product types within

the Program algebraic data type.
4. Each product type holds exactly the parameters to the

constructor or combinator, including the this parameter for
combinators.

Once we’ve defined the Program algebraic data type, the
interpreter becomes a structural recursion on Program.

Exercise: Arithmetic

Now it’s your turn to practice using reification. Your task is to
implement an interpreter for arithmetic expressions. An
expression is:

• a literal number, which takes a Double and produces an
Expression;

• an addition of two expressions;
• a substraction of two expressions;
• a multiplication of two expressions; or
• a division of two expressions;

Reify this description as a type Expression.

148

Now implement an interpreter eval that produces a Double. This
interpreter should interpret the expression using the usual rules of
arithmetic.

Add methods +, - and so on that make your system a bit nicer to
use. Then write some expressions and show that it works as
expected.

6.3. Tail Recursive Interpreters

Structural recursion, as we have written it, uses the stack. This is
not often a problem, but particularly deep recursions can lead to
the stack running out of space. A solution is to write a tail

recursive program. A tail recursive program does not need to use
any stack space, and so is sometimes known as stack safe. Any
program can be turned into a tail recursive version, which does
not use the stack and therefore cannot run out of stack space.

The Call Stack

Method and function calls are usually implemented using an
area of memory known as the call stack, or just the stack for
short. Every method or function call uses a small amount of
memory on the stack, called a stack frame. When the
method or function returns, this memory is freed and
becomes available for future calls to use.

A large number of method calls, without corresponding
returns, can require more stack frames than the stack can
accommodate. When there is no more memory available on
the stack we say we have overflowed the stack. In Scala a
StackOverflowError is raised when this happens.

149

In this section we will discuss tail recursion, converting programs
to tail recursive form, and limitations and workarounds for the
Scala’s runtimes.

6.3.1. The Problem of Stack Safety

Let’s start by seeing the problem. In Scala we can create a repeated
String using the * method.

"a" * 4

// res0: String = "aaaa"

We can match such a String with a regular expression and
repeat.

Regexp("a").repeat.matches("a" * 4)

// res1: Boolean = true

However, if we make the input very long the interpreter will fail
with a stack overflow exception.

Regexp("a").repeat.matches("a" * 20000)

// java.lang.StackOverflowError

This is because the interpreter calls loop for each instance of a
repeat, without returning. However, all is not lost. We can rewrite
the interpreter in a way that consumes a fixed amount of stack
space, and therefore match input that is as large as we like.

6.3.2. Tail Calls and Tail Position

Our starting point is tail calls. A tail call is a method call that does
not take any additional stack space. Only method calls that are in
tail position are candidates to be turned into tail calls. Even then,

150

runtime limitations mean that not all calls in tail position will be
converted to tail calls.

A method call in tail position is a call that immediately returns the
value returned by the call. Let’s see an example. Below are two
versions of a method to calculate the sum of the integers from 0 to
count.

def isntTailRecursive(count: Int): Int =

 count match {

 case 0 => 0

 case n => n + isntTailRecursive(n - 1)

 }

def isTailRecursive(count: Int): Int = {

 def loop(count: Int, accum: Int): Int =

 count match {

 case 0 => accum

 case n => loop(n - 1, accum + n)

 }

 loop(count, 0)

}

The method call to isntTailRecursive in

case n => n + isntTailRecursive(n - 1)

is not in tail position, because the value returned by the call is then
used in the addition. However, the call to loop in

case n => loop(n - 1, accum + n)

is in tail position because the value returned by the call to loop is
itself immediately returned. Similarly, the call to loop in

loop(count, 0)

is also in tail position.

151

A method call in tail position is a candidate to be turned into a tail
call. Limitations of Scala’s runtimes mean that not all calls in tail
position can be made tail calls. Currently, only calls from a method
to itself that are also in tail position will be converted to tail calls.
This means

case n => loop(n - 1, accum + n)

is converted to a tail call, because loop is calling itself. However,
the call

loop(count, 0)

is not converted to a tail call, because the call is from
isTailRecursive to loop. This will not cause issues with stack
consumption, however, because this call only happens once.

Runtimes and Tail Calls

Scala supports three different platforms: the JVM, Javascript
via Scala.js, and native code via Scala Native. Each platform
provides what is known as a runtime, which is code that
supports our Scala code when it is running. The garbage
collector, for example, is part of the runtime.

At the time of writing none of Scala’s runtimes support full
tail calls. However, there is reason to think this may change
in the future. Project Loom29 should eventually add support
for tail calls to the JVM. Scala Native is likely to support tail
calls soon, as part of other work to implement
continuations. Tail calls have been part of the Javascript
specification for a long time, but remain unimplemented by

29https://wiki.openjdk.org/display/loom/Main

152

https://wiki.openjdk.org/display/loom/Main

the majority of Javascript runtimes. However, WebAssembly
does support tail calls and will probably replace compiling
Scala to Javascript in the medium term.

We can ask the Scala compiler to check that all self calls are in tail
position by adding the @tailrec annotation to a method. The code
will fail to compile if any calls from the method to itself are not in
tail position.

import scala.annotation.tailrec

@tailrec

def isntTailRecursive(count: Int): Int =

 count match {

 case 0 => 0

 case n => n + isntTailRecursive(n - 1)

 }

// error:

// Cannot rewrite recursive call: it is not in tail position

// case n => n + isntTailRecursive(n - 1)

// ^^^^^^^^^^^^^^^^^^^^^^^^

We can check the tail recursive version is truly tail recursive by
passing it a very large input. The non-tail recursive version
crashes.

isntTailRecursive(100000)

// java.lang.StackOverflowError

The tail recursive version runs just fine.

isTailRecursive(100000)

// res4: Int = 705082704

153

6.3.3. Continuation-Passing Style

Now that we know about tail calls, how do we convert the regular
expression interpreter to use them? Any program can be converted
to an equivalent program with all calls in tail position. This
conversion is known as continuation-passing style or CPS for
short. Our first step to understanding CPS is to understand
continuations.

A continuation is an encapsulation of “what happens next”. Let’s
return to our Regexp example. Here’s the full code for reference.

enum Regexp {

 def ++(that: Regexp): Regexp =

 Append(this, that)

 def orElse(that: Regexp): Regexp =

 OrElse(this, that)

 def repeat: Regexp =

 Repeat(this)

 def `*` : Regexp = this.repeat

 def matches(input: String): Boolean = {

 def loop(regexp: Regexp, idx: Int): Option[Int] =

 regexp match {

 case Append(left, right) =>

 loop(left, idx).flatMap(i => loop(right, i))

 case OrElse(first, second) =>

 loop(first, idx).orElse(loop(second, idx))

 case Repeat(source) =>

 loop(source, idx)

 .flatMap(i => loop(regexp, i))

 .orElse(Some(idx))

 case Apply(string) =>

 Option.when(input.startsWith(string, idx))(idx +

string.size)

 case Empty =>

 None

 }

 // Check we matched the entire input

154

 loop(this, 0).map(idx => idx == input.size).getOrElse(false)

 }

 case Append(left: Regexp, right: Regexp)

 case OrElse(first: Regexp, second: Regexp)

 case Repeat(source: Regexp)

 case Apply(string: String)

 case Empty

}

object Regexp {

 val empty: Regexp = Empty

 def apply(string: String): Regexp =

 Apply(string)

}

Let’s consider the case for Append in matches.

case Append(left, right) =>

 loop(left, idx).flatMap(i => loop(right, i))

What happens next when we call loop(left, idx)? Let’s give the
name result to the value returned by the call to loop. The answer
is we run result.flatMap(i => loop(right, i)). We can
represent this as a function, to which we pass result:

(result: Option[Int]) => result.flatMap(i => loop(right, i))

This is exactly the continuation, reified as a value.

As is often the case, there is a distinction between the concept and
the representation. The concept of continuations always exists in
code. A continuation means “what happens next”. In other words,
it is the program’s control flow. There is always some concept of
control flow, even if it is just “the program halts”. We can represent
continuations as functions in code. This transforms the abstract
concept of continuations into concrete values in our program, and
hence reifies them.

155

Now that we know about continuations, and their reification as
functions, we can move on to continuation-passing style. In CPS
we, as the name suggests, pass around continuations. Specifically,
each function or method takes an extra parameter that is a
continuation. Instead of returning a value it calls that continuation
with the value. This is another example of duality, in this case
between returning a value and calling a continuation.

Let’s see how this works. We’ll start with a simple example written
in the normal style, also known as direct style.

(1 + 2) * 3

// res5: Int = 9

To rewrite this in CPS style we need to create replacements for +
and * with the extra continuation parameter.

type Continuation = Int => Int

def add(x: Int, y: Int, k: Continuation) = k(x + y)

def mul(x: Int, y: Int, k: Continuation) = k(x * y)

Now we can rewrite our example in CPS. (1 + 2) becomes add(1,
2, k), but what is k, the continuation? What we do next is
multiply the result by 3. Thus the continuation is a => mul(a, 3,
k2). What is the next continuation, k2? Here the program finishes,
so we just return the value with the identity continuation b => b.
Put it all together and we get

add(1, 2, a => mul(a, 3, b => b))

// res6: Int = 9

Notice that every continuation call is in tail position in the CPS
code. This means that code written in CPS can potentially
consume no stack space.

Now we can return to the interpreter loop for Regexp. We are
going to CPS it, so we need to add an extra parameter for the

156

continuation. In this case the contination accepts and returns the
result type of loop: Option[Int].

def matches(input: String): Boolean = {

 // Define a type alias so we can easily write continuations

 type Continuation = Option[Int] => Option[Int]

 def loop(regexp: Regexp, idx: Int, cont: Continuation):

Option[Int] =

 // etc...

}

Now we go through each case and convert it to CPS. Each
continuation we construct must call cont as its final step. This is
tedious and a bit error-prone, so good tests are helpful.

def matches(input: String): Boolean = {

 // Define a type alias so we can easily write continuations

 type Continuation = Option[Int] => Option[Int]

 def loop(

 regexp: Regexp,

 idx: Int,

 cont: Continuation

): Option[Int] =

 regexp match {

 case Append(left, right) =>

 val k: Continuation = _ match {

 case None => cont(None)

 case Some(i) => loop(right, i, cont)

 }

 loop(left, idx, k)

 case OrElse(first, second) =>

 val k: Continuation = _ match {

 case None => loop(second, idx, cont)

 case some => cont(some)

 }

 loop(first, idx, k)

 case Repeat(source) =>

 val k: Continuation =

 _ match {

 case None => cont(Some(idx))

 case Some(i) => loop(regexp, i, cont)

157

 }

 loop(source, idx, k)

 case Apply(string) =>

 cont(Option.when(input.startsWith(string, idx))(idx +

string.size))

 case Empty =>

 cont(None)

 }

 // Check we matched the entire input

 loop(this, 0, identity).map(idx => idx ==

input.size).getOrElse(false)

}

Every call in this interpreter loop is in tail position. However Scala
cannot convert these to tail calls because the calls go from loop to
a continuation and vice versa. To make the interpreter fully stack
safe we need to add trampolining.

Exercise: CPS Arithmetic

In a previous exercise we wrote an interpreter for arithmetic
expressions. Your task now is to CPS this interpreter. For
reference, the definition of an arithmetic expression is:

• a literal number, which takes a Double and produces an
Expression;

• an addition of two expressions;
• a substraction of two expressions;
• a multiplication of two expressions; or
• a division of two expressions;

6.3.4. Trampolining

Earlier we said that CPS utilizes the duality between function calls
and returns: instead of returning a value we call a function with a

158

value. This allows us to transform our code so it only has calls in
tail positions. However, we still have a problem with stack safety.
Scala’s runtimes don’t support full tail calls, so calls from a
continuation to loop or from loop to a continuation will use a
stack frame. We can use this same duality to avoid using the stack
by, instead of making a call, returning a value that reifies the call
we want to make. This idea is the core of trampolining. Let’s see it
in action, which will help clear up what exactly this all means.

Our first step is to reify all the method calls made by the
interpreter loop and the continuations. There are three cases: calls
to loop, calls to a continuation, and, to avoid an infinite loop, the
case when we’re done.

type Continuation = Option[Int] => Call

enum Call {

 case Loop(regexp: Regexp, index: Int, continuation:

Continuation)

 case Continue(index: Option[Int], continuation: Continuation)

 case Done(index: Option[Int])

}

Now we update loop to return instances of Call instead of making
the calls directly.

def loop(regexp: Regexp, idx: Int, cont: Continuation): Call =

 regexp match {

 case Append(left, right) =>

 val k: Continuation = _ match {

 case None => Call.Continue(None, cont)

 case Some(i) => Call.Loop(right, i, cont)

 }

 Call.Loop(left, idx, k)

 case OrElse(first, second) =>

 val k: Continuation = _ match {

 case None => Call.Loop(second, idx, cont)

 case some => Call.Continue(some, cont)

 }

 Call.Loop(first, idx, k)

159

 case Repeat(source) =>

 val k: Continuation =

 _ match {

 case None => Call.Continue(Some(idx), cont)

 case Some(i) => Call.Loop(regexp, i, cont)

 }

 Call.Loop(source, idx, k)

 case Apply(string) =>

 Call.Continue(

 Option.when(input.startsWith(string, idx))(idx +

string.size),

 cont

)

 case Empty =>

 Call.Continue(None, cont)

 }

This gives us an interpreter loop that returns values instead of
making calls, and so does not consume stack space. However, we
need to actually make these calls at some point, and doing this is
the job of the trampoline. The trampoline is simply a tail recursive
loop that makes calls until it reaches Done.

def trampoline(next: Call): Option[Int] =

 next match {

 case Call.Loop(regexp, index, continuation) =>

 trampoline(loop(regexp, index, continuation))

 case Call.Continue(index, continuation) =>

 trampoline(continuation(index))

 case Call.Done(index) => index

 }

Now every call has a corresponding return, so the stack usage is
limited. Our interpreter can handle input of any size, up to the
limits of available memory.

Here’s the complete code for reference.

160

// Define a type alias so we can easily write continuations

type Continuation = Option[Int] => Call

enum Call {

 case Loop(regexp: Regexp, index: Int, continuation:

Continuation)

 case Continue(index: Option[Int], continuation: Continuation)

 case Done(index: Option[Int])

}

enum Regexp {

 def ++(that: Regexp): Regexp =

 Append(this, that)

 def orElse(that: Regexp): Regexp =

 OrElse(this, that)

 def repeat: Regexp =

 Repeat(this)

 def `*` : Regexp = this.repeat

 def matches(input: String): Boolean = {

 def loop(regexp: Regexp, idx: Int, cont: Continuation): Call

=

 regexp match {

 case Append(left, right) =>

 val k: Continuation = _ match {

 case None => Call.Continue(None, cont)

 case Some(i) => Call.Loop(right, i, cont)

 }

 Call.Loop(left, idx, k)

 case OrElse(first, second) =>

 val k: Continuation = _ match {

 case None => Call.Loop(second, idx, cont)

 case some => Call.Continue(some, cont)

 }

 Call.Loop(first, idx, k)

 case Repeat(source) =>

 val k: Continuation =

 _ match {

 case None => Call.Continue(Some(idx), cont)

 case Some(i) => Call.Loop(regexp, i, cont)

 }

 Call.Loop(source, idx, k)

161

 case Apply(string) =>

 Call.Continue(

 Option.when(input.startsWith(string, idx))(idx +

string.size),

 cont

)

 case Empty =>

 Call.Continue(None, cont)

 }

 def trampoline(next: Call): Option[Int] =

 next match {

 case Call.Loop(regexp, index, continuation) =>

 trampoline(loop(regexp, index, continuation))

 case Call.Continue(index, continuation) =>

 trampoline(continuation(index))

 case Call.Done(index) => index

 }

 // Check we matched the entire input

 trampoline(loop(this, 0, opt => Call.Done(opt)))

 .map(idx => idx == input.size)

 .getOrElse(false)

 }

 case Append(left: Regexp, right: Regexp)

 case OrElse(first: Regexp, second: Regexp)

 case Repeat(source: Regexp)

 case Apply(string: String)

 case Empty

}

object Regexp {

 val empty: Regexp = Empty

 def apply(string: String): Regexp =

 Apply(string)

}

Exercise: Trampolined Arithmetic

Convert the CPSed arithmetic interpreter we wrote earlier to a
trampolined version.

162

6.3.5. When Tail Recursion is Easy

Doing a full CPS conversion and trampoline can be quite involved.
Some methods can be made tail recursive without so large a
change. Remember these examples we looked at earlier?

def isntTailRecursive(count: Int): Int =

 count match {

 case 0 => 0

 case n => n + isntTailRecursive(n - 1)

 }

def isTailRecursive(count: Int): Int = {

 def loop(count: Int, accum: Int): Int =

 count match {

 case 0 => accum

 case n => loop(n - 1, accum + n)

 }

 loop(count, 0)

}

The tail recursive version doesn’t seem to involve the complexity
of CPS. How can we relate this to what we’ve just learned, and
when can we avoid the work of CPS and trampolining?

Let’s use substitution to show how the stack is used by each
method, for a small value of count.

isntTailRecursive(2)

// expands to

(2 match {

 case 0 => 0

 case n => n + isntTailRecursive(n - 1)

})

// expands to

(2 + isntTailRecursive(1))

// expands to

(2 + (1 match {

 case 0 => 0

 case n => n + isntTailRecursive(n - 1)

 }))

// expands to

163

(2 + (1 + isntTailRecursive(n - 1)))

// expands to

(2 + (1 + (0 match {

 case 0 => 0

 case n => n + isntTailRecursive(n - 1)

 })))

// expands to

(2 + (1 + (0)))

// expands to

3

Here each set of brackets indicates a new method call and hence a
stack frame allocation.

Now let’s do the same for isTailRecursive.

isTailRecursive(2)

// expands to

(loop(2, 0))

// expands to

(2 match {

 case 0 => 0

 case n => loop(n - 1, 0 + n)

 })

// expands to

(loop(1, 2))

// call to loop is a tail call, so no stack frame is allocated

// expands to

(1 match {

 case 0 => 2

 case n => loop(n - 1, 2 + n)

 })

// expands to

(loop(0, 3))

// call to loop is a tail call, so no stack frame is allocated

// expands to

(0 match {

 case 0 => 3

 case n => loop(n - 1, 3 + n)

 })

// expands to

(3)

// expands to

3

164

The non-tail recursive function computes the result (2 + (1 +
(0))) If we look closely, we’ll see that the tail recursive version
computes (((2) + 1) + 0), which simply accumulates the result
in the reverse order. This works because addition is associative,
meaning (a + b) + c == a + (b + c). This is our first criteria
for using the “easy” method for converting to a tail recursive form:
the operation that accumulates results must be associative.

This doesn’t explain, though, how we come to realize that addition
is the correct operation to use. The second criteria is that we don’t
need any memory beyond the partial result calculated from the
data we’ve already seen. Some implications of this are that we can
stop at any time and have a usable result, and that we are only
applying a single operation to the data. This is not the case in the
regular expression example. For example, we have the following
code in the Append case:

case Append(left, right) =>

 loop(left, idx).flatMap(i => loop(right, i))

To compute the result for the Append we need to compute and
combine results from both left and right. So when we have
computed the result for right we need to remember both the
result from left and that we’re combining the two results using
the rule for Append rather than, say, OrElse. It’s remembering this
that is exactly what the continuation does, and what stops us from
using the easy method we saw when summing the elements of a
list.

So, in summary, if we are applying only a single associative
operation to data we can use the simple method for writing a tail
recursive method:

1. define an structurally recursive loop with an additional
parameter that is the partial result or accumulator;

2. in the base cases return the accumulator; and

165

3. in the recursive cases update the accumulator and call the loop
in tail position.

You might be wondering how we handle tree-shaped data with
this technique. One consequence of an associative operation is that
we can transform any sequence of operations into a list-shaped
sequence. If, for example, we have an expression tree that suggests
we should call operations in the order (1 + 2) + (3 + 4) (where
I’m using + to indicate the operation) we can rewrite that to (((1
+ 2) + 3) + 4) via associativity. So we can transform our tree
into a list and then apply the recipe above.

6.4. Conclusions

In this chapter we’ve discussed why we might want to build
interpreters, and seen techniques for building them. To recap, the
core of the interpreter strategy is a separation between description
and action. The description is the program, and the interpreter is
the action that carries out the program. This separation is allows
for composition of programs, and managing effects by delaying
them till the time the program is run. We sometimes call this
structure an algebra, with constructs and combinators defining
programs and destructors defining interpreters. Although the
name of the strategy focuses on the interpreter, the design of the
program is just as important as it is the user interface through
which the programmer interacts with the system.

Our starting implementation strategy is reification of the algebra’s
constructors and compositional methods as an algebraic data type.
The interpreter is then a structural recursion over this ADT. We
saw that the straightforward implementation is not stack-safe, and
which caused us to introduction the idea of tail recursion and
continuations. We reified continuations as functions, and saw that
we can convert any program into continuation-passing style

166

which has every method call in tail position. Due to Scala runtime
limitations not all calls in tail position can be converted to tail
calls, so we reified calls and returns into data structures used by a
recursive loop called a trampoline. Underlying all these strategies
in the concept of duality. We have seen a duality between
functions and data, which we utilize in reification, and a duality
between calling functions and returning data, which we use in
continuations and trampolines.

Stack-safe interpreters are important in many situations, but the
code is harder to read than the basic structural recursion. In some
contexts a basic interpreter may be just fine. It’s unlikely to run
out of stack space when evaluating a straightforward expression
tree, as in the arithmetic example. The depth of such a tree grows
logarithmically with the number of elements, so only extremely
large trees will have sufficient depth that stack safety becomes
relevant. However, in the regular expression example the stack
consumption is determined not by the depth of the regular
expression tree, but by the length of the input being matched. In
this situation stack safety is more important. There may still be
other constraints that allow a simpler implementation. For
example, if we know the library will only used in situations where
inputs were guaranteed to be small. As always, only use coding
techniques where they make sense.

These ideas are classics in programming language theory.
Definitional Interpreters for Higher-Order Programming Languages
[73] details defunctionalization, a limited form of reification and
continuation-passing style. (If you want to read this paper, I
suggest the re-typeset version from 199830, which is much more
readable than the original typewriter version.) These ideas are
expanded on in Defunctionalization at Work [17]. Continuation-

Passing Style, Defunctionalization, Accumulations, and Associativity

30https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/reynolds-
definitional-interpreters-1998.pdf

167

https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/reynolds-definitional-interpreters-1998.pdf

[36] is a very readable and elegant paper that highlights the
importance of associativity in these transformations.

168

Part II: Type Classes

In this part of the book we move on to type classes. We looked at
the implementation of type classes in Chapter 5. Our focus here is
on a handful of specific type classes, that are both very useful for
day-to-day programming tasks and as conceptual models that can
drive program design. In this part we’ll be looking more at their
use for day-to-day programming, while the case studies will focus
on their role in design.

In Chapter 7 we introduce the Cats31 library. Cats provides
implementation of the type classes we’re interested in, and so it
saves a lot of time and typing to use it.

31https://typelevel.org/cats

169

https://typelevel.org/cats

170

7. Using Cats

In this Chapter we’ll learn how to use the Cats32 library. Cats
provides two main things: type classes and their instances, and
some useful data structures. Our focus will mostly be on the type
classes, though we will touch on the data structures where
appropriate.

7.1. Quick Start

The easiest, and recommended, way to use Cats is to add the
following imports:

import cats.*

import cats.syntax.all.*

The first import adds all the type classes (and makes their
instances available, as they are found in the companion objects.)
The second import adds the syntax helpers, which makes the type
classes easier to work with. Note we don’t need to import cats.
{*, given} as, at the time of writing, Cats is written in Scala 2
style (using implicits) and these are imported by the wildcard
import.

If we want use some of Cats’ datastructures, we also need to add

import cats.data.*

32https://typelevel.org/cats

171

https://typelevel.org/cats

7.2. Using Cats

Let’s now see how we work with Cats, using cats.Show33 as an
example.

Show is Cats’ equivalent of the Display type class we defined in
Section 5.5. It provides a mechanism for producing developer-
friendly console output without using toString. Here’s an
abbreviated definition:

package cats

trait Show[A] {

 def show(value: A): String

}

The easiest way to use Show is with the wildcard import above.
However, we can also import Show directly from the cats package
if we want:

import cats.Show

The companion object of every Cats type class has an apply
method that locates an instance for any type we specify:

val showInt = Show.apply[Int]

Once we have an instance we can call methods on it.

showInt.show(42)

// res0: String = "42"

More common, however, is to use the syntax or extension
methods, which we imported with import cats.syntax.all.*. In
the case of Show, an extension method show is defined.

33http://typelevel.org/cats/api/cats/Show.html

172

http://typelevel.org/cats/api/cats/Show.html

42.show

// res1: String = "42"

If, for some reason, we wanted just the syntax for show, we could
import cats.syntax.show.

import cats.syntax.show.* // for show

7.2.1. Defining Custom Instances

As we learned in Chapter 5, we can define an instance of Show by
implementing a given instance of the trait for a specific type. Let’s
implement Show for java.util.Date.

import java.util.Date

given dateShow: Show[Date] with

 def show(date: Date): String =

 s"${date.getTime}ms since the epoch."

It works as expected.

new Date().show

// res2: String = "1769000510800ms since the epoch."

However, Cats also provides a couple of convenient methods to
simplify the process. There are two construction methods on the
companion object of Show that we can use to define instances for
our own types:

object Show {

 // Convert a function to a `Show` instance:

 def show[A](f: A => String): Show[A] =

 ???

 // Create a `Show` instance from a `toString` method:

 def fromToString[A]: Show[A] =

173

 ???

}

These allow us to quickly construct instances with less ceremony
than defining them from scratch:

given dateShow: Show[Date] =

 Show.show(date => s"${date.getTime}ms since the epoch.")

As you can see, the code using construction methods is much
terser than the code without. Many type classes in Cats provide
helper methods like these for constructing instances, either from
scratch or by transforming existing instances for other types.

Exercise: Cat Show

In this exercise we’ll re-implement the Cat application from
Section 5.5.1 using Show instead of Display.

Using this data type to represent a well-known type of furry
animal:

final case class Cat(name: String, age: Int, color: String)

create an implementation of Display for Cat that returns content
in the following format:

NAME is a AGE year-old COLOR cat.

Then use the type class on the console or in a short demo app:
create a Cat and print it to the console:

// Define a cat:

val cat = Cat(/* ... */)

// Print the cat!

174

7.3. Example: Eq

We will finish off this chapter by looking at another useful type
class: cats.Eq34. Eq is designed to support type-safe equality and
address annoyances using Scala’s built-in == operator.

Almost every Scala developer has written code like this before:

List(1, 2, 3).map(Option(_)).filter(item => item == 1)

// error:

// Values of types Option[Int] and Int cannot be compared with ==

or !=

// List(1, 2, 3).map(Option(_)).filter(item => item == 1)

// ^^^^^^^^^

Ok, many of you won’t have made such a simple mistake as this,
but the principle is sound. The predicate in the filter clause
always returns false because it is comparing an Int to an
Option[Int].

This is programmer error—we should have compared item to
Some(1) instead of 1. However, it’s not technically a type error
because == works for any pair of objects, no matter what types we
compare. Eq is designed to add some type safety to equality checks
and work around this problem.35

34http://typelevel.org/cats/api/cats/kernel/Eq.html
35Scala 3 has it’s own solution to this problem, called multiversal equality36.

It also uses a type class, in this case called CanEqual. With the correct imports
or compiler flags we can get the compiler to complain if we try to perform an
equality check that doesn’t make sense. So in practice we don’t need Eq any
more. However it’s a simple type class to work with and makes a good
introduction to using Cats.

36https://docs.scala-lang.org/scala3/reference/contextual/multiversal-
equality.html

175

http://typelevel.org/cats/api/cats/kernel/Eq.html
https://docs.scala-lang.org/scala3/reference/contextual/multiversal-equality.html

7.3.1. Equality, Liberty, and Fraternity

We can use Eq to define type-safe equality between instances of
any given type:

package cats

trait Eq[A] {

 def eqv(a: A, b: A): Boolean

 // other concrete methods based on eqv...

}

The interface syntax, defined in cats.syntax.eq37, provides two
methods for performing equality checks provided there is an
instance Eq[A] in scope:

• === compares two objects for equality;
• =!= compares two objects for inequality.

7.3.2. Comparing Ints

Let’s look at a few examples. First we import the type class:

import cats.*

Now let’s grab an instance for Int:

val eqInt = Eq[Int]

We can use eqInt directly to test for equality:

eqInt.eqv(123, 123)

// res2: Boolean = true

eqInt.eqv(123, 234)

// res3: Boolean = false

37https://www.javadoc.io/doc/org.typelevel/cats-docs_3/latest/cats/syntax/
EqSyntax.html

176

https://www.javadoc.io/doc/org.typelevel/cats-docs_3/latest/cats/syntax/EqSyntax.html

Unlike Scala’s == method, if we try to compare objects of different
types using eqv we get a compile error:

eqInt.eqv(123, "234")

// error:

// Found: ("234" : String)

// Required: Int

// eqInt.eqv(123, "234")

// ^^^^^

We can also import the interface syntax to use the === and =!=
methods:

import cats.syntax.all.* // for === and =!=

Now the syntax methods are available.

123 === 123

// res5: Boolean = true

123 =!= 234

// res6: Boolean = true

Again, comparing values of different types causes a compiler error:

123 === "123"

// error:

// Found: ("123" : String)

// Required: Int

// 123 === "123"

// ^^^^^

7.3.3. Comparing Options

Now for a more interesting example—Option[Int].

Some(1) === None

// error:

// value === is not a member of Some[Int] - did you mean

177

Some[Int].==?

// Some(1) === None

// ^^^^^^^^^^^

We have received an error here because the types don’t quite
match up. We have Eq instances in scope for Int and Option[Int]
but the values we are comparing are of type Some[Int]. To fix the
issue we have to re-type the arguments as Option[Int]:

(Some(1) : Option[Int]) === (None : Option[Int])

// res9: Boolean = false

We can do this in a friendlier fashion using the Option.apply and
Option.empty methods from the standard library:

Option(1) === Option.empty[Int]

// res10: Boolean = false

or using special syntax from cats.syntax.option38:

1.some === none[Int]

// res11: Boolean = false

1.some =!= none[Int]

// res12: Boolean = true

7.3.4. Comparing Custom Types

We can define our own instances of Eq using the Eq.instance
method, which accepts a function of type (A, A) => Boolean and
returns an Eq[A]:

import java.util.Date

given dateEq: Eq[Date] =

38https://www.javadoc.io/doc/org.typelevel/cats-docs_3/latest/cats/syntax/
OptionSyntax.html

178

https://www.javadoc.io/doc/org.typelevel/cats-docs_3/latest/cats/syntax/OptionSyntax.html

 Eq.instance[Date] { (date1, date2) =>

 date1.getTime === date2.getTime

 }

val x = new Date() // now

val y = new Date() // a bit later than now

x === x

// res13: Boolean = true

x === y

// res14: Boolean = true

Exercise: Equality, Liberty, and Felinity

Implement an instance of Eq for our running Cat example:

final case class Cat(name: String, age: Int, color: String)

Use this to compare the following pairs of objects for equality and
inequality:

val cat1 = Cat("Garfield", 38, "orange and black")

val cat2 = Cat("Heathcliff", 33, "orange and black")

val optionCat1 = Option(cat1)

val optionCat2 = Option.empty[Cat]

7.4. Conclusions

We have also seen the general patterns in Cats type classes:

• The type classes themselves are generic traits in the cats
package.

• Each type class has a companion object with, an apply method
for materializing instances, one or more construction methods

179

for creating instances, and a collection of other relevant helper
methods.

• Many type classes have extension methods provided via the
cats.syntax package.

In the remaining chapters of Part II we will look at several broad
and powerful type classes—Semigroup, Monoid, Functor, Monad,
Semigroupal, Applicative, Traverse, and more. In each case we
will learn what functionality the type class provides, the formal
rules it follows, and how it is implemented in Cats. Many of these
type classes are more abstract than Show or Eq. While this makes
them harder to learn, it makes them far more useful for solving
general problems in our code.

180

8. Monoids and

Semigroups

In this section we explore our first type classes, monoid and
semigroup. These allow us to add or combine values. There are
instances for Ints, Strings, Lists, Options, and many more. Let’s
start by looking at a few simple types and operations to see what
common principles we can extract.

Addition of Ints is a binary operation that is closed, meaning that
adding two Ints always produces another Int:

2 + 1

// res0: Int = 3

There is also the identity element 0 with the property that a + 0
== 0 + a == a for any Int a:

2 + 0

// res1: Int = 2

0 + 2

// res2: Int = 2

There are also other properties of addition. For instance, it doesn’t
matter in where we place brackets when we add elements, as we
always get the same result. This is a property known as
associativity:

(1 + 2) + 3

// res3: Int = 6

1 + (2 + 3)

// res4: Int = 6

181

The same properties for addition also apply for multiplication,
provided we use 1 as the identity instead of 0:

1 * 3

// res5: Int = 3

3 * 1

// res6: Int = 3

Multiplication, like addition, is associative:

(1 * 2) * 3

// res7: Int = 6

1 * (2 * 3)

// res8: Int = 6

We can also add Strings, using string concatenation as our binary
operator:

"One" ++ "two"

// res9: String = "Onetwo"

and the empty string as the identity:

"" ++ "Hello"

// res10: String = "Hello"

"Hello" ++ ""

// res11: String = "Hello"

Once again, concatenation is associative:

("One" ++ "Two") ++ "Three"

// res12: String = "OneTwoThree"

"One" ++ ("Two" ++ "Three")

// res13: String = "OneTwoThree"

Note that we used ++ above instead of the more usual + to suggest
a parallel with sequences. We can do the same with other types of

182

sequence, using concatenation as the binary operator and the
empty sequence as our identity.

8.1. Definition of a Monoid

We’ve seen a number of “addition” scenarios above each with an
associative binary addition and an identity element. It will be no
surprise to learn that this is a monoid. Formally, a monoid for a
type A is:

• an operation combine with type (A, A) => A
• an element empty of type A

This definition translates nicely into Scala code. Here is a
simplified version of the definition from Cats:

trait Monoid[A] {

 def combine(x: A, y: A): A

 def empty: A

}

In addition to providing the combine and empty operations,
monoids must formally obey several laws. For all values x, y, and z,
in A, combine must be associative and empty must be an identity
element:

def associativeLaw[A](x: A, y: A, z: A)

 (using m: Monoid[A]): Boolean = {

 m.combine(x, m.combine(y, z)) ==

 m.combine(m.combine(x, y), z)

}

def identityLaw[A](x: A)

 (using m: Monoid[A]): Boolean = {

 (m.combine(x, m.empty) == x) &&

 (m.combine(m.empty, x) == x)

}

183

Integer subtraction, for example, is not a monoid because
subtraction is not associative:

(1 - 2) - 3

// res14: Int = -4

1 - (2 - 3)

// res15: Int = 2

In practice we only need to think about laws when we are writing
our own Monoid instances. Unlawful instances are dangerous, not
because using them can cause us to end up in jail, but because they
can yield unpredictable results when used with the rest of Cats’
machinery. Most of the time we can rely on the instances provided
by Cats and assume the library authors knew what they were
doing.

8.2. Definition of a Semigroup

A semigroup is just the combine part of a monoid, without the
empty part. While many semigroups are also monoids, there are
some data types for which we cannot define an empty element. For
example, we have just seen that sequence concatenation and
integer addition are monoids. However, if we restrict ourselves to
non-empty sequences and positive integers, we are no longer able
to define a sensible empty element. As a concrete example, Cats
has a NonEmptyList39 data type that has an implementation of
Semigroup but no implementation of Monoid.

A more accurate (though still simplified) definition of Cats’
Monoid40 is:

39http://typelevel.org/cats/api/cats/data/NonEmptyList.html
40http://typelevel.org/cats/api/cats/Monoid.html

184

http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/Monoid.html

trait Semigroup[A] {

 def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

 def empty: A

}

We’ll see this kind of inheritance often when discussing type
classes. It provides modularity and allows us to re-use behaviour. If
we define a Monoid for a type A, we get a Semigroup for free.
Similarly, if a method requires a parameter of type Semigroup[B],
we can pass a Monoid[B] instead.

8.2.0.1. Exercise: The Truth About Monoids

We’ve seen a few examples of monoids but there are plenty more
to be found. Consider Boolean. How many monoids can you define
for this type? For each monoid, define the combine and empty
operations and convince yourself that the monoid laws hold. Use
the following definitions as a starting point:

trait Semigroup[A] {

 def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

 def empty: A

}

object Monoid {

 def apply[A](implicit monoid: Monoid[A]) =

 monoid

}

8.2.0.2. Exercise: All Set for Monoids

What monoids and semigroups are there for sets?

185

8.3. Monoids in Cats

Now we’ve seen what monoids are, let’s look at their
implementation in Cats. Once again we’ll look at the three main
aspects of the implementation: the type class, the instances, and the
interface.

8.3.1. The Monoid Type Class

The monoid type class is cats.kernel.Monoid, which is aliased as
cats.Monoid41. Monoid extends cats.kernel.Semigroup, which is
aliased as cats.Semigroup42. When using Cats we normally import
type classes from the cats43 package:

import cats.Monoid

import cats.Semigroup

or just

import cats.*

Cats Kernel?

Cats Kernel is a subproject of Cats providing a small set of
typeclasses for libraries that don’t require the full Cats
toolbox. While these core type classes are technically
defined in the cats.kernel44 package, they are all aliased to

41http://typelevel.org/cats/api/cats/kernel/Monoid.html
42http://typelevel.org/cats/api/cats/kernel/Semigroup.html
43http://typelevel.org/cats/api/cats/
44http://typelevel.org/cats/api/cats/kernel/

186

http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/

the cats45 package so we rarely need to be aware of the
distinction.

The Cats Kernel type classes covered in this book are Eq46,
Semigroup47, and Monoid48. All the other type classes we
cover are part of the main Cats project and are defined
directly in the cats49 package.

8.3.2. Monoid Instances

Monoid follows the standard Cats pattern for the user interface: the
companion object has an apply method that returns the type class
instance for a particular type. For example, if we want the monoid
instance for String, and we have the correct given instances in
scope, we can write the following:

import cats.Monoid

Monoid[String].combine("Hi ", "there")

// res1: String = "Hi there"

Monoid[String].empty

// res2: String = ""

which is equivalent to

Monoid.apply[String].combine("Hi ", "there")

// res3: String = "Hi there"

Monoid.apply[String].empty

// res4: String = ""

45http://typelevel.org/cats/api/cats/
46http://typelevel.org/cats/api/cats/kernel/Eq.html
47http://typelevel.org/cats/api/cats/kernel/Semigroup.html
48http://typelevel.org/cats/api/cats/kernel/Monoid.html
49http://typelevel.org/cats/api/cats/

187

http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/

As we know, Monoid extends Semigroup. If we don’t need empty
we can instead write

import cats.Semigroup

and then summon instances of Semigroup in the usual way:

Semigroup[String].combine("Hi ", "there")

// res5: String = "Hi there"

The standard type class instances for Monoid are all found on the
appropriate companion objects, and so are automatically in the
given scope with no further imports required.

8.3.3. Monoid Syntax

Cats provides syntax for the combine method in the form of the |
+| operator. Because combine technically comes from Semigroup,
we access the syntax by importing from
cats.syntax.semigroup50:

import cats.syntax.semigroup.* // for |+|

Now we can use |+| in place of calling combine.

val stringResult = "Hi " |+| "there" |+| Monoid[String].empty

// stringResult: String = "Hi there"

val intResult = 1 |+| 2

// intResult: Int = 3

As always, unless there is compelling reason not, we recommend
importing all the syntax with

50http://typelevel.org/cats/api/cats/syntax/package$$semigroup$

188

http://typelevel.org/cats/api/cats/syntax/package$$semigroup$

import cats.syntax.all.*

8.3.3.1. Exercise: Adding All The Things

The cutting edge SuperAdder v3.5a-32 is the world’s first choice for
adding together numbers. The main function in the program has
signature def add(items: List[Int]): Int. In a tragic accident
this code is deleted! Rewrite the method and save the day!

Well done! SuperAdder’s market share continues to grow, and now
there is demand for additional functionality. People now want to
add List[Option[Int]]. Change add so this is possible. The
SuperAdder code base is of the highest quality, so make sure there
is no code duplication!

SuperAdder is entering the POS (point-of-sale, not the other POS)
market. Now we want to add up Orders:

case class Order(totalCost: Double, quantity: Double)

We need to release this code really soon so we can’t make any
modifications to add. Make it so!

8.4. Applications of Monoids

We now know what a monoid is—an abstraction of the concept of
adding or combining—but where is it useful? Here are a few big
ideas where monoids play a major role. These are explored in more
detail in case studies later in the book.

189

8.4.1. Big Data

In big data applications like Spark and Flink we distribute data
analysis over many machines, giving fault tolerance and
scalability. This means each machine will return results over a
portion of the data, and we must then combine these results to get
our final result. In the vast majority of cases this can be viewed as
a monoid.

If we want to calculate how many total visitors a web site has
received, that means calculating an Int on each portion of the
data. We know the monoid instance of Int is addition, which is the
right way to combine partial results.

If we want to find out how many unique visitors a website has
received, that’s equivalent to building a Set[User] on each portion
of the data. We know the monoid instance for Set is the set union,
which is the right way to combine partial results.

If we want to calculate 99% and 95% response times from our
server logs, we can use a data structure called a QTree for which
there is a monoid.

Hopefully you get the idea. Almost every analysis that we might
want to do over a large data set is a monoid, and therefore we can
build an expressive and powerful analytics system around this
idea. This is exactly what Twitter’s Algebird and Summingbird
projects have done. We explore this idea further in the map-reduce
case study in Chapter 20.

8.4.2. Distributed Systems

In a distributed system, different machines may end up with
different views of data. For example, one machine may receive an
update that other machines did not receive. We would like to
reconcile these different views, so every machine has the same

190

data if no more updates arrive. This is called eventual

consistency.

A particular class of data types support this reconciliation. These
data types are called conflict-free replicated data types (CRDTs).
The key operation is the ability to merge two data instances, with
a result that captures all the information in both instances. This
operation relies on having a monoid instance. We explore this idea
further in the CRDT case study.

8.4.3. Monoids in the Small

The two examples above are cases where monoids inform the
entire system architecture. There are also many cases where
having a monoid around makes it easier to write a small code
fragment. We’ll see lots of examples in the remainder of this book.

8.5. Summary

We hit a big milestone in this chapter—we covered our first type
classes with fancy functional programming names:

• a Semigroup represents an addition or combination operation;
• a Monoid extends a Semigroup by adding an identity or “zero”

element.

We can use Semigroups and Monoids by importing two things: the
type classes themselves, and the semigroup syntax to give us the |
+| operator:

import cats.Monoid

import cats.syntax.semigroup.* // for |+|

191

"Scala" |+| " with " |+| "Cats"

// res0: String = "Scala with Cats"

With the correct instances in scope, we can set about adding
anything we want:

Option(1) |+| Option(2)

// res1: Option[Int] = Some(value = 3)

val map1 = Map("a" -> 1, "b" -> 2)

val map2 = Map("b" -> 3, "d" -> 4)

map1 |+| map2

// res2: Map[String, Int] = Map("b" -> 5, "d" -> 4, "a" -> 1)

val tuple1 = ("hello", 123)

val tuple2 = ("world", 321)

tuple1 |+| tuple2

// res3: Tuple2[String, Int] = ("helloworld", 444)

We can also write generic code that works with any type for
which we have an instance of Monoid:

def addAll[A](values: List[A])

 (using monoid: Monoid[A]): A =

 values.foldRight(monoid.empty)(_ |+| _)

addAll(List(1, 2, 3))

// res4: Int = 6

addAll(List(None, Some(1), Some(2)))

// res5: Option[Int] = Some(value = 3)

Monoids are a great gateway to Cats. They’re easy to understand
and simple to use. However, they’re just the tip of the iceberg in
terms of the abstractions Cats enables us to make. In the next
chapter we’ll look at functors, the type class personification of the
beloved map method. That’s where the fun really begins!

192

9. Functors

In this chapter we will investigate functors, an abstraction that
allows us to represent sequences of operations within a context
such as a List, an Option, or any one of thousands of other
possibilities. Functors on their own aren’t so useful, but special
cases of functors, such as monads and applicative functors, are
some of the most commonly used abstractions.

9.1. Examples of Functors

Informally, a functor is anything with a map method. You probably
know lots of types that have this: Option, List, and Either, to
name a few.

We typically first encounter map when iterating over Lists.
However, to understand functors we need to think of the method
in another way. Rather than traversing the list, we should think of
it as transforming all of the values inside in one go. We specify the
function to apply, and map ensures it is applied to every item. The
values change but the structure of the list (the number of elements
and their order) remains the same:

List(1, 2, 3).map(n => n + 1)

// res0: List[Int] = List(2, 3, 4)

Similarly, when we map over an Option, we transform the contents
but leave the Some or None context unchanged. The same principle
applies to Either with its Left and Right contexts. This general
notion of transformation, along with the common pattern of type
signatures shown in Figure 1, is what connects the behaviour of
map across different data types.

193

Either[E, A]

map

Either[E, B]A => B

Option[A]

map

Option[B]A => B

List[A]

map

List[B]A => B

Figure 1: Type chart: mapping over List, Option, and Either

Because map leaves the structure of the context unchanged, we can
call it repeatedly to sequence multiple computations on the
contents of an initial data structure:

List(1, 2, 3).

 map(n => n + 1).

 map(n => n * 2).

 map(n => s"${n}!")

// res1: List[String] = List("4!", "6!", "8!")

We should think of map not as an iteration pattern, but as a way of
sequencing computations on values ignoring some complication
dictated by the relevant data type:

• Option—the value may or may not be present;
• Either—there may be a value or an error;
• List—there may be zero or more values.

9.2. More Examples of Functors

The map methods of List, Option, and Either apply functions
eagerly. However, the idea of sequencing computations is more

194

general than this. Let’s investigate the behaviour of some other
functors that apply the pattern in different ways.

9.2.1. Futures

Future is a functor that sequences asynchronous computations by
queueing them and applying them as their predecessors complete.
The type signature of its map method, shown in Figure 2, has the
same shape as the signatures above. However, the behaviour is
very different.

Future[A] Future[B]A => B

map

Figure 2: Type chart: mapping over a Future

When we work with a Future we have no guarantees about its
internal state. The wrapped computation may be ongoing,
complete, or rejected. If the Future is complete, our mapping
function can be called immediately. If not, some underlying thread
pool queues the function call and comes back to it later. We don’t
know when our functions will be called, but we do know what

order they will be called in. In this way, Future provides the same
sequencing behaviour seen in List, Option, and Either:

import scala.concurrent.{Future, Await}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

val future: Future[String] =

 Future(123).

 map(n => n + 1).

 map(n => n * 2).

 map(n => s"${n}!")

195

Await.result(future, 1.second)

// res2: String = "248!"

Futures and Referential Transparency

Note that Scala’s Futures aren’t a great example of pure
functional programming because they aren’t referentially

transparent. Future always computes and caches a result
and there’s no way for us to tweak this behaviour. This
means we can get unpredictable results when we use
Future to wrap side-effecting computations. For example:

import scala.util.Random

val future1 = {

 // Initialize Random with a fixed seed:

 val r = new Random(0L)

 // nextInt has the side-effect of moving to

 // the next random number in the sequence:

 val x = Future(r.nextInt())

 for {

 a <- x

 b <- x

 } yield (a, b)

}

val future2 = {

 val r = new Random(0L)

 for {

 a <- Future(r.nextInt())

 b <- Future(r.nextInt())

 } yield (a, b)

}

val result1 = Await.result(future1, 1.second)

// result1: Tuple2[Int, Int] = (-1155484576, -1155484576)

196

val result2 = Await.result(future2, 1.second)

// result2: Tuple2[Int, Int] = (-1155484576, -723955400)

Ideally we would like result1 and result2 to contain the
same value. However, the computation for future1 calls
nextInt once and the computation for future2 calls it
twice. Because nextInt returns a different result every time
we get a different result in each case.

This kind of discrepancy makes it hard to reason about
programs involving Futures and side-effects. There also are
other problematic aspects of Future's behaviour, such as
the way it always starts computations immediately rather
than allowing the user to dictate when the program should
run. For more information see this excellent Reddit answer51
by Rob Norris.

When we look at Cats Effect we’ll see that the IO type
solves these problems.

If Future isn’t referentially transparent, perhaps we should look at
another similar data-type that is. You should recognise this one…

9.2.2. Functions (?!)

It turns out that single argument functions are also functors. To
see this we have to tweak the types a little. A function A => B has
two type parameters: the parameter type A and the result type B.
To coerce them to the correct shape we can fix the parameter type
and let the result type vary:

• start with X => A;

51https://www.reddit.com/r/scala/comments/3zofjl/why_is_future_totally_
unusable/

197

https://www.reddit.com/r/scala/comments/3zofjl/why_is_future_totally_unusable/

• supply a function A => B;
• get back X => B.

If we alias X => A as MyFunc[A], we see the same pattern of types
we saw with the other examples in this chapter. We also see this in
Figure 3:

• start with MyFunc[A];
• supply a function A => B;
• get back MyFunc[B].

X => A X => BA => B

map

Figure 3: Type chart: mapping over a Function1

In other words, “mapping” over a Function1 is function
composition:

import cats.syntax.all.* // for map

val func1: Int => Double =

 (x: Int) => x.toDouble

val func2: Double => Double =

 (y: Double) => y * 2

(func1.map(func2))(1) // composition using map

(func1.andThen(func2))(1) // composition using andThen

// res3: Double = 2.0

func2(func1(1)) // composition written out by hand

// res4: Double = 2.0

How does this relate to our general pattern of sequencing
operations? If we think about it, function composition is
sequencing. We start with a function that performs a single
operation and every time we use map we append another operation
to the chain. Calling map doesn’t actually run any of the
operations, but if we can pass an argument to the final function all

198

of the operations are run in sequence. We can think of this as
lazily queueing up operations similar to Future:

val func =

 ((x: Int) => x.toDouble).

 map(x => x + 1).

 map(x => x * 2).

 map(x => s"${x}!")

func(123)

// res5: String = "248.0!"

Partial Unification

For the above examples to work, in versions of Scala before
2.13, we need to add the following compiler option to
build.sbt:

scalacOptions += "-Ypartial-unification"

otherwise we’ll get a compiler error:

func1.map(func2)

// <console>: error: value map is not a member of Int =>

Double

// func1.map(func2)

 ^

We’ll look at why this happens in detail in Section 9.8.

9.3. Definition of a Functor

Every example we’ve looked at so far is a functor: a class that
encapsulates sequencing computations. Formally, a functor is a

199

type F[A] with an operation map with type (A => B) => F[B]. The
general type chart is shown in Figure 4.

F[A] F[B]A => B

map

Figure 4: Type chart: generalised functor map

Cats encodes Functor as a type class, cats.Functor52, so the
method looks a little different. It accepts the initial F[A] as a
parameter alongside the transformation function. Here’s a
simplified version of the definition:

package cats

trait Functor[F[_]] {

 def map[A, B](fa: F[A])(f: A => B): F[B]

}

If you haven’t seen syntax like F[_] before, it’s time to take a brief
detour to discuss type constructors and higher kinded types.

Functor Laws

Functors guarantee the same semantics whether we
sequence many small operations one by one, or combine
them into a larger function before mapping. To ensure this is
the case the following laws must hold:

Identity: calling map with the identity function is the same
as doing nothing:

fa.map(a => a) == fa

52http://typelevel.org/cats/api/cats/Functor.html

200

http://typelevel.org/cats/api/cats/Functor.html

Composition: mapping with two functions f and g is the
same as mapping with f and then mapping with g:

fa.map(g(f(_))) == fa.map(f).map(g)

9.4. Higher Kinds and Type

Constructors

Kinds are like types for types. They describe the number of “holes”
in a type. We distinguish between regular types that have no holes
and type constructors that have holes we can fill to produce
types.

For example, List is a type constructor with one hole. We fill that
hole with a type to produce a regular type like List[Int] or
List[A]. The trick is not to confuse type constructors with generic
types. List is a type constructor, List[A] is a type:

List // type constructor, takes one parameter

List[A] // type, produced by applying a type parameter

There’s a close analogy here with functions and values. Functions
are “value constructors”—they produce values when we supply
parameters:

math.abs // function, takes one parameter

math.abs(x) // value, produced by applying a value parameter

In Scala we declare type constructors using underscores. This
specifies how many “holes” the type constructor has. However, to
use them we refer to just the name.

201

// Declare F using underscores:

def myMethod[F[_]] = {

 // Reference F without underscores:

 val functor = Functor.apply[F]

 // ...

}

This is analogous to specifying function parameter types. When
we declare a parameter we also give its type. However, to use them
we refer to just the name.

// Declare f specifying parameter types

def f(x: Int): Int =

 // Reference x without type

 x * 2

Armed with this knowledge of type constructors, we can see that
the Cats definition of Functor allows us to create instances for any
single-parameter type constructor, such as List, Option, Future,
or a type alias such as MyFunc.

Language Feature Imports

In versions of Scala before 2.13 we need to “enable” the
higher kinded type language feature, to suppress warnings
from the compiler, whenever we declare a type constructor
with A[_] syntax. We can either do this with a “language
import” as above:

import scala.language.higherKinds

or by adding the following to scalacOptions in build.sbt:

scalacOptions += "-language:higherKinds"

202

In practice we find the scalacOptions flag to be the simpler
of the two options.

9.5. Functors in Cats

Let’s look at the implementation of functors in Cats. We’ll examine
the same aspects we did for monoids: the type class, the instances,
and the syntax.

9.5.1. The Functor Type Class and Instances

The functor type class is cats.Functor53. We obtain instances
using the standard Functor.apply method on the companion
object. As usual, default instances are found on companion objects
and do not have to be explicity imported:

import cats.*

import cats.syntax.all.*

Once we have the imports we use the map method defined by
Functor. In the examples below we are explicitly summoning the
type class instances to avoid using the built-ins that are defined on
List and Option.

val list1 = List(1, 2, 3)

// list1: List[Int] = List(1, 2, 3)

val list2 = Functor[List].map(list1)(_ * 2)

// list2: List[Int] = List(2, 4, 6)

val option1 = Option(123)

53http://typelevel.org/cats/api/cats/Functor.html

203

http://typelevel.org/cats/api/cats/Functor.html

// option1: Option[Int] = Some(value = 123)

val option2 = Functor[Option].map(option1)(_.toString)

// option2: Option[String] = Some(value = "123")

Functor provides a method called lift, which converts a function
of type A => B to one that operates over a functor and has type
F[A] => F[B]: Let’s lift a function into the Option functor.

val func = (x: Int) => x + 1

val liftedFunc = Functor[Option].lift(func)

Now we can directly apply it to an Option.

liftedFunc(Option(1))

// res1: Option[Int] = Some(value = 2)

The as method is the other method you are likely to use. It
replaces the value inside the Functor with the given value.

Functor[List].as(list1, "As")

// res2: List[String] = List("As", "As", "As")

9.5.2. Functor Syntax

The main method provided by the syntax for Functor is map. It’s
difficult to demonstrate this with Options and Lists as they have
their own built-in map methods and the Scala compiler will always
prefer a built-in method over an extension method. We’ll work
around this with two examples.

First let’s look at mapping over functions. Scala’s Function1 type
doesn’t have a map method (it’s called andThen instead) so there
are no naming conflicts:

204

val func1 = (a: Int) => a + 1

val func2 = (a: Int) => a * 2

val func3 = (a: Int) => s"${a}!"

val func4 = func1.map(func2).map(func3)

Once we’ve constructed a function using map we can apply it.

func4(123)

// res3: String = "248!"

Let’s look at another example. This time we’ll abstract over
functors so we’re not working with any particular concrete type.
We can write a method that applies an equation to a number no
matter what functor context it’s in:

def doMath[F[_]](start: F[Int])

 (using functor: Functor[F]): F[Int] =

 start.map(n => 2 * n + 1)

We can write this more compactly with a context bound.

def doMath[F[_]: Functor](start: F[Int]): F[Int] =

 start.map(n => 2 * n + 1)

It works as expected, using whatever Functor instance we pass it.

doMath(Option(20))

// res4: Option[Int] = Some(value = 41)

doMath(List(1, 2, 3))

// res5: List[Int] = List(3, 5, 7)

To illustrate how this works, let’s take a look at the definition of
the map method in cats.syntax.functor. Here’s a simplified
version of the code:

extension [F[_], A](src: F[A]) {

 def map[B](func: A => B)

 (using functor: Functor[F]): F[B] =

205

 functor.map(src)(func)

}

The compiler can use this extension method to insert a map
method wherever no built-in map is available. If we have the code

foo.map(value => value + 1)

and assume foo has no built-in map method, the compiler detects
the potential error and uses the extension method to fix it. The map
extension method requires a given Functor as a parameter. This
means this code will only compile if we have a Functor for F in
scope. If we don’t, we get a compiler error.

Here’s an example of the error. First we define a new type that has
no Functor instance.

final case class Box[A](value: A)

val box = Box[Int](123)

Now attempting to call map fails. Notice the error message gives us
a hint as to what went wrong.

box.map(value => value + 1)

// error:

// No given instance of type cats.Functor[Box] was found for

parameter functor of method map

// box.map(value => value + 1)

// ^

The as method is also available as syntax, and works in the same
way.

List(1, 2, 3).as("As")

// res8: List[String] = List("As", "As", "As")

206

9.5.3. Instances for Custom Types

We can define a functor simply by defining its map method. Here’s
an example of a Functor for Option, even though such a thing
already exists in cats.instances54. The implementation is trivial—
we simply call Option's map method:

given optionFunctor: Functor[Option] with {

 def map[A, B](value: Option[A])(func: A => B): Option[B] =

 value.map(func)

}

Sometimes we need to inject dependencies into our instances. For
example, if we had to define a custom Functor for Future (another
hypothetical example—Cats provides one in
cats.instances.future) we would need to account for the given
ExecutionContext parameter on future.map. We can’t add extra
parameters to functor.map so we have to account for the
dependency when we create the instance:

import scala.concurrent.{Future, ExecutionContext}

given futureFunctor(using ec: ExecutionContext): Functor[Future]

with {

 def map[A, B](value: Future[A])(func: A => B): Future[B] =

 value.map(func)

}

Whenever we summon a Functor for Future, either directly using
Functor.apply or indirectly via the map extension method, the
compiler will locate futureFunctor by implicit resolution and
recursively search for an ExecutionContext at the call site. This is
what the expansion might look like:

// We write this:

Functor[Future]

54http://typelevel.org/cats/api/cats/instances/

207

http://typelevel.org/cats/api/cats/instances/

// The compiler expands to this first:

Functor[Future](futureFunctor)

// And then to this:

Functor[Future](futureFunctor(executionContext))

Exercise: Branching out with Functors

Write a Functor for the following binary tree data type. Verify that
the code works as expected on instances of Branch and Leaf:

enum Tree[+A] {

 case Branch[A](left: Tree[A], right: Tree[A])

 extends Tree[A]

 case Leaf[A](value: A) extends Tree[A]

}

9.6. Contravariant and Invariant

Functors

As we have seen, we can think of Functor's map method as
“appending” a transformation to a chain. We’re now going to look
at two other type classes, one representing prepending operations
to a chain, and one representing building a bidirectional chain of
operations. These are called contravariant and invariant functors
respectively.

208

This Section is Optional!

You don’t need to know about contravariant and invariant
functors to understand monads, which are the most
important type class in this book and the focus of the next
chapter. However, contravariant and invariant do come in
handy in our discussion of Semigroupal and Applicative in
Chapter 12.

If you want to move on to monads now, feel free to skip
straight to Chapter 10. Come back here before you read
Chapter 12.

9.6.1. Contravariant Functors and the

contramap Method

The first of our type classes, the contravariant functor, provides an
operation called contramap that represents “prepending” an
operation to a chain. The general type signature is shown in
Figure 5.

F[B] F[A]A => B

contramap

Figure 5: Type chart: the contramap method

The contramap method only makes sense for data types that
represent transformations. For example, we can’t define contramap
for an Option because there is no way of feeding a value in an
Option[B] backwards through a function A => B. However, we

209

can define contramap for the Display type class we discussed in
Section 5.5:

trait Display[A] {

 def display(value: A): String

}

A Display[A] represents a transformation from A to String. Its
contramap method accepts a function func of type B => A and
creates a new Display[B]:

trait Display[A] {

 def display(value: A): String

 def contramap[B](func: B => A): Display[B] =

 ???

}

def display[A](value: A)(using p: Display[A]): String =

 p.display(value)

Exercise: Showing Off with Contramap

Implement the contramap method for Display above. Start with
the following code template and replace the ??? with a working
method body:

trait Display[A] {

 def display(value: A): String

 def contramap[B](func: B => A): Display[B] =

 new Display[B] {

 def display(value: B): String =

 ???

 }

}

If you get stuck, think about the types. You need to turn value,
which is of type B, into a String. What functions and methods do

210

you have available and in what order do they need to be
combined?

For testing purposes, let’s define some instances of Display for
String and Boolean:

given stringDisplay: Display[String] with {

 def display(value: String): String =

 s"'${value}'"

}

given booleanDisplay: Display[Boolean] with {

 def display(value: Boolean): String =

 if value then "yes" else "no"

}

display("hello")

// res2: String = "'hello'"

display(true)

// res3: String = "yes"

Now define an instance of Display for the following Box case
class. This is an example of type class composotion as described in
Section 5.3:

final case class Box[A](value: A)

Rather than writing out the complete definition from scratch (new
Display[Box] etc…), create your instance from an existing
instance using contramap.

Your instance should work as follows:

display(Box("hello world"))

// res4: String = "'hello world'"

display(Box(true))

// res5: String = "yes"

If we don’t have a Display for the type inside the Box, calls to
display should fail to compile:

211

display(Box(123))

// error:

// No given instance of type

repl.MdocSession.MdocApp1.Display[repl.MdocSession.MdocApp1.Box[Int]]

was found for parameter p of method display in object MdocApp1.

// I found:

//

// repl.MdocSession.MdocApp1.boxDisplay[Int](

// /* missing */

summon[repl.MdocSession.MdocApp1.Display[Int]])

//

// But no implicit values were found that match type

repl.MdocSession.MdocApp1.Display[Int].

// display(Box(123))

// ^

9.6.2. Invariant functors and the imap method

Invariant functors implement a method called imap that is
informally equivalent to a combination of map and contramap. If
map generates new type class instances by appending a function to
a chain, and contramap generates them by prepending an
operation to a chain, imap generates them via a pair of
bidirectional transformations.

The most intuitive examples of this are a type class that represents
encoding and decoding as some data type, such as Circe’s Codec55
and Play JSON’s Format56. We can build our own Codec by
enhancing Display to support encoding and decoding to and from
a String:

trait Codec[A] {

 def encode(value: A): String

 def decode(value: String): A

55https://github.com/circe/circe/blob/series/0.14.x/modules/core/shared/src/
main/scala/io/circe/Codec.scala

56https://www.playframework.com/documentation/2.6.x/ScalaJsonCombinat
ors#Format

212

https://github.com/circe/circe/blob/series/0.14.x/modules/core/shared/src/main/scala/io/circe/Codec.scala
https://www.playframework.com/documentation/2.6.x/ScalaJsonCombinators#Format

 def imap[B](dec: A => B, enc: B => A): Codec[B] = ???

}

def encode[A](value: A)(using c: Codec[A]): String =

 c.encode(value)

def decode[A](value: String)(using c: Codec[A]): A =

 c.decode(value)

The type chart for imap is shown in Figure 6. If we have a
Codec[A] and a pair of functions A => B and B => A, the imap
method creates a Codec[B]:

F[A] F[B]A => B

,

B => A

imap

Figure 6: Type chart: the imap method

As an example use case, imagine we have a basic Codec[String],
whose encode and decode methods both simply return the value
they are passed:

given stringCodec: Codec[String] with {

 def encode(value: String): String = value

 def decode(value: String): String = value

}

We can construct many useful Codecs for other types by building
off of stringCodec using imap:

given intCodec: Codec[Int] =

 stringCodec.imap(_.toInt, _.toString)

given booleanCodec: Codec[Boolean] =

 stringCodec.imap(_.toBoolean, _.toString)

213

Coping with Failure

Note that the decode method of our Codec type class doesn’t
account for failures. If we want to model more sophisticated
relationships we can move beyond functors to look at lenses
and optics.

Optics are beyond the scope of this book. However, the
Monocle57 provides a great starting point for further
investigation.

9.6.2.1. Transformative Thinking with imap

Implement the imap method for Codec above.

Demonstrate your imap method works by creating a Codec for
Double.

Finally, implement a Codec for the following Box type:

final case class Box[A](value: A)

Your instances should work as follows:

encode(123.4)

// res11: String = "123.4"

decode[Double]("123.4")

// res12: Double = 123.4

encode(Box(123.4))

// res13: String = "123.4"

decode[Box[Double]]("123.4")

// res14: Box[Double] = Box(value = 123.4)

57https://github.com/optics-dev/Monocle

214

https://github.com/optics-dev/Monocle

What’s With the Names?

What’s the relationship between the terms “contravariance”,
“invariance”, and “covariance” and these different kinds of
functor?

As we discussed in Section 5.6.1, variance affects subtyping,
which is essentially our ability to use a value of one type in
place of a value of another type without breaking the code.

Subtyping can be viewed as a conversion. If B is a subtype of
A, we can always convert a B to an A.

Equivalently we could say that B is a subtype of A if there
exists a function B => A. A standard covariant functor
captures exactly this. If F is a covariant functor, wherever
we have an F[B] and a conversion B => A we can always
convert to an F[A].

A contravariant functor captures the opposite case. If F is a
contravariant functor, whenever we have a F[A] and a
conversion B => A we can convert to an F[B].

Finally, invariant functors capture the case where we can
convert from F[A] to F[B] via a function A => B and vice
versa via a function B => A.

9.7. Contravariant and Invariant in

Cats

Let’s look at the implementation of contravariant and invariant

215

functors in Cats, provided by the cats.Contravariant58 and
cats.Invariant59 type classes respectively. Here’s a simplified
version of the code:

trait Contravariant[F[_]] {

 def contramap[A, B](fa: F[A])(f: B => A): F[B]

}

trait Invariant[F[_]] {

 def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]

}

9.7.1. Contravariant in Cats

We can summon instances of Contravariant using the
Contravariant.apply method. Cats provides instances for data
types that consume parameters, including Eq, Show, and
Function1. Here’s an example:

import cats.*

val showString = Show[String]

val showSymbol = Contravariant[Show].

 contramap(showString)((sym: Symbol) => s"'${sym.name}")

showSymbol.show(Symbol("dave"))

// res1: String = "'dave"

More conveniently, we can use cats.syntax.contravariant60,
which provides a contramap extension method:

import cats.syntax.contravariant.* // for contramap

58http://typelevel.org/cats/api/cats/Contravariant.html
59http://typelevel.org/cats/api/cats/Invariant.html
60http://typelevel.org/cats/api/cats/syntax/package$$contravariant$

216

http://typelevel.org/cats/api/cats/Contravariant.html
http://typelevel.org/cats/api/cats/Invariant.html
http://typelevel.org/cats/api/cats/syntax/package$$contravariant$

showString

 .contramap[Symbol](sym => s"'${sym.name}")

 .show(Symbol("dave"))

// res2: String = "'dave"

9.7.2. Invariant in Cats

Among other types, Cats provides an instance of Invariant for
Monoid. This is a little different from the Codec example we
introduced in Section 9.6.2. If you recall, this is what Monoid looks
like:

package cats

trait Monoid[A] {

 def empty: A

 def combine(x: A, y: A): A

}

Imagine we want to produce a Monoid for Scala’s Symbol61 type.
Cats doesn’t provide a Monoid for Symbol but it does provide a
Monoid for a similar type: String. We can write our new
semigroup with an empty method that relies on the empty String,
and a combine method that works as follows:

1. accept two Symbols as parameters;
2. convert the Symbols to Strings;
3. combine the Strings using Monoid[String];
4. convert the result back to a Symbol.

We can implement combine using imap, passing functions of type
String => Symbol and Symbol => String as parameters. Here’
the code, written out using the imap extension method provided by
cats.syntax.invariant:

61https://www.scala-lang.org/api/3.3.3/scala/Symbol.html#

217

https://www.scala-lang.org/api/3.3.3/scala/Symbol.html#

import cats.*

import cats.syntax.invariant.* // for imap

import cats.syntax.semigroup.* // for |+|

given symbolMonoid: Monoid[Symbol] =

 Monoid[String].imap(Symbol.apply)(_.name)

Monoid[Symbol].empty

// res3: Symbol = '

Symbol("a") |+| Symbol("few") |+| Symbol("words")

// res4: Symbol = 'afewwords

9.8. Aside: Partial Unification

In Section 9.2 we saw a functor instance for Function1.

import cats.*

import cats.syntax.functor.* // for map

val func1 = (x: Int) => x.toDouble

val func2 = (y: Double) => y * 2

val func3 = func1.map(func2)

// func3: Function1[Int, Double] =

cats.instances.Function1Instances0$$anon11

$Lambda$13184/0x0000000803958040@2ecffd5e

Function1 has two type parameters (the function argument and
the result type):

trait Function1[-A, +B] {

 def apply(arg: A): B

}

However, Functor accepts a type constructor with one parameter:

218

trait Functor[F[_]] {

 def map[A, B](fa: F[A])(func: A => B): F[B]

}

The compiler has to fix one of the two parameters of Function1 to
create a type constructor of the correct kind to pass to Functor. It
has two options to choose from:

type F[A] = Int => A

type F[A] = A => Double

We know that the first one is the correct choice. However the
compiler doesn’t understand what the code means. Instead it relies
on a simple rule, implementing what is called “partial unification”.

The partial unification in the Scala compiler works by fixing type
parameters from left to right. In the above example, the compiler
fixes the Int in Int => Double and looks for a Functor for
functions of type Int => ?:

type F[A] = Int => A

val functor = Functor[F]

This left-to-right elimination works for a wide variety of common
scenarios, including Functors for types such as Function1 and
Either:

val either: Either[String, Int] = Right(123)

// either: Either[String, Int] = Right(value = 123)

either.map(_ + 1)

// res0: Either[String, Int] = Right(value = 124)

Partial unification is the default behaviour in Scala 2.13. In
earlier versions of Scala we need to add the -Ypartial-

219

unification compiler flag. In sbt we would add the
compiler flag in build.sbt:

scalacOptions += "-Ypartial-unification"

The rationale behind this change is discussed in SI-271262.

9.8.1. Limitations of Partial Unification

There are situations where left-to-right elimination is not the
correct choice. One example is the Or type in Scalactic63, which is a
conventionally left-biased equivalent of Either:

type PossibleResult = ActualResult Or Error

Another example is the Contravariant functor for Function1.

While the covariant Functor for Function1 implements andThen-
style left-to-right function composition, the Contravariant
functor implements compose-style right-to-left composition. In
other words, the following expressions are all equivalent:

val func3a: Int => Double =

 a => func2(func1(a))

val func3b: Int => Double =

 func2.compose(func1)

// Hypothetical example. This won't actually compile:

val func3c: Int => Double =

 func2.contramap(func1)

62https://issues.scala-lang.org/browse/SI-2712
63http://scalactic.org

220

https://issues.scala-lang.org/browse/SI-2712
http://scalactic.org

If we try this for real, however, our code won’t compile:

import cats.syntax.contravariant.* // for contramap

val func3c = func2.contramap(func1)

// error:

// value contramap is not a member of Double => Double.

// An extension method was tried, but could not be fully

constructed:

//

// cats.syntax.contravariant.toContravariantOps[[R] =>>

Double => R, A](

// repl.MdocSession.MdocApp.func2)(

// cats.Invariant.catsContravariantForFunction1[R])

// val func3c = func2.contramap(func1)

// ^^^^^^^^^^^^^^^

The problem here is that the Contravariant for Function1 fixes
the return type and leaves the parameter type varying, requiring
the compiler to eliminate type parameters from right to left, as
shown below and in Figure 7:

type F[A] = A => Double

A => X B => XB => A

contramap

Figure 7: Type chart: contramapping over a Function1

The compiler fails simply because of its left-to-right bias. We can
prove this by creating a type alias that flips the parameters on
Function1:

type <=[B, A] = A => B

scala

type F[A] = Double <= A

221

If we re-type func2 as an instance of <=, we reset the required
order of elimination and we can call contramap as desired:

val func2b: Double <= Double = func2

val func3c = func2b.contramap(func1)

// func3c: Function1[Int, Double] = scala.Function1$

$Lambda$13249/0x0000000803965040@5b3e48b8

The difference between func2 and func2b is purely syntactic—
both refer to the same value and the type aliases are otherwise
completely compatible. Incredibly, however, this simple rephrasing
is enough to give the compiler the hint it needs to solve the
problem.

It is rare that we have to do this kind of right-to-left elimination.
Most multi-parameter type constructors are designed to be right-
biased, requiring the left-to-right elimination that is supported by
the compiler out of the box. However, it is useful to know about
this quirk of elimination order in case you ever come across an
odd scenario like the one above.

9.9. Conclusions

Functors represent sequencing behaviours. We covered three types
of functor in this chapter:

• Regular covariant Functors, with their map method, represent
the ability to apply functions to a value in some context.
Successive calls to map apply these functions in sequence, each
accepting the result of its predecessor as a parameter.

• Contravariant functors, with their contramap method,
represent the ability to “prepend” functions to a function-like
context. Successive calls to contramap sequence these functions
in the opposite order to map.

222

• Invariant functors, with their imap method, represent
bidirectional transformations.

Regular Functors are by far the most common of these type
classes, but even then it is rare to use them on their own. Functors
form a foundational building block of several more interesting
abstractions that we use all the time. In the following chapters we
will look at two of these abstractions: monads and applicative

functors.

Functors for collections are extremely important, as they
transform each element independently of the rest. This allows us
to parallelise or distribute transformations on large collections, a
technique leveraged heavily in “map-reduce” frameworks
popularized by Hadoop64. We will investigate this approach in
more detail in the map-reduce case study later in Chapter 20.

The Contravariant and Invariant type classes are less widely
applicable but are still useful for building data types that represent
transformations. We will revisit them to discuss the Semigroupal
type class later in Chapter 12.

64http://hadoop.apache.org

223

http://hadoop.apache.org

224

10. Monads

Monads are one of the best known abstractions in functional
programming, but also the one that perhaps leads to the most
confusion. Many programmers have used and are intuitively
familiar with monads, even if we don’t know them by name.

A monad in Scala is, informally, anything with a constructor and a
flatMap method. All of the functors we saw in the last chapter are
also monads, including Option, List, and Future. We even have
special syntax to support monads: for comprehensions. However,
despite the ubiquity of the concept, the Scala standard library lacks
a concrete type to encompass “things that can be flatMapped”.

In this chapter we will take a deep dive into monads. We will start
by motivating them with a few examples. We’ll proceed to their
formal definition, and see how we can create a concrete type as a
type class. We’ll then look at their implementation in Cats. Finally,
we’ll tour some interesting monads that you may not have seen,
providing introductions and examples of their use.

10.1. What is a Monad?

This is the question that has been posed in a thousand blog posts,
with explanations and analogies involving concepts as diverse as
cats, Mexican food, space suits full of toxic waste, and monoids in
the category of endofunctors (whatever that means). We’re going
to solve the problem of explaining monads once and for all by
stating very simply: a monad is a mechanism for sequencing

computations.

225

That was easy! Problem solved, right? But then again, last chapter
we said functors were a mechanism for exactly the same thing. Ok,
maybe we need some more discussion…

In Section 9.1 we said that functors allow us to sequence
computations ignoring some complication. However, functors are
limited in that they only allow this complication to occur once, at
the beginning of the sequence. They don’t account for further
complications at each step in the sequence.

This is where monads come in. A monad’s flatMap method allows
us to specify what happens next, taking into account an
intermediate complication. The flatMap method of Option takes
intermediate Options into account. The flatMap method of List
handles intermediate Lists. And so on. In each case, the function
passed to flatMap specifies the application-specific part of the
computation, and flatMap itself takes care of the complication
allowing us to flatMap again. Let’s ground things by looking at
some examples.

10.1.1. Options as Monads

Option allows us to sequence computations that may or may not
return values. Here are some examples:

def parseInt(str: String): Option[Int] =

 scala.util.Try(str.toInt).toOption

def divide(a: Int, b: Int): Option[Int] =

 if(b == 0) None else Some(a / b)

Each of these methods may “fail” by returning None. The flatMap
method allows us to ignore this when we sequence operations:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

 parseInt(aStr).flatMap { aNum =>

 parseInt(bStr).flatMap { bNum =>

226

 divide(aNum, bNum)

 }

 }

The semantics are:

• the first call to parseInt returns a None or a Some;
• if it returns a Some, the flatMap method calls our function and

passes us the integer aNum;
• the second call to parseInt returns a None or a Some;
• if it returns a Some, the flatMap method calls our function and

passes us bNum;
• the call to divide returns a None or a Some, which is our result.

At each step, flatMap chooses whether to call our function, and
our function generates the next computation in the sequence. This
is shown in Figure 8.

Option[A]

flatMap

Option[B]A => Option[B]

Figure 8: Type chart: flatMap for Option

The result of the computation is an Option, allowing us to call
flatMap again and so the sequence continues. This results in the
fail-fast error handling behaviour that we know and love, where a
None at any step results in a None overall:

stringDivideBy("6", "2")

// res0: Option[Int] = Some(value = 3)

stringDivideBy("6", "0")

// res1: Option[Int] = None

stringDivideBy("6", "foo")

// res2: Option[Int] = None

stringDivideBy("bar", "2")

// res3: Option[Int] = None

Every monad is also a functor (see below for proof), so we can rely
on both flatMap and map to sequence computations that do and

227

don’t introduce a new monad respectively. Plus, if we have both
flatMap and map we can use for comprehensions to clarify the
sequencing behaviour:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

 for {

 aNum <- parseInt(aStr)

 bNum <- parseInt(bStr)

 ans <- divide(aNum, bNum)

 } yield ans

10.1.2. Lists as Monads

When we first encounter flatMap as budding Scala developers, we
tend to think of it as a pattern for iterating over Lists. This is
reinforced by the syntax of for comprehensions, which look very
much like imperative for loops:

for {

 x <- (1 to 3).toList

 y <- (4 to 5).toList

} yield (x, y)

// res5: List[Tuple2[Int, Int]] = List(

// (1, 4),

// (1, 5),

// (2, 4),

// (2, 5),

// (3, 4),

// (3, 5)

//)

However, there is another mental model we can apply that
highlights the monadic behaviour of List. If we think of Lists as
sets of intermediate results, flatMap becomes a construct that
calculates permutations and combinations.

For example, in the for comprehension above there are three
possible values of x and two possible values of y. This means there
are six possible values of (x, y). flatMap is generating these

228

combinations from our code, which states the sequence of
operations:

• get x
• get y
• create a tuple (x, y)

The type chart in Figure 9 illustrates this behaviour65.

List[A]

flatMap

List[B]A => List[B]

Figure 9: Type chart: flatMap for List

10.1.3. Futures as Monads

Future is a monad that sequences computations without worrying
that they may be asynchronous:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

def doSomethingLongRunning: Future[Int] = ???

def doSomethingElseLongRunning: Future[Int] = ???

def doSomethingVeryLongRunning: Future[Int] =

 for {

 result1 <- doSomethingLongRunning

 result2 <- doSomethingElseLongRunning

 } yield result1 + result2

Again, we specify the code to run at each step, and flatMap takes
care of all the horrifying underlying complexities of thread pools
and schedulers.

65Although the result of flatMap (List[B]) is the same type as the result of
the user-supplied function, the end result is actually a larger list created from
combinations of intermediate As and Bs.

229

If you’ve made extensive use of Future, you’ll know that the code
above is running each operation in sequence. This becomes clearer
if we expand out the for comprehension to show the nested calls to
flatMap:

def doSomethingVeryLongRunning: Future[Int] =

 doSomethingLongRunning.flatMap { result1 =>

 doSomethingElseLongRunning.map { result2 =>

 result1 + result2

 }

 }

Each Future in our sequence is created by a function that receives
the result from a previous Future. In other words, each step in our
computation can only start once the previous step is finished. This
is born out by the type chart for flatMap in Figure 10, which
shows the function parameter of type A => Future[B].

Future[A] Future[B]A => Future[B]

flatMap

Figure 10: Type chart: flatMap for Future

We can run futures in parallel, of course, but that is another story
and shall be told another time. Monads are all about sequencing.

10.1.4. Definition of a Monad

While we have only talked about flatMap above, monadic
behaviour is formally captured in two operations:

• pure, of type A => F[A];
• flatMap66, of type (F[A], A => F[B]) => F[B].

66In the programming literature and Haskell, pure is often referred to as
point or return and flatMap is often referred to as bind or >>=. This is purely
a difference in terminology. We’ll use the term flatMap for compatibility with
Cats and the Scala standard library.

230

pure abstracts over constructors, providing a way to create a new
monadic context from a plain value. flatMap provides the
sequencing step we have already discussed, extracting the value
from a context and generating the next context in the sequence.

We can represent this as a type class. Here is a simplified version
of the Monad type class in Cats:

trait Monad[F[_]] {

 def pure[A](value: A): F[A]

 def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

}

Monad Laws

pure and flatMap must obey a set of laws that allow us to
sequence operations freely without unintended glitches and
side-effects:

Left identity: calling pure and transforming the result with
func is the same as calling func:

pure(a).flatMap(func) == func(a)

Right identity: passing pure to flatMap is the same as
doing nothing:

m.flatMap(pure) == m

Associativity: flatMapping over two functions f and g is
the same as flatMapping over f and then flatMapping over
g:

231

m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

10.1.5. Exercise: Getting Func-y

Every monad is also a functor. For every monad we can define map
in the same way using the existing methods, flatMap and pure:

trait Monad[F[_]] {

 def pure[A](a: A): F[A]

 def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

 def map[A, B](value: F[A])(func: A => B): F[B] =

 ???

}

Try defining map yourself now.

10.2. Monads in Cats

It’s time to give monads our standard Cats treatment. As usual
we’ll look at the type class, instances, and syntax.

10.2.1. The Monad Type Class

The monad type class is cats.Monad67. Monad extends two other
type classes: FlatMap, which provides the flatMap method, and
Applicative, which provides pure. Applicative also extends

67http://typelevel.org/cats/api/cats/Monad.html

232

http://typelevel.org/cats/api/cats/Monad.html

Functor, which gives every Monad a map method as we saw in the
exercise above. We’ll discuss Applicatives in Chapter 12.

Here are some examples using pure and flatMap, and map directly:

import cats.Monad

val opt1 = Monad[Option].pure(3)

// opt1: Option[Int] = Some(value = 3)

val opt2 = Monad[Option].flatMap(opt1)(a => Some(a + 2))

// opt2: Option[Int] = Some(value = 5)

val opt3 = Monad[Option].map(opt2)(a => 100 * a)

// opt3: Option[Int] = Some(value = 500)

val list1 = Monad[List].pure(3)

// list1: List[Int] = List(3)

val list2 = Monad[List].

 flatMap(List(1, 2, 3))(a => List(a, a*10))

// list2: List[Int] = List(1, 10, 2, 20, 3, 30)

val list3 = Monad[List].map(list2)(a => a + 123)

// list3: List[Int] = List(124, 133, 125, 143, 126, 153)

Monad provides many other methods, including all of the methods
from Functor. See the documentation68 for more information.

10.2.2. Default Instances

Cats provides instances for all the monads in the standard library
(Option, List, Vector and so on). Cats also provides a Monad for
Future. Unlike the methods on the Future class itself, the pure
and flatMap methods on the monad can’t accept
ExecutionContext parameters (because the parameters aren’t part
of the definitions in the Monad trait). To work around this, Cats
requires us to have an ExecutionContext in scope when we
summon a Monad for Future.

Let’s import Future (and some other imports we will use later.)

68http://typelevel.org/cats/api/cats/Monad.html

233

http://typelevel.org/cats/api/cats/Monad.html

import scala.concurrent.*

import scala.concurrent.duration.*

We see that compilation fails without an ExecutionContext
available.

val fm = Monad[Future]

// error:

// No given instance of type cats.Monad[scala.concurrent.Future]

was found for parameter instance of method apply in object Monad.

// I found:

//

// cats.Invariant.catsInstancesForFuture(

// /* missing */summon[scala.concurrent.ExecutionContext])

//

// But no implicit values were found that match type

scala.concurrent.ExecutionContext.

// val fm = Monad[Future]

// ^

Now we bring the ExecutionContext into scope.

import scala.concurrent.ExecutionContext.Implicits.global

This provides the given instance required to summon the
Monad[Future] instance:

val fm = Monad[Future]

// fm: Monad[[T >: Nothing <: Any] =>> Future[T]] =

cats.instances.FutureInstances$$anon$1@7f39cfbb

The Monad instance uses the captured ExecutionContext for
subsequent calls to pure and flatMap. We can construct a Future
using calls to the monad instance we summoned above.

val future = fm.flatMap(fm.pure(1))(x => fm.pure(x + 2))

If we await the result of the Future we get the expected result.

234

Await.result(future, 1.second)

// res1: Int = 3

In addition to the above, Cats provides a host of new monads that
we don’t have in the standard library. We’ll familiarise ourselves
with some of these in a moment.

10.2.3. Monad Syntax

The syntax for monads comes from three places:

• cats.syntax.flatMap69 provides syntax for flatMap;
• cats.syntax.functor70 provides syntax for map;
• cats.syntax.applicative71 provides syntax for pure.

In practice it’s often easier to import everything in one go from
cats.syntax.all.*. However, we’ll use the individual imports
here for clarity.

We can use pure to construct instances of a monad. We’ll often
need to specify the type parameter to disambiguate the particular
instance we want.

import cats.syntax.applicative.* // for pure

1.pure[Option]

// res2: Option[Int] = Some(value = 1)

1.pure[List]

// res3: List[Int] = List(1)

It’s difficult to demonstrate the flatMap and map methods directly
on Scala monads like Option and List, because they define their
own explicit versions of those methods. Instead we’ll write a

69http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
70http://typelevel.org/cats/api/cats/syntax/package$$functor$
71http://typelevel.org/cats/api/cats/syntax/package$$applicative$

235

http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$applicative$

generic function that performs a calculation on parameters that
come wrapped in a monad of the user’s choice:

import cats.Monad

import cats.syntax.functor.* // for map

import cats.syntax.flatMap.* // for flatMap

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

 a.flatMap(x => b.map(y => x*x + y*y))

sumSquare(Option(3), Option(4))

// res4: Option[Int] = Some(value = 25)

sumSquare(List(1, 2, 3), List(4, 5))

// res5: List[Int] = List(17, 26, 20, 29, 25, 34)

We can rewrite this code using for comprehensions. The compiler
will “do the right thing” by rewriting our comprehension in terms
of flatMap and map and inserting the correct conversions to use
our Monad:

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

 for {

 x <- a

 y <- b

 } yield x*x + y*y

sumSquare(Option(3), Option(4))

// res7: Option[Int] = Some(value = 25)

sumSquare(List(1, 2, 3), List(4, 5))

// res8: List[Int] = List(17, 26, 20, 29, 25, 34)

That’s more or less everything we need to know about the
generalities of monads in Cats. Now let’s take a look at some
useful monad instances that we haven’t seen in the Scala standard
library.

236

10.3. The Identity Monad

In the previous section we demonstrated Cats’ flatMap and map
syntax by writing a method that abstracted over different monads:

import cats.Monad

import cats.syntax.all.*

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

 for {

 x <- a

 y <- b

 } yield x*x + y*y

This method works well on Options and Lists but we can’t call it
passing in plain values:

sumSquare(3, 4)

// error:

// Found: (3 : Int)

// Required: ([_] =>> Any)[Int]

// Note that implicit conversions were not tried because the

result of an implicit conversion

// must be more specific than ([_] =>> Any)[Int]

// sumSquare(3, 4)

// ^

// error:

// Found: (4 : Int)

// Required: ([_] =>> Any)[Int]

// Note that implicit conversions were not tried because the

result of an implicit conversion

// must be more specific than ([_] =>> Any)[Int]

// sumSquare(3, 4)

// ^

It would be incredibly useful if we could use sumSquare with
parameters that were either in a monad or not in a monad at all.
This would allow us to abstract over monadic and non-monadic
code. Fortunately, Cats provides the Id type to bridge the gap:

import cats.Id

237

sumSquare(3 : Id[Int], 4 : Id[Int])

// res1: Int = 25

Id allows us to call our monadic method using plain values.
However, the exact semantics are difficult to understand. We cast
the parameters to sumSquare as Id[Int] and received an Id[Int]
back as a result!

What’s going on? Here is the definition of Id to explain:

package cats

type Id[A] = A

Id is actually a type alias that turns an atomic type into a single-
parameter type constructor. We can cast any value of any type to a
corresponding Id:

"Dave" : Id[String]

// res2: String = "Dave"

123 : Id[Int]

// res3: Int = 123

List(1, 2, 3) : Id[List[Int]]

// res4: List[Int] = List(1, 2, 3)

Cats provides instances of various type classes for Id, including
Functor and Monad. These let us call map, flatMap, and pure on
plain values:

val a = Monad[Id].pure(3)

// a: Int = 3

val b = Monad[Id].flatMap(a)(_ + 1)

// b: Int = 4

import cats.syntax.functor.* // for map

import cats.syntax.flatMap.* // for flatMap

for {

 x <- a

238

 y <- b

} yield x + y

// res5: Int = 7

The ability to abstract over monadic and non-monadic code is
extremely powerful. For example, we can run code asynchronously
in production using Future and synchronously in test using Id.
We’ll see this in our first case study in Chapter 18.

10.3.1. Exercise: Monadic Secret Identities

Implement pure, map, and flatMap for Id! What interesting
discoveries do you uncover about the implementation?

The Id monad does find occasional use in highly generic code, but
I think it is more useful as a tool for understanding monads in
general. Remember we said a monad is a tool for sequencing
computations. When we write

a.flatMap(b)

we are saying that b occurs after a, subject to whatever
complications the concrete monad and a might introduce. In other
words, monads express control flow. Our programming languages
already have built-in ways of expressing control flow. In Scala, like
most languages, control flow goes top-to-bottom and left-to-right.
We can think of this as an “ambient” monad, a monad that
conceptually exists but we don’t work with directly. When we
write

1 + 2

// res10: Int = 3

we can instead express it in monadic terms as

239

Id(1).flatMap(_ + 2)

// res11: Int = 3

This shows us that monads are reifying control flow, making it
explicit. This in turn puts the control flow under the control of the
monad, which allows, for example, the error handling behaviour
we saw with Option.

10.4. Either

Let’s look at another useful monad: the Either type from the Scala
standard library. Either has two cases, Left and Right. By
convention Right represents a success case, and Left a failure.
When we call flatMap on Either, computation continues if we
have a Right case.

Right(10).flatMap(a => Right(a + 32))

// res0: Either[Nothing, Int] = Right(value = 42)

A Left, however, stops the computation.

Right(10).flatMap(a => Left("Oh no!"))

// res1: Either[String, Nothing] = Left(value = "Oh no!")

AS these examples suggest, Either is typically used to implement
fail-fast error handling. We sequence computations using flatMap
as usual. If one computation fails, the remaining computations are
not run. Here’s an example where we fail if we attempt to divide
by zero.

for {

 a <- Right(1)

 b <- Right(0)

 c <- if(b == 0) Left("DIV0")

 else Right(a / b)

240

} yield c * 100

// res2: Either[String, Int] = Left(value = "DIV0")

We can see Either as similar to Option, but it allows us to record
some information in the case of failure, whereas Option represents
failure by None. In the examples above we used strings to hold
information about the cause of failure, but we can use any type we
like. For example, we could use Throwable instead:

type Result[A] = Either[Throwable, A]

This gives us similar semantics to scala.util.Try. The problem,
however, is that Throwable is an extremely broad type. We have
(almost) no idea about what type of error occurred.

Another approach is to define an algebraic data type to represent
errors that may occur in our program:

enum LoginError {

 case UserNotFound(username: String)

 case PasswordIncorrect(username: String)

 case UnexpectedError

}

We could use the LoginError type along with Either as shown
below.

case class User(username: String, password: String)

type LoginResult = Either[LoginError, User]

This approach solves the problems we saw with Throwable. It
gives us a fixed set of expected error types and a catch-all for
anything else that we didn’t expect. We also get the safety of
exhaustivity checking on any pattern matching we do:

import LoginError.*

241

// Choose error-handling behaviour based on type:

def handleError(error: LoginError): Unit =

 error match {

 case UserNotFound(u) =>

 println(s"User not found: $u")

 case PasswordIncorrect(u) =>

 println(s"Password incorrect: $u")

 case UnexpectedError =>

 println(s"Unexpected error")

 }

Here’s an example of use.

val result1: LoginResult = Right(User("dave", "passw0rd"))

// result1: Either[LoginError, User] = Right(

// value = User(username = "dave", password = "passw0rd")

//)

val result2: LoginResult = Left(UserNotFound("dave"))

// result2: Either[LoginError, User] = Left(

// value = UserNotFound(username = "dave")

//)

result1.fold(handleError, println)

// User(dave,passw0rd)

result2.fold(handleError, println)

// User not found: dave

We have much more to say about error handling in Chapter 19.

10.4.1. Cats Utilities

Cats provides several utilities for working with Either. Here we
go over the most useful of them.

242

10.4.1.1. Creating Instances

In addition to creating instances of Left and Right directly, we
can also use the asLeft and asRight extension methods from Cats.
For these methods we need to import the Cats syntax:

import cats.syntax.all.*

Now we can construct instances using the extensions.

val a = 3.asRight[String]

// a: Either[String, Int] = Right(value = 3)

val b = 4.asRight[String]

// b: Either[String, Int] = Right(value = 4)

for {

 x <- a

 y <- b

} yield x*x + y*y

// res5: Either[String, Int] = Right(value = 25)

These “smart constructors” have advantages over Left.apply and
Right.apply. They return results of type Either instead of Left
and Right. This helps avoid type inference problems caused by
over-narrowing, like the issue in the example below:

def countPositive(nums: List[Int]) =

 nums.foldLeft(Right(0)) { (accumulator, num) =>

 if(num > 0) {

 accumulator.map(_ + 1)

 } else {

 Left("Negative. Stopping!")

 }

 }

// error:

// Found: Either[Nothing, Int]

// Required: Right[Nothing, Int]

// accumulator.map(_ + 1)

// ^^^^^^^^^^^^^^^^^^^^^^

// error:

// Found: Left[String, Any]

// Required: Right[Nothing, Int]

243

// Left("Negative. Stopping!")

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^

This code fails to compile for two reasons:

1. the compiler infers the type of the accumulator as Right instead
of Either;

2. we didn’t specify type parameters for Right.apply so the
compiler infers the left parameter as Nothing.

Switching to asRight avoids both of these problems. asRight has a
return type of Either, and allows us to completely specify the type
with only one type parameter:

def countPositive(nums: List[Int]) =

 nums.foldLeft(0.asRight[String]) { (accumulator, num) =>

 if(num > 0) {

 accumulator.map(_ + 1)

 } else {

 Left("Negative. Stopping!")

 }

 }

countPositive(List(1, 2, 3))

// res7: Either[String, Int] = Right(value = 3)

countPositive(List(1, -2, 3))

// res8: Either[String, Int] = Left(value = "Negative.

Stopping!")

The Cats syntax also adds some useful extension methods to the
Either companion object. The catchOnly and catchNonFatal
methods are great for capturing Exceptions as instances of
Either:

Either.catchOnly[NumberFormatException]("foo".toInt)

// res9: Either[NumberFormatException, Int] = Left(

// value = java.lang.NumberFormatException: For input string:

"foo"

//)

Either.catchNonFatal(sys.error("Badness"))

// res10: Either[Throwable, Nothing] = Left(

244

// value = java.lang.RuntimeException: Badness

//)

There are also methods for creating an Either from other data
types:

Either.fromTry(scala.util.Try("foo".toInt))

// res11: Either[Throwable, Int] = Left(

// value = java.lang.NumberFormatException: For input string:

"foo"

//)

Either.fromOption[String, Int](None, "Badness")

// res12: Either[String, Int] = Left(value = "Badness")

10.4.1.2. Transforming Eithers

Cats syntax also adds some useful methods for instances of
Either.

The ensure method allows us to check whether the right-hand
value satisfies a predicate:

-1.asRight[String].ensure("Must be non-negative!")(_ > 0)

// res13: Either[String, Int] = Left(value = "Must be non-

negative!")

The recover and recoverWith methods provide similar error
handling to their namesakes on Future:

"error".asLeft[Int].recover {

 case _: String => -1

}

// res14: Either[String, Int] = Right(value = -1)

"error".asLeft[Int].recoverWith {

 case _: String => Right(-1)

}

// res15: Either[String, Int] = Right(value = -1)

There are leftMap and bimap methods to complement map:

245

"foo".asLeft[Int].leftMap(_.reverse)

// res16: Either[String, Int] = Left(value = "oof")

6.asRight[String].bimap(_.reverse, _ * 7)

// res17: Either[String, Int] = Right(value = 42)

"bar".asLeft[Int].bimap(_.reverse, _ * 7)

// res18: Either[String, Int] = Left(value = "rab")

The swap method lets us exchange left for right:

123.asRight[String]

// res19: Either[String, Int] = Right(value = 123)

123.asRight[String].swap

// res20: Either[Int, String] = Left(value = 123)

Finally, Cats adds a host of conversion methods: toOption, toList,
toTry, toValidated, and so on.

Exercise: What is Best?

Is the error handling strategy in the previous examples well suited
for all purposes? What other features might we want from error
handling?

10.5. Aside: Error Handling and

MonadError

Cats provides an additional type class called MonadError that
abstracts over Either-like data types that are used for error
handling. MonadError provides extra operations for raising and
handling errors.

246

this Section is Optional!

You won’t need to use MonadError unless you need to
abstract over error handling monads. For example, you can
use MonadError to abstract over Future and Try, or over
Either and EitherT (which we will meet in Chapter 11).

If you don’t need this kind of abstraction right now, feel free
to skip onwards to Section 10.6.

10.5.1. The MonadError Type Class

Here is a simplified version of the definition of MonadError:

package cats

trait MonadError[F[_], E] extends Monad[F] {

 // Lift an error into the `F` context:

 def raiseError[A](e: E): F[A]

 // Handle an error, potentially recovering from it:

 def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]

 // Handle all errors, recovering from them:

 def handleError[A](fa: F[A])(f: E => A): F[A]

 // Test an instance of `F`,

 // failing if the predicate is not satisfied:

 def ensure[A](fa: F[A])(e: E)(f: A => Boolean): F[A]

}

MonadError is defined in terms of two type parameters:

• F is the type of the monad;
• E is the type of error contained within F.

To demonstrate how these parameters fit together, here’s an
example where we instantiate the type class for Either:

247

import cats.MonadError

type ErrorOr[A] = Either[String, A]

val monadError = MonadError[ErrorOr, String]

ApplicativeError

In reality, MonadError extends another type class called
ApplicativeError. However, we won’t encounter
Applicatives until Chapter 12. The semantics are the same
for each type class so we can ignore this detail for now.

10.5.2. Raising and Handling Errors

The two most important methods of MonadError are raiseError
and handleErrorWith. raiseError is like the pure method for
Monad except that it creates an instance representing a failure:

val success = monadError.pure(42)

// success: Either[String, Int] = Right(value = 42)

val failure = monadError.raiseError("Badness")

// failure: Either[String, Nothing] = Left(value = "Badness")

handleErrorWith is the complement of raiseError. It allows us to
consume an error and (possibly) turn it into a success, similar to
the recover method of Future:

monadError.handleErrorWith(failure) {

 case "Badness" =>

 monadError.pure("It's ok")

 case _ =>

 monadError.raiseError("It's not ok")

}

// res0: Either[String, String] = Right(value = "It's ok")

248

If we know we can handle all possible errors we can use
handleWith.

monadError.handleError(failure) {

 case "Badness" => 42

 case _ => -1

}

// res1: Either[String, Int] = Right(value = 42)

There is another useful method called ensure that implements
filter-like behaviour. We test the value of a successful monad
with a predicate and specify an error to raise if the predicate
returns false:

monadError.ensure(success)("Number too low!")(_ > 1000)

// res2: Either[String, Int] = Left(value = "Number too low!")

Cats provides syntax for raiseError and handleErrorWith via
cats.syntax.applicativeError72 and ensure via
cats.syntax.monadError73:

import cats.syntax.applicative.* // for pure

import cats.syntax.applicativeError.* // for raiseError etc

import cats.syntax.monadError.* // for ensure

val success = 42.pure[ErrorOr]

// success: Either[String, Int] = Right(value = 42)

val failure = "Badness".raiseError[ErrorOr, Int]

// failure: Either[String, Int] = Left(value = "Badness")

failure.handleErrorWith{

 case "Badness" =>

 256.pure

 case _ =>

 ("It's not ok").raiseError

}

// res4: Either[String, Int] = Right(value = 256)

72http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$
73http://typelevel.org/cats/api/cats/syntax/package$$monadError$

249

http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$
http://typelevel.org/cats/api/cats/syntax/package$$monadError$

success.ensure("Number to low!")(_ > 1000)

// res5: Either[String, Int] = Left(value = "Number to low!")

There are other useful variants of these methods. See the source of
cats.MonadError74 and cats.ApplicativeError75 for more
information.

10.5.3. Instances of MonadError

Cats provides instances of MonadError for numerous data types
including Either, Future, and Try. The instance for Either is
customisable to any error type, whereas the instances for Future
and Try always represent errors as Throwables:

import scala.util.Try

val exn: Throwable =

 new RuntimeException("It's all gone wrong")

exn.raiseError[Try, Int]

// res6: Try[Int] = Failure(

// exception = java.lang.RuntimeException: It's all gone wrong

//)

10.5.4. Exercise: Abstracting

Implement a method validateAdult with the following signature

def validateAdult[F[_]](age: Int)(implicit me: MonadError[F,

Throwable]): F[Int] =

 ???

74http://typelevel.org/cats/api/cats/MonadError.html
75http://typelevel.org/cats/api/cats/ApplicativeError.html

250

http://typelevel.org/cats/api/cats/MonadError.html
http://typelevel.org/cats/api/cats/ApplicativeError.html

When passed an age greater than or equal to 18 it should return
that value as a success. Otherwise it should return a error
represented as an IllegalArgumentException.

Here are some examples of use.

validateAdult[Try](18)

// res7: Try[Int] = Success(value = 18)

validateAdult[Try](8)

// res8: Try[Int] = Failure(

// exception = java.lang.IllegalArgumentException: Age must be

greater than or equal to 18

//)

type ExceptionOr[A] = Either[Throwable, A]

validateAdult[ExceptionOr](-1)

// res9: Either[Throwable, Int] = Left(

// value = java.lang.IllegalArgumentException: Age must be

greater than or equal to 18

//)

10.6. The Eval Monad

cats.Eval is a monad that allows us to abstract over different
models of evaluation. We first met this concept, also known as
evaluation strategies, in Section 4.3. We typically talk of two such
models: eager and lazy, also called call-by-value and call-by-

name respectively. Eval also allows for a result to be memoized,
which gives us call-by-need evaluation.

Eval is also stack-safe, which means we can use it in very deep
recursions without blowing up the stack.

10.6.1. Eager, Lazy, Memoized, Oh My!

What do these terms for models of evaluation mean? Let’s see
some examples.

251

Let’s first look at Scala vals. We can see the evaluation model
using a computation with a visible side-effect. In the following
example, the code to compute the value of x happens at the place
where it is defined rather than on access. Accessing x recalls the
stored value without re-running the code.

val x = {

 println("Computing X")

 math.random()

}

// Computing X

// x: Double = 0.12372446328627063

x // first access

// res0: Double = 0.12372446328627063

x // second access

// res1: Double = 0.12372446328627063

This is an example of call-by-value evaluation:

• the computation is evaluated at the point where it is defined
(eager); and

• the computation is evaluated once (memoized).

Let’s look at an example using a def. The code to compute y below
is not run until we use it, and is re-run on every access:

def y = {

 println("Computing Y")

 math.random()

}

y // first access

// Computing Y

// res2: Double = 0.01513707311373147

y // second access

// Computing Y

// res3: Double = 0.08155577503973321

These are the properties of call-by-name evaluation:

• the computation is evaluated at the point of use (lazy); and

252

• the computation is evaluated each time it is used (not
memoized).

Last but not least, lazy vals are an example of call-by-need
evaluation. The code to compute z below is not run until we use it
for the first time (lazy). The result is then cached and re-used on
subsequent accesses (memoized):

lazy val z = {

 println("Computing Z")

 math.random()

}

z // first access

// Computing Z

// res4: Double = 0.7756931106737277

z // second access

// res5: Double = 0.7756931106737277

Let’s summarize. There are two properties of interest:

• evaluation at the point of definition (eager) versus at the point of
use (lazy); and

• values are saved once evaluated (memoized) or not (not
memoized).

There are three possible combinations of these properties:

• call-by-value which is eager and memoized;
• call-by-name which is lazy and not memoized; and
• call-by-need which is lazy and memoized.

The final combination, eager and not memoized, is not possible.

10.6.2. Eval’s Models of Evaluation

fs Eval has three subtypes: Now, Always, and Later. They
correspond to call-by-value, call-by-name, and call-by-need
respectively. We construct these with three constructor methods,

253

which create instances of the three classes and return them typed
as Eval:

import cats.Eval

val now = Eval.now(math.random() + 1000)

// now: Eval[Double] = Now(value = 1000.648061968798)

val always = Eval.always(math.random() + 3000)

// always: Eval[Double] = cats.Always@692f4eaa

val later = Eval.later(math.random() + 2000)

// later: Eval[Double] = cats.Later@ebb01bf

We can extract the result of an Eval using its value method:

now.value

// res6: Double = 1000.648061968798

always.value

// res7: Double = 3000.906485399325

later.value

// res8: Double = 2000.7074758395897

Each type of Eval calculates its result using one of the evaluation
models defined above. Eval.now captures a value right now. Its
semantics are similar to a val—eager and memoized:

val x = Eval.now{

 println("Computing X")

 math.random()

}

// Computing X

// x: Eval[Double] = Now(value = 0.18404443716000762)

x.value // first access

// res10: Double = 0.18404443716000762

x.value // second access

// res11: Double = 0.18404443716000762

Eval.always captures a lazy computation, similar to a def:

val y = Eval.always{

 println("Computing Y")

254

 math.random()

}

// y: Eval[Double] = cats.Always@25db3188

y.value // first access

// Computing Y

// res12: Double = 0.7506360379891952

y.value // second access

// Computing Y

// res13: Double = 0.2441797695545187

Finally, Eval.later captures a lazy, memoized computation,
similar to a lazy val:

val z = Eval.later{

 println("Computing Z")

 math.random()

}

// z: Eval[Double] = cats.Later@3b7a3435

z.value // first access

// Computing Z

// res14: Double = 0.18423088162834222

z.value // second access

// res15: Double = 0.18423088162834222

The three behaviours are summarized below.

Scala Cats Properties

val Now eager, memoized

def Always lazy, not memoized

lazy val Later lazy, memoized

10.6.3. Eval as a Monad

Like all monads, Eval's map and flatMap methods add
computations to a chain. In this case, however, the chain is stored

255

explicitly as a list of functions. The functions aren’t run until we
call Eval's value method to request a result:

val greeting = Eval

 .always{ println("Step 1"); "Hello" }

 .map{ str => println("Step 2"); s"$str world" }

// greeting: Eval[String] = cats.Eval$$anon$4@676e8e38

greeting.value

// Step 1

// Step 2

// res16: String = "Hello world"

Note that, while the semantics of the originating Eval instances
are maintained, mapping functions are always called lazily on
demand (def semantics):

val ans = for {

 a <- Eval.now{ println("Calculating A"); 40 }

 b <- Eval.always{ println("Calculating B"); 2 }

} yield {

 println("Adding A and B")

 a + b

}

// Calculating A

// ans: Eval[Int] = cats.Eval$$anon$4@68ec0e7

ans.value // first access

// Calculating B

// Adding A and B

// res17: Int = 42

ans.value // second access

// Calculating B

// Adding A and B

// res18: Int = 42

Eval has a memoize method that allows us to memoize a chain of
computations. The result of the chain up to the call to memoize is
cached, whereas calculations after the call retain their original
semantics:

256

val saying = Eval

 .always{ println("Step 1"); "The cat" }

 .map{ str => println("Step 2"); s"$str sat on" }

 .memoize

 .map{ str => println("Step 3"); s"$str the mat" }

// saying: Eval[String] = cats.Eval$$anon$4@731102e

saying.value // first access

// Step 1

// Step 2

// Step 3

// res19: String = "The cat sat on the mat"

saying.value // second access

// Step 3

// res20: String = "The cat sat on the mat"

10.6.4. Trampolining and Eval.defer

One useful property of Eval is that its map and flatMap methods
are trampolined. This means we can nest calls to map and flatMap
arbitrarily without consuming stack frames. We call this property
“stack safety”.

For example, consider this function for calculating factorials:

def factorial(n: BigInt): BigInt =

 if(n == 1) n else n * factorial(n - 1)

It is relatively easy to make this method stack overflow:

factorial(50000)

// java.lang.StackOverflowError

// ...

We can rewrite the method using Eval to make it stack safe:

def factorial(n: BigInt): Eval[BigInt] =

 if(n == 1) {

 Eval.now(n)

257

 } else {

 factorial(n - 1).map(_ * n)

 }

factorial(50000).value

// java.lang.StackOverflowError

// ...

Oops! That didn’t work—our stack still blew up! This is because
we’re still making all the recursive calls to factorial before we
start working with Eval's map method. We can work around this
using Eval.defer, which takes an existing instance of Eval and
defers its evaluation. The defer method is trampolined like map
and flatMap, so we can use it as a quick way to make an existing
operation stack safe:

def factorial(n: BigInt): Eval[BigInt] =

 if(n == 1) {

 Eval.now(n)

 } else {

 Eval.defer(factorial(n - 1).map(_ * n))

 }

factorial(50000).value

// res: A very big value

Eval is a useful tool to enforce stack safety when working on very
large computations and data structures. However, we must bear in
mind that trampolining is not free. It avoids consuming stack by
creating a chain of function objects on the heap. There are still
limits on how deeply we can nest computations, but they are
bounded by the size of the heap rather than the stack.

Exercise: Safer Folding using Eval

The naive implementation of foldRight below is not stack safe.
Make it so using Eval:

258

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =

 as match {

 case head :: tail =>

 fn(head, foldRight(tail, acc)(fn))

 case Nil =>

 acc

 }

10.7. The Writer Monad

cats.data.Writer is a monad that lets us carry a log along with a
computation. We can use it to record messages, errors, or
additional data about a computation, and extract the log alongside
the final result.

A common use for Writer is recording sequences of steps in multi-
threaded computations, where standard imperative logging
techniques can result in interleaved messages from different
contexts. With Writer the log for the computation is tied to the
result, so we can run concurrent computations without mixing
logs.

Cats Data Types

Writer is the first data type we’ve seen from the cats.data
package. This package provides instances of various type
classes that produce useful semantics. Other examples from
cats.data include the monad transformers that we will see
in Chapter 11, and the Validated type we will encounter in
Chapter 12.

259

10.7.1. Creating and Unpacking Writers

A Writer[W, A] carries two values: a log of type W and a result of
type A. We can create a Writer from values of each type as follows:

import cats.data.Writer

Writer(Vector(

 "It was the best of times",

 "it was the worst of times"

), 1859)

// res0: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("It was the best of times", "it was the worst

of times"), 1859)

//)

Notice that the type reported on the console is actually
WriterT[Id, Vector[String], Int] instead of
Writer[Vector[String], Int] as we might expect. In the spirit of
code reuse, Cats implements Writer in terms of another type,
WriterT. WriterT is an example of a new concept called a monad

transformer, which we will cover in Chapter 11.

Let’s try to ignore this detail for now. Writer is a type alias for
WriterT, so we can read types like WriterT[Id, W, A] as
Writer[W, A]:

type Writer[W, A] = WriterT[Id, W, A]

For convenience, Cats provides a way of creating Writers
specifying only the log or the result. If we only have a result we
can use the standard pure syntax. To do this we must have a
Monoid[W] in scope so Cats knows how to produce an empty log.
In the example below we use the Monoid instance for Vector,
which Scala will find on the Monoid companion object.

import cats.syntax.all.*

260

type Logged[A] = Writer[Vector[String], A]

123.pure[Logged]

// res1: WriterT[Id, Vector[String], Int] = WriterT(run =

(Vector(), 123))

If we have a log and no result we can create a Writer[Unit] using
the tell syntax.

Vector("msg1", "msg2", "msg3").tell

// res2: WriterT[Id, Vector[String], Unit] = WriterT(

// run = (Vector("msg1", "msg2", "msg3"), ())

//)

If we have both a result and a log, we can either use Writer.apply
or we can use the writer syntax.

val a = Writer(Vector("msg1", "msg2", "msg3"), 123)

// a: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("msg1", "msg2", "msg3"), 123)

//)

val b = 123.writer(Vector("msg1", "msg2", "msg3"))

// b: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("msg1", "msg2", "msg3"), 123)

//)

We can extract the result and log from a Writer using the value
and written methods respectively:

val aResult: Int =

 a.value

// aResult: Int = 123

val aLog: Vector[String] =

 a.written

// aLog: Vector[String] = Vector("msg1", "msg2", "msg3")

We can extract both values at the same time using the run method:

val (log, result) = b.run

// log: Vector[String] = Vector("msg1", "msg2", "msg3")

// result: Int = 123

261

10.7.2. Composing and Transforming Writers

The log in a Writer is preserved when we map or flatMap over it.
flatMap appends the logs from the source Writer and the result of
the user’s sequencing function. For this reason it’s good practice to
use a log type that has an efficient append and concatenate
operations, such as a Vector.

val writer1 = for {

 a <- 10.pure[Logged]

 _ <- Vector("a", "b", "c").tell

 b <- 32.writer(Vector("x", "y", "z"))

} yield a + b

// writer1: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("a", "b", "c", "x", "y", "z"), 42)

//)

writer1.run

// res3: Tuple2[Vector[String], Int] = (

// Vector("a", "b", "c", "x", "y", "z"),

// 42

//)

In addition to transforming the result with map and flatMap, we
can transform the log in a Writer with the mapWritten method.

val writer2 = writer1.mapWritten(_.map(_.toUpperCase))

// writer2: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("A", "B", "C", "X", "Y", "Z"), 42)

//)

writer2.run

// res4: Tuple2[Vector[String], Int] = (

// Vector("A", "B", "C", "X", "Y", "Z"),

// 42

//)

We can transform both log and result simultaneously using bimap
or mapBoth. bimap takes two function parameters, one for the log
and one for the result. mapBoth takes a single function that accepts
two parameters.

262

val writer3 = writer1.bimap(

 log => log.map(_.toUpperCase),

 res => res * 100

)

// writer3: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("A", "B", "C", "X", "Y", "Z"), 4200)

//)

writer3.run

// res5: Tuple2[Vector[String], Int] = (

// Vector("A", "B", "C", "X", "Y", "Z"),

// 4200

//)

val writer4 = writer1.mapBoth { (log, res) =>

 val log2 = log.map(_ + "!")

 val res2 = res * 1000

 (log2, res2)

}

// writer4: WriterT[Id, Vector[String], Int] = WriterT(

// run = (Vector("a!", "b!", "c!", "x!", "y!", "z!"), 42000)

//)

writer4.run

// res6: Tuple2[Vector[String], Int] = (

// Vector("a!", "b!", "c!", "x!", "y!", "z!"),

// 42000

//)

Finally, we can clear the log with the reset method, and swap log
and result with the swap method.

val writer5 = writer1.reset

// writer5: WriterT[Id, Vector[String], Int] = WriterT(run =

(Vector(), 42))

writer5.run

// res7: Tuple2[Vector[String], Int] = (Vector(), 42)

val writer6 = writer1.swap

// writer6: WriterT[Id, Int, Vector[String]] = WriterT(

// run = (42, Vector("a", "b", "c", "x", "y", "z"))

//)

writer6.run

263

// res8: Tuple2[Int, Vector[String]] = (

// 42,

// Vector("a", "b", "c", "x", "y", "z")

//)

Exercise: Show Your Working

Writers are useful for logging operations in multi-threaded
environments. Let’s confirm this by computing (and logging) some
factorials.

The factorial function below computes a factorial and prints out
the intermediate steps as it runs. The slowly helper function
ensures this takes a while to run, even on the very small examples
below:

def slowly[A](body: => A) =

 try body finally Thread.sleep(100)

def factorial(n: Int): Int = {

 val ans = slowly(if(n == 0) 1 else n * factorial(n - 1))

 println(s"fact $n $ans")

 ans

}

Here’s the output—a sequence of monotonically increasing values:

factorial(5)

// fact 0 1

// fact 1 1

// fact 2 2

// fact 3 6

// fact 4 24

// fact 5 120

// res9: Int = 120

If we start several factorials in parallel, the log messages can
become interleaved on standard out. This makes it difficult to see
which messages come from which computation:

264

import scala.concurrent.*

import scala.concurrent.ExecutionContext.Implicits.*

import scala.concurrent.duration.*

Await.result(Future.sequence(Vector(

 Future(factorial(5)),

 Future(factorial(5))

)), 5.seconds)

// fact 0 1

// fact 0 1

// fact 1 1

// fact 1 1

// fact 2 2

// fact 2 2

// fact 3 6

// fact 3 6

// fact 4 24

// fact 4 24

// fact 5 120

// fact 5 120

// res: scala.collection.immutable.Vector[Int] =

// Vector(120, 120)

Rewrite factorial so it captures the log messages in a Writer.
Demonstrate that this allows us to reliably separate the logs for
concurrent computations.

10.8. The Reader Monad

cats.data.Reader is a monad that allows us to sequence
operations that depend on some input. Instances of Reader wrap
up functions of one argument, providing us with useful methods
for composing them.

One common use for Readers is dependency injection. If we have
a number of operations that all depend on some external
configuration, we can chain them together using a Reader to
produce one large operation that accepts the configuration as a
parameter and runs our program in the order specified.

265

10.8.1. Creating and Unpacking Readers

We can create a Reader[A, B] from a function A => B using the
Reader.apply constructor:

import cats.data.Reader

final case class Cat(name: String, favoriteFood: String)

val catName: Reader[Cat, String] =

 Reader(cat => cat.name)

// catName: Kleisli[Id, Cat, String] = Kleisli(

// run = repl.MdocSession$MdocApp$

$Lambda$13474/0x0000000803b08040@22fb5ef5

//)

We can extract the function again using the Reader's run method
and call it using apply as usual:

catName.run(Cat("Garfield", "lasagne"))

// res0: String = "Garfield"

So far so simple, but what advantage do Readers give us over the
raw functions?

10.8.2. Composing Readers

The power of Readers comes from their map and flatMap methods,
which represent different kinds of function composition. We
typically create a set of Readers that accept the same type of
configuration, combine them with map and flatMap, and then call
run to inject the config at the end.

The map method simply extends the computation in the Reader by
passing its result through a function.

266

val greetKitty: Reader[Cat, String] =

 catName.map(name => s"Hello ${name}")

greetKitty.run(Cat("Heathcliff", "junk food"))

// res1: String = "Hello Heathcliff"

The flatMap method is more interesting. It allows us to combine
readers that depend on the same input type. To illustrate this, let’s
extend our greeting example to also feed the cat.

val feedKitty: Reader[Cat, String] =

 Reader(cat => s"Have a nice bowl of ${cat.favoriteFood}")

val greetAndFeed: Reader[Cat, String] =

 for {

 greet <- greetKitty

 feed <- feedKitty

 } yield s"$greet. $feed."

greetAndFeed(Cat("Garfield", "lasagne"))

// res2: String = "Hello Garfield. Have a nice bowl of lasagne."

greetAndFeed(Cat("Heathcliff", "junk food"))

// res3: String = "Hello Heathcliff. Have a nice bowl of junk

food."

Exercise: Hacking on Readers

The classic use of Readers is to build programs that accept a
configuration as a parameter. Let’s ground this with a complete
example of a simple login system. Our configuration will consist of
two databases: a list of valid users and a list of their passwords:

final case class Db(

 usernames: Map[Int, String],

 passwords: Map[String, String]

)

Start by creating a type alias DbReader for a Reader that consumes
a Db as input. This will make the rest of our code shorter.

267

Now create methods that generate DbReaders to look up the
username for an Int user ID, and look up the password for a
String username. The type signatures should be as follows:

def findUsername(userId: Int): DbReader[Option[String]] =

 ???

def checkPassword(

 username: String,

 password: String): DbReader[Boolean] =

 ???

Finally create a checkLogin method to check the password for a
given user ID. The type signature should be as follows:

def checkLogin(

 userId: Int,

 password: String): DbReader[Boolean] =

 ???

You should be able to use checkLogin as follows:

val users = Map(

 1 -> "dade",

 2 -> "kate",

 3 -> "margo"

)

val passwords = Map(

 "dade" -> "zerocool",

 "kate" -> "acidburn",

 "margo" -> "secret"

)

val db = Db(users, passwords)

checkLogin(1, "zerocool").run(db)

// res6: Boolean = true

checkLogin(4, "davinci").run(db)

// res7: Boolean = false

268

10.8.3. When to Use Readers?

Readers provide a tool for doing dependency injection. We write
steps of our program as instances of Reader, chain them together
with map and flatMap, and build a function that accepts the
dependency as input.

There are many ways of implementing dependency injection in
Scala, from simple techniques like methods with multiple
parameter lists, through implicit parameters and type classes, to
complex techniques like the cake pattern and DI frameworks.

Readers are most useful in situations where:

• we are constructing a program that can easily be represented by
a function;

• we need to defer injection of a known parameter or set of
parameters;

• we want to be able to test parts of the program in isolation.

By representing the steps of our program as Readers we can test
them as easily as pure functions, plus we gain access to the map
and flatMap combinators.

For more complicated problems where we have lots of
dependencies, or where a program isn’t easily represented as a
pure function, other dependency injection techniques tend to be
more appropriate.

Kleisli Arrows

You may have noticed from console output that Reader is
implemented in terms of another type called Kleisli.
Kleisli arrows provide a more general form of Reader that

269

generalise over the type constructor of the result type. We
will encounter Kleislis again in Chapter 11.

10.9. The State Monad

cats.data.State allows us to pass additional state around as part
of a computation. We define State instances representing atomic
state operations and thread them together using map and flatMap.
In this way we can model mutable state in a purely functional way,
without using actual mutation.

10.9.1. Creating and Unpacking State

Boiled down to their simplest form, instances of State[S, A]
represent functions of type S => (S, A). S is the type of the state
and A is the type of the result. In the example below, the state has
type Int, and we return a String result computed from the state.

import cats.data.State

val a = State[Int, String]{ state =>

 (state, s"The state is $state")

}

// a: IndexedStateT[[A >: Nothing <: Any] =>> Eval[A], Int, Int,

String] = cats.data.IndexedStateT@24cf3bad

State and IndexedStateT

You may have noticed the console output reports a type of
IndexedStateT when we create an instance of State. Just

270

like with Writer and Reader, State is defined as a type alias
of a more complicated type IndexedStateT:

type State[S, A] = IndexedStateT[Eval, S, S, A]

We can ignore this more complicated type.

In other words, an instance of State is a function that does two
things:

• transforms an input state to an output state;
• computes a result.

We can “run” our monad by supplying an initial state. State
provides three methods—run, runS, and runA—that return different
combinations of state and result. Each method returns an instance
of Eval, which State uses to maintain stack safety. We call the
value method as usual to extract the actual result:

// Get the state and the result:

val (state, result) = a.run(10).value

// state: Int = 10

// result: String = "The state is 10"

// Get the state, ignore the result:

val justTheState = a.runS(10).value

// justTheState: Int = 10

// Get the result, ignore the state:

val justTheResult = a.runA(10).value

// justTheResult: String = "The state is 10"

10.9.2. Composing and Transforming State

As we’ve seen with Reader and Writer, the power of the State
monad comes from combining instances. The map and flatMap
methods thread the state from one instance to another. Each

271

individual instance represents an atomic state transformation, and
their combination represents a complete sequence of changes:

val step1 = State[Int, String]{ num =>

 val ans = num + 1

 (ans, s"Result of step1: $ans")

}

val step2 = State[Int, String]{ num =>

 val ans = num * 2

 (ans, s"Result of step2: $ans")

}

val both = for {

 a <- step1

 b <- step2

} yield (a, b)

When we run this program we get the result of applying each step
in sequence. State is threaded from step to step even though we
don’t interact with it in the for comprehension.

val (state, result) = both.run(20).value

// state: Int = 42

// result: Tuple2[String, String] = (

// "Result of step1: 21",

// "Result of step2: 42"

//)

The general model for using the State monad is to represent each
step of a computation as an instance and compose the steps using
the standard monad operators. Cats provides several convenience
constructors for creating primitive steps:

• get extracts the state as the result;
• set updates the state and returns unit as the result;
• pure ignores the state and returns a supplied result;
• inspect extracts the state via a transformation function;
• modify updates the state using an update function.

272

State.get[Int].run(10).value

// res0: Tuple2[Int, Int] = (10, 10)

State.set[Int](30).run(10).value

// res1: Tuple2[Int, Unit] = (30, ())

State.pure[Int, String]("Result").run(10).value

// res2: Tuple2[Int, String] = (10, "Result")

State.inspect[Int, String](x => s"${x}!").run(10).value

// res3: Tuple2[Int, String] = (10, "10!")

State.modify[Int](_ + 1).run(10).value

// res4: Tuple2[Int, Unit] = (11, ())

We can assemble these building blocks using a for comprehension.
We typically ignore the result of intermediate stages that only
represent transformations on the state.

import cats.data.State

import State.*

val program: State[Int, (Int, Int, Int)] = for {

 a <- get[Int]

 _ <- set[Int](a + 1)

 b <- get[Int]

 _ <- modify[Int](_ + 1)

 c <- inspect[Int, Int](_ * 1000)

} yield (a, b, c)

As we expect, the result is the composition of the individual
stages.

val (state, result) = program.run(1).value

// state: Int = 3

// result: Tuple3[Int, Int, Int] = (1, 2, 3000)

Exercise: Post-Order Calculator

The State monad allows us to implement simple interpreters for
complex expressions, passing the values of mutable registers along

273

with the result. We can see a simple example of this by
implementing a calculator for post-order integer arithmetic
expressions.

In case you haven’t heard of post-order expressions before (don’t
worry if you haven’t), they are a mathematical notation where we
write the operator after its operands. So, for example, instead of
writing 1 + 2 we would write:

1 2 +

Although post-order expressions are difficult for humans to read,
they are easy to evaluate in code. All we need to do is traverse the
symbols from left to right, carrying a stack of operands with us as
we go:

• when we see a number, we push it onto the stack;

• when we see an operator, we pop two operands off the stack,
operate on them, and push the result in their place.

This allows us to evaluate complex expressions without using
parentheses. For example, we can evaluate (1 + 2) * 3) as
follows:

1 2 + 3 * // see 1, push onto stack

2 + 3 * // see 2, push onto stack

+ 3 * // see +, pop 1 and 2 off of stack,

 // push (1 + 2) = 3 in their place

3 3 * // see 3, push onto stack

3 * // see 3, push onto stack

* // see *, pop 3 and 3 off of stack,

 // push (3 * 3) = 9 in their place

Let’s write an interpreter for these expressions. We can parse each
symbol into a State instance representing a transformation on the
stack and an intermediate result. The State instances can be
threaded together using flatMap to produce an interpreter for any
sequence of symbols.

274

Start by writing a function evalOne that parses a single symbol
into an instance of State. Use the code below as a template. Don’t
worry about error handling for now—if the stack is in the wrong
configuration, it’s OK to throw an exception.

import cats.data.State

type CalcState[A] = State[List[Int], A]

def evalOne(sym: String): CalcState[Int] = ???

If this seems difficult, think about the basic form of the State
instances you’re returning. Each instance represents a functional
transformation from a stack to a pair of a stack and a result. You
can ignore any wider context and focus on just that one step:

State[List[Int], Int] { oldStack =>

 val newStack = someTransformation(oldStack)

 val result = someCalculation

 (newStack, result)

}

Feel free to write your Stack instances in this form or as
sequences of the convenience constructors we saw above.

evalOne allows us to evaluate single-symbol expressions as
follows. We call runA supplying Nil as an initial stack, and call
value to unpack the resulting Eval instance:

evalOne("42").runA(Nil).value

// res8: Int = 42

We can represent more complex programs using evalOne, map, and
flatMap. Note that most of the work is happening on the stack, so
we ignore the results of the intermediate steps for evalOne("1")
and evalOne("2"):

val program = for {

 _ <- evalOne("1")

275

 _ <- evalOne("2")

 ans <- evalOne("+")

} yield ans

// program: IndexedStateT[[A >: Nothing <: Any] =>> Eval[A],

List[Int], List[Int], Int] = cats.data.IndexedStateT@4ad4991f

program.runA(Nil).value

// res9: Int = 3

Generalise this example by writing an evalAll method that
computes the result of a List[String]. Use evalOne to process
each symbol, and thread the resulting State monads together
using flatMap. Your function should have the following signature:

def evalAll(input: List[String]): CalcState[Int] =

 ???

We can use evalAll to conveniently evaluate multi-stage
expressions:

val multistageProgram = evalAll(List("1", "2", "+", "3", "*"))

// multistageProgram: IndexedStateT[[A >: Nothing <: Any] =>>

Eval[A], List[Int], List[Int], Int] =

cats.data.IndexedStateT@1edc9ba3

multistageProgram.runA(Nil).value

// res11: Int = 9

Because evalOne and evalAll both return instances of State, we
can thread these results together using flatMap. evalOne produces
a simple stack transformation and evalAll produces a complex
one, but they’re both pure functions and we can use them in any
order as many times as we like:

val biggerProgram = for {

 _ <- evalAll(List("1", "2", "+"))

 _ <- evalAll(List("3", "4", "+"))

 ans <- evalOne("*")

} yield ans

// biggerProgram: IndexedStateT[[A >: Nothing <: Any] =>>

276

Eval[A], List[Int], List[Int], Int] =

cats.data.IndexedStateT@3c478f3a

biggerProgram.runA(Nil).value

// res12: Int = 21

Complete the exercise by implementing an evalInput function
that splits an input String into symbols, calls evalAll, and runs
the result with an initial stack.

10.10. Defining Custom Monads

We can define a Monad for a custom type by providing
implementations of three methods: flatMap, pure, and a method
we haven’t seen yet called tailRecM. Here is an implementation of
Monad for Option as an example:

import cats.Monad

import scala.annotation.tailrec

val optionMonad = new Monad[Option] {

 def flatMap[A, B](opt: Option[A])

 (fn: A => Option[B]): Option[B] =

 opt.flatMap(fn)

 def pure[A](opt: A): Option[A] =

 Some(opt)

 @tailrec

 def tailRecM[A, B](a: A)(fn: A => Option[Either[A, B]]):

Option[B] = {

 fn(a) match {

 case None => None

 case Some(Left(a1)) => tailRecM(a1)(fn)

 case Some(Right(b)) => Some(b)

 }

 }

}

277

The tailRecM method is an optimisation used in Cats to limit the
amount of stack space consumed by nested calls to flatMap. The
technique comes from a 2015 paper by PureScript creator Phil
Freeman [29]. The method should recursively call itself until the
result of fn returns a Right.

To motivate its use let’s use the following example: suppose we
want to write a method that calls a function until the function
indicates it should stop. The function will return a monad instance
because, as we know, monads represent sequencing and many
monads have some notion of stopping.

We can write this method in terms of flatMap.

import cats.syntax.all.*

def retry[F[_]: Monad, A](start: A)(f: A => F[A]): F[A] =

 f(start).flatMap{ a =>

 retry(a)(f)

 }

Unfortunately it is not stack-safe. It works for small input.

retry(100)(a => if(a == 0) None else Some(a - 1))

// res1: Option[Int] = None

but if we try large input we get a StackOverflowError.

retry(100000)(a => if(a == 0) None else Some(a - 1))

// KABLOOIE!!!!

We can instead rewrite this method using tailRecM.

def retryTailRecM[F[_]: Monad, A](start: A)(f: A => F[A]): F[A] =

 Monad[F].tailRecM(start){ a =>

 f(a).map(a2 => Left(a2))

 }

Now it runs successfully no matter how many time we recurse.

278

retryTailRecM(100000)(a => if(a == 0) None else Some(a - 1))

// res2: Option[Int] = None

It’s important to note that we have to explicitly call tailRecM.
There isn’t a code transformation that will convert non-tail
recursive code into tail recursive code that uses tailRecM.
However there are several utilities provided by the Monad type
class that makes these kinds of methods easier to write. For
example, we can rewrite retry in terms of iterateWhileM and we
don’t have to explicitly call tailRecM.

def retryM[F[_]: Monad, A](start: A)(f: A => F[A]): F[A] =

 start.iterateWhileM(f)(a => true)

This implementation is stack-safe.

retryM(100000)(a => if(a == 0) None else Some(a - 1))

// res3: Option[Int] = None

We’ll see more methods that use tailRecM in Section 13.1.

All of the built-in monads in Cats have tail-recursive
implementations of tailRecM, although writing one for custom
monads can be a challenge… as we shall see.

Exercise: Branching out Further with Monads

Let’s write a Monad for our Tree data type from last chapter. Here’s
the type again:

enum Tree[+A] {

 case Branch(left: Tree[A], right: Tree[A])

 case Leaf(value: A) extends Tree[A]

}

object Tree {

 def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =

 Branch(left, right)

279

 def leaf[A](value: A): Tree[A] =

 Leaf(value)

}

Verify that the code works on instances of Branch and Leaf, and
that the Monad provides Functor-like behaviour for free.

Also verify that having a Monad in scope allows us to use for
comprehensions, despite the fact that we haven’t directly
implemented flatMap or map on Tree.

Don’t feel you have to make tailRecM tail-recursive. Doing so is
quite difficult. We’ve included both tail-recursive and non-tail-
recursive implementations in the solutions so you can check your
work.

10.11. Conclusions

In this chapter we’ve seen monads up-close. We saw that flatMap
can be viewed as an operator for sequencing computations,
dictating the order in which operations must happen. From this
viewpoint, Option represents a computation that can fail without
an error message, Either represents computations that can fail
with a message, List represents multiple possible results, and
Future represents a computation that may produce a value at
some point in the future.

We’ve also seen some of the custom types and data structures that
Cats provides, including Id, Reader, Writer, and State. These
cover a wide range of use cases.

Finally, in the unlikely event that we have to implement a custom
monad, we’ve learned about defining our own instance using
tailRecM. tailRecM is an odd wrinkle that is a concession to
building a functional programming library that is stack-safe by
default. We don’t need to understand tailRecM to understand

280

monads, but having it around gives us benefits of which we can be
grateful when writing monadic code.

The Essence of Functional Programming [92] introduced monads to
functional programming. It describes monads in terms of bind and
unit, which in Scala we call flatMap and pure respectively. It has
several examples of interpreters built using monads, and relates
monads to continuation-passing style, which we first met in
Section 6.3.3.

281

282

11. Monad Transformers

Monads are like burritos76, which means that once you acquire a
taste, you’ll find yourself returning to them again and again. This
is not without issues. As burritos can bloat the waist, monads can
bloat the code base through nested for-comprehensions.

Imagine we are interacting with a database. We want to look up a
user record. The user may or may not be present, so we return an
Option[User]. Our communication with the database could fail for
many reasons (network issues, authentication problems, and so
on), so this result is wrapped up in an Either, giving us a final
result of Either[Error, Option[User]].

To use this value we must nest flatMap calls (or equivalently, for-
comprehensions):

def lookupUserName(id: Long): Either[Error, Option[String]] =

 for {

 optUser <- lookupUser(id)

 } yield {

 for { user <- optUser } yield user.name

 }

This quickly becomes very tedious.

11.1. Composing Monads

A question arises. Given two arbitrary monads, can we combine
them in some way to make a single monad? That is, do monads
compose? We can try to write the code but we soon hit problems:

76http://blog.plover.com/prog/burritos.html

283

http://blog.plover.com/prog/burritos.html

// Hypothetical example. This won't actually compile:

def compose[M1[_]: Monad, M2[_]: Monad] = {

 type Composed[A] = M1[M2[A]]

 new Monad[Composed] {

 def pure[A](a: A): Composed[A] =

 a.pure[M2].pure[M1]

 def flatMap[A, B](fa: Composed[A])

 (f: A => Composed[B]): Composed[B] =

 // Problem! How do we write flatMap?

 ???

 }

}

It is impossible to write a general definition of flatMap without
knowing something about M1 or M2. However, if we do know
something about one or other monad, we can typically complete
this code. For example, if we fix M2 above to be Option, a definition
of flatMap comes to light:

def flatMap[A, B](fa: Composed[A])

 (f: A => Composed[B]): Composed[B] =

 fa.flatMap(_.fold[Composed[B]](None.pure[M1])(f))

Notice that the definition above makes use of None, an Option-
specific concept that doesn’t appear in the general Monad interface.
We need this extra detail to combine Option with other monads.
Similarly, there are things about other monads that help us write
composed flatMap methods for them. This is the idea behind
monad transformers: Cats defines transformers for a variety of
monads, each providing the extra knowledge we need to compose
that monad with others. Let’s look at some examples.

284

11.2. A Transformative Example

Cats provides transformers for many monads, each named with a T
suffix: EitherT composes Either with other monads, OptionT
composes Option, and so on.

Here’s an example that uses OptionT to compose List and Option.
We can use OptionT[List, A], aliased to ListOption[A] for
convenience, to transform a List[Option[A]] into a single monad:

import cats.data.OptionT

type ListOption[A] = OptionT[List, A]

Note how we build ListOption from the inside out: we pass List,
the type of the outer monad, as a parameter to OptionT, the
transformer for the inner monad.

We can create instances of ListOption using the OptionT
constructor, or more conveniently using pure:

import cats.syntax.all.*

val result1: ListOption[Int] = OptionT(List(Option(10)))

// result1: OptionT[List, Int] = OptionT(value = List(Some(value

= 10)))

val result2: ListOption[Int] = 32.pure[ListOption]

// result2: OptionT[List, Int] = OptionT(value = List(Some(value

= 32)))

The map and flatMap methods combine the corresponding
methods of List and Option into single operations:

result1.flatMap { (x: Int) =>

 result2.map { (y: Int) =>

 x + y

 }

}

285

// res1: OptionT[List, Int] = OptionT(value = List(Some(value =

42)))

This is the basis of all monad transformers. The combined map and
flatMap methods allow us to use both component monads without
having to recursively unpack and repack values at each stage in
the computation. Now let’s look at the API in more depth.

11.3. Monad Transformers in Cats

Each monad transformer is a data type, defined in cats.data77,
that allows us to wrap stacks of monads to produce new monads.
We use the monads we’ve built via the Monad type class. The main
concepts we have to cover to understand monad transformers are:

• the available transformer classes;
• how to build stacks of monads using transformers;
• how to construct instances of a monad stack; and
• how to pull apart a stack to access the wrapped monads.

11.3.1. The Monad Transformer Classes

By convention, in Cats a monad Foo will have a transformer class
called FooT. In fact, many monads in Cats are defined by
combining a monad transformer with the Id monad. Concretely,
some of the available instances are:

• cats.data.OptionT for Option;
• cats.data.EitherT for Either;
• cats.data.ReaderT for Reader;
• cats.data.WriterT for Writer;
• cats.data.StateT for State;

77http://typelevel.org/cats/api/cats/data/

286

http://typelevel.org/cats/api/cats/data/

• cats.data.IdT for the Id monad.

Kleisli Arrows

In Section 10.8 we mentioned that the Reader monad was a
specialisation of a more general concept called a “kleisli
arrow”, represented in Cats as cats.data.Kleisli.

We can now reveal that Kleisli and ReaderT are, in fact,
the same thing! ReaderT is actually a type alias for Kleisli.
Hence, we were creating Readers last chapter and seeing
Kleislis on the console.

11.3.2. Building Monad Stacks

All of these monad transformers follow the same convention. The
transformer itself represents the inner monad in a stack, while the
first type parameter specifies the outer monad. The remaining type
parameters are the types we’ve used to form the corresponding
monads.

For example, our ListOption type above is an alias for
OptionT[List, A] but the result is effectively a List[Option[A]].
In other words, we build monad stacks from the inside out:

type ListOption[A] = OptionT[List, A]

Many monads and all transformers have at least two type
parameters, so we often end up defining type aliases for
intermediate stages.

For example, suppose we want to wrap Either around Option.
Option is the innermost type so we want to use the OptionT
monad transformer. We need to use Either as the first type

287

parameter. However, Either itself has two type parameters and
monads only have one. We can use a type alias to convert the type
constructor to the correct shape.

// Alias Either to a type constructor with one parameter:

type ErrorOr[A] = Either[String, A]

// Build our final monad stack using OptionT:

type ErrorOrOption[A] = OptionT[ErrorOr, A]

ErrorOrOption is a monad, just like ListOption. We can use pure,
map, and flatMap as usual to create and transform instances.

val a = 10.pure[ErrorOrOption]

// a: OptionT[ErrorOr, Int] = OptionT(value = Right(value =

Some(value = 10)))

val b = 32.pure[ErrorOrOption]

// b: OptionT[ErrorOr, Int] = OptionT(value = Right(value =

Some(value = 32)))

val c = a.flatMap(x => b.map(y => x + y))

// c: OptionT[ErrorOr, Int] = OptionT(value = Right(value =

Some(value = 42)))

Things become even more confusing when we want to stack three
or more monads.

For example, let’s create a Future of an Either of Option. Once
again we build this from the inside out with an OptionT of an
EitherT of Future. However, defining this in one line is harder
because EitherT has three type parameters:

final case class EitherT[F[_], E, A](stack: F[Either[E, A]]) {

 // etc...

}

The three type parameters are as follows:

• F[_] is the outer monad in the stack (Either is the inner);
• E is the error type for the Either;
• A is the result type for the Either.

288

The simplest approach is to create an alias for EitherT that fixes
Future and Error but allows A to vary.

import scala.concurrent.Future

type FutureEither[A] = EitherT[Future, String, A]

type FutureEitherOption[A] = OptionT[FutureEither, A]

Our mammoth stack now composes three monads and our map and
flatMap methods cut through three layers of abstraction.

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration.*

val futureEitherOr: FutureEitherOption[Int] =

 for {

 a <- 10.pure[FutureEitherOption]

 b <- 32.pure[FutureEitherOption]

 } yield a + b

Type Lambdas

If you frequently find yourself defining multiple type aliases
when building monad stacks, you may want to try Scala 3′s
type lambdas. In Scala 2.13 you can use the Kind Projector78
compiler plugin to get the same functionality with slightly
different syntax.

Type lambdas make it more compact to define partially
applied type constructors. For example we can write

type FutureEitherOption[A] = OptionT[[A] =>>

EitherT[Future, String, A], A]

78https://github.com/typelevel/kind-projector

289

https://github.com/typelevel/kind-projector

instead of the longer (but perhaps clearer!)

type FutureEither[A] = EitherT[Future, String, A]

type FutureEitherOption[A] = OptionT[FutureEither, A]

11.3.3. Constructing and Unpacking Instances

As we saw above, we can create transformed monad stacks using
the relevant monad transformer’s apply method or the usual pure
syntax79.

// Create using apply:

val errorStack1 = OptionT[ErrorOr, Int](Right(Some(10)))

// errorStack1: OptionT[ErrorOr, Int] = OptionT(

// value = Right(value = Some(value = 10))

//)

// Create using pure:

val errorStack2 = 32.pure[ErrorOrOption]

// errorStack2: OptionT[ErrorOr, Int] = OptionT(

// value = Right(value = Some(value = 32))

//)

Once we’ve finished with a monad transformer stack, we can
unpack it using its value method. This returns the untransformed
stack. We can then manipulate the individual monads in the usual
way.

// Extracting the untransformed monad stack:

errorStack1.value

// res3: Either[String, Option[Int]] = Right(value = Some(value =

10))

79Cats provides an instance of MonadError for EitherT, allowing us to create
instances using raiseError as well as pure.

290

// Mapping over the Either in the stack:

errorStack2.value.map(_.getOrElse(-1))

// res4: Either[String, Int] = Right(value = 32)

Each call to value unpacks a single monad transformer. We may
need more than one call to completely unpack a large stack. For
example, to Await the FutureEitherOption stack above, we need
to call value twice.

futureEitherOr

// res5: OptionT[FutureEither, Int] = OptionT(

// value = EitherT(value = Future(Success(Right(Some(42)))))

//)

val intermediate = futureEitherOr.value

// intermediate: EitherT[[T >: Nothing <: Any] =>> Future[T],

String, Option[Int]] = EitherT(

// value = Future(Success(Right(Some(42))))

//)

val stack = intermediate.value

// stack: Future[Either[String, Option[Int]]] =

Future(Success(Right(Some(42))))

Await.result(stack, 1.second)

// res6: Either[String, Option[Int]] = Right(value = Some(value =

42))

11.3.4. Default Instances

Many monads in Cats are defined using the corresponding
transformer and the Id monad. This is reassuring as it confirms
that the APIs for monads and transformers are identical. Reader,
Writer, and State are all defined in this way:

type Reader[E, A] = ReaderT[Id, E, A] // = Kleisli[Id, E, A]

type Writer[W, A] = WriterT[Id, W, A]

type State[S, A] = StateT[Id, S, A]

291

In other cases monad transformers are defined separately to their
corresponding monads. In these cases, the methods of the
transformer tend to mirror the methods on the monad. For
example, OptionT defines getOrElse, and EitherT defines fold,
bimap, swap, and other useful methods.

11.3.5. Usage Patterns

Widespread use of monad transformers is sometimes difficult
because they fuse monads together in predefined ways. Without
careful thought, we can end up having to unpack and repack
monads in different configurations to operate on them in different
contexts.

The most practical solution is to forego monad transformers
entirely, and use a single “super-monad” that combines several
useful monads into one. This is the approach taken by so-called IO
monads, such as Cats Effect80. These monad types usually provide
asynchronicity, error-handling, and more in one type.

A similar approach is to create a single “super stack” and sticking
to it throughout our code base. This works if the code is simple
and largely uniform in nature. For example, in a web application,
we could decide that all request handlers are asynchronous and all
can fail with the same set of HTTP error codes. We could design a
custom ADT representing the errors and use a fusion Future and
Either everywhere in our code:

sealed abstract class HttpError

final case class NotFound(item: String) extends HttpError

final case class BadRequest(msg: String) extends HttpError

// etc...

type FutureEither[A] = EitherT[Future, HttpError, A]

80https://typelevel.org/cats-effect/

292

https://typelevel.org/cats-effect/

The “super stack” approach starts to fail in larger, more
heterogeneous code bases where different stacks make sense in
different contexts. Another design pattern that makes more sense
in these contexts uses monad transformers as local “glue code”. We
expose untransformed stacks at module boundaries, transform
them to operate on them locally, and untransform them before
passing them on. This allows each module of code to make its own
decisions about which transformers to use:

import cats.data.Writer

type Logged[A] = Writer[List[String], A]

// Methods generally return untransformed stacks:

def parseNumber(str: String): Logged[Option[Int]] =

 util.Try(str.toInt).toOption match {

 case Some(num) => Writer(List(s"Read $str"), Some(num))

 case None => Writer(List(s"Failed on $str"), None)

 }

// Consumers use monad transformers locally to simplify

composition:

def addAll(a: String, b: String, c: String): Logged[Option[Int]]

= {

 import cats.data.OptionT

 val result = for {

 a <- OptionT(parseNumber(a))

 b <- OptionT(parseNumber(b))

 c <- OptionT(parseNumber(c))

 } yield a + b + c

 result.value

}

// This approach doesn't force OptionT on other users' code:

val result1 = addAll("1", "2", "3")

// result1: WriterT[Id, List[String], Option[Int]] = WriterT(

// run = (List("Read 1", "Read 2", "Read 3"), Some(value = 6))

//)

val result2 = addAll("1", "a", "3")

// result2: WriterT[Id, List[String], Option[Int]] = WriterT(

293

// run = (List("Read 1", "Failed on a"), None)

//)

Unfortunately, there aren’t one-size-fits-all approaches to working
with monad transformers. The best approach for you may depend
on a lot of factors: the size and experience of your team, the
complexity of your code base, and so on. You may need to
experiment and gather feedback from colleagues to determine
whether monad transformers are a good fit.

Exercise: Monads: Transform and Roll Out

The Autobots, well-known robots in disguise, frequently send
messages during battle requesting the power levels of their team
mates. This helps them coordinate strategies and launch
devastating attacks. The message sending method looks like this:

def getPowerLevel(autobot: String): Response[Int] =

 ???

Transmissions take time in Earth’s viscous atmosphere, and
messages are occasionally lost due to satellite malfunction or
sabotage by pesky Decepticons81. Responses are therefore
represented as a stack of monads:

type Response[A] = Future[Either[String, A]]

Optimus Prime is getting tired of the nested for comprehensions in
his neural matrix. Help him by rewriting Response using a monad
transformer.

Now test the code by implementing getPowerLevel to retrieve
data from a set of imaginary allies. Here’s the data we’ll use:

81It is a well known fact that Autobot neural nets are implemented in Scala.
Decepticon brains are, of course, dynamically typed.

294

val powerLevels = Map(

 "Jazz" -> 6,

 "Bumblebee" -> 8,

 "Hot Rod" -> 10

)

If an Autobot isn’t in the powerLevels map, return an error
message reporting that they were unreachable. Include the name in
the message for good effect.

Two autobots can perform a special move if their combined power
level is greater than 15. Write a second method, canSpecialMove,
that accepts the names of two allies and checks whether a special
move is possible. If either ally is unavailable, fail with an
appropriate error message:

def canSpecialMove(ally1: String, ally2: String):

Response[Boolean] =

 ???

Finally, write a method tacticalReport that takes two ally names
and prints a message saying whether they can perform a special
move:

def tacticalReport(ally1: String, ally2: String): String =

 ???

You should be able to use report as follows:

tacticalReport("Jazz", "Bumblebee")

// res12: String = "Jazz and Bumblebee need a recharge."

tacticalReport("Bumblebee", "Hot Rod")

// res13: String = "Bumblebee and Hot Rod are ready to roll out!"

tacticalReport("Jazz", "Ironhide")

// res14: String = "Comms error: Ironhide unreachable"

295

11.4. Conclusions

In this chapter we introduced monad transformers, which
eliminate the need for nested for comprehensions and pattern
matching when working with “stacks” of nested monads.

Each monad transformer, such as FutureT, OptionT or EitherT,
provides the code needed to merge its related monad with other
monads. The transformer is a data structure that wraps a monad
stack, equipping it with map and flatMap methods that unpack and
repack the whole stack.

The type signatures of monad transformers are written from the
inside out, so an EitherT[Option, String, A] is a wrapper for an
Option[Either[String, A]]. It is often useful to use type aliases
when writing transformer types for deeply nested monads.

With this look at monad transformers, we have now covered
everything we need to know about monads and the sequencing of
computations using flatMap. In the next chapter we will switch
tack and discuss two new type classes, Semigroupal and
Applicative, that support new kinds of operation such as zipping
independent values within a context.

296

12. Semigroupal and

Applicative

In previous chapters we saw how functors and monads let us
sequence operations using map and flatMap. While functors and
monads are both immensely useful abstractions, there are certain
types of program flow that they cannot represent.

One such example is form validation. When we validate a form we
want to return all the errors to the user, not stop on the first error
we encounter. If we model this with a monad like Either, we fail
fast and lose errors. For example, consider parseInt below that
represents errors with Either.

import cats.syntax.all.*

def parseInt(str: String): Either[String, Int] =

 Either.catchOnly[NumberFormatException](str.toInt).

 leftMap(_ => s"Couldn't read $str")

Uses of parseInt fail on the first call and don’t go any further.

for {

 a <- parseInt("a")

 b <- parseInt("b")

 c <- parseInt("c")

} yield (a + b + c)

// res0: Either[String, Int] = Left(value = "Couldn't read a")

Another example is the concurrent evaluation of Futures. If we
have several long-running independent tasks, it makes sense to
execute them concurrently. However, monadic comprehension
only allows us to run them in sequence. map and flatMap aren’t
quite capable of capturing what we want because they make the
assumption that each computation is dependent on the previous
one:

297

// context2 is dependent on value1:

context1.flatMap(value1 => context2)

The calls to parseInt and Future.apply above are independent of
one another, but map and flatMap can’t exploit this. We need a
weaker construct—one that doesn’t guarantee sequencing—to
achieve the result we want. In this chapter we will look at three
type classes that support this pattern:

• Semigroupal encompasses the notion of composing pairs of
contexts. Cats provides syntax that makes use of Semigroupal
and Functor to allow users to sequence functions with multiple
arguments.

• Parallel converts types with a Monad instance to a related type
with a Semigroupal instance.

• Applicative extends Semigroupal and Functor. It provides a
way of applying functions to parameters within a context.
Applicative is the source of the pure method we introduced in
Chapter 10.

Applicatives are often formulated in terms of function application,
instead of the semigroupal formulation that is emphasised in Cats.
This alternative formulation provides a link to much of the
published research, and to other languages such as Haskell. We’ll
take a look at different formulations of Applicative, as well as the
relationships between Semigroupal, Functor, Applicative, and
Monad, towards the end of the chapter.

12.1. Semigroupal

cats.Semigroupal is a type class that allows us to combine
contexts. If we have two objects of type F[A] and F[B], a

298

Semigroupal[F] allows us to combine them to form an F[(A, B)].
Its definition in Cats is

trait Semigroupal[F[_]] {

 def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]

}

The parameters fa and fb are independent of one another: we can
compute them in either order before passing them to product.
This is in contrast to flatMap, which imposes a strict order on its
parameters. This gives us more freedom when defining instances
of Semigroupal than we get when defining Monads.

12.1.1. Joining Two Contexts

While Semigroup allows us to join values, Semigroupal allows us
to join contexts. Let’s join some Options as an example:

import cats.Semigroupal

Semigroupal[Option].product(Some(123), Some("abc"))

// res1: Option[Tuple2[Int, String]] = Some(value = (123, "abc"))

If both parameters are instances of Some, we end up with a tuple of
the values within. If either parameter evaluates to None, the entire
result is None:

Semigroupal[Option].product(None, Some("abc"))

// res2: Option[Tuple2[Nothing, String]] = None

Semigroupal[Option].product(Some(123), None)

// res3: Option[Tuple2[Int, Nothing]] = None

299

12.1.2. Joining Three or More Contexts

The companion object for Semigroupal defines a set of methods
on top of product. For example, the methods tuple2 through
tuple22 generalise product to different arities:

Semigroupal.tuple3(Option(1), Option(2), Option(3))

// res4: Option[Tuple3[Int, Int, Int]] = Some(value = (1, 2, 3))

Semigroupal.tuple3(Option(1), Option(2), Option.empty[Int])

// res5: Option[Tuple3[Int, Int, Int]] = None

The methods map2 through map22 apply a user-specified function
to the values inside 2 to 22 contexts:

Semigroupal.map3(Option(1), Option(2), Option(3))(_ + _ + _)

// res6: Option[Int] = Some(value = 6)

Semigroupal.map2(Option(1), Option.empty[Int])(_ + _)

// res7: Option[Int] = None

There are also methods contramap2 through contramap22 and
imap2 through imap22, that require instances of Contravariant
and Invariant respectively.

12.1.3. Semigroupal Laws

There is only one law for Semigroupal: the product method must
be associative.

product(a, product(b, c)) == product(product(a, b), c)

300

12.2. Semigroupal Syntax

Cats’ syntax provides shorthands for the methods described
above.82

Below is an example of the tupled syntax method applied to a
tuple of Options. It uses the Semigroupal for Option to zip the
values inside the Options, creating a single Option of a tuple.

import cats.syntax.all.*

(Option(123), Option("abc")).tupled

// res8: Option[Tuple2[Int, String]] = Some(value = (123, "abc"))

We can use the same trick on tuples of up to 22 values. Cats
defines a separate tupled method for each arity.

(Option(123), Option("abc"), Option(true)).tupled

// res9: Option[Tuple3[Int, String, Boolean]] = Some(

// value = (123, "abc", true)

//)

In addition to tupled, Cats’ provides a method called mapN that
accepts an implicit Functor and a function of the correct arity to
combine the values. Let’s start with the following case class.

final case class Cat(name: String, born: Int, color: String)

We can use mapN to convert optional values into an instance of the
case class as shown below.

(

 Option("Garfield"),

 Option(1978),

82Some of this syntax is defined for instances of the cats.Apply typeclass.
Almost all instances of Semigroupal are also instances of Apply, so the
distinction is not particularly important in practice.

301

 Option("Orange & black")

).mapN(Cat.apply)

// res10: Option[Cat] = Some(

// value = Cat(name = "Garfield", born = 1978, color = "Orange

& black")

//)

Of all the methods mentioned here, it is most common to use mapN.

Internally mapN uses the Semigroupal to extract the values from
the Option and the Functor to apply the values to the function.

12.2.1. Fancy Functors and Apply Syntax

Cats’ syntax also has contramapN and imapN methods that accept
Contravariant and Invariant functors (see Section 9.6). For
example, we can combine Monoids using Invariant. Here’s an
example:

import cats.Monoid

import cats.syntax.all.*

final case class Cat(

 name: String,

 yearOfBirth: Int,

 favoriteFoods: List[String]

)

val tupleToCat: (String, Int, List[String]) => Cat =

 Cat.apply

val catToTuple: Cat => (String, Int, List[String]) =

 cat => (cat.name, cat.yearOfBirth, cat.favoriteFoods)

given catMonoid: Monoid[Cat] = (

 Monoid[String],

 Monoid[Int],

 Monoid[List[String]]

).imapN(tupleToCat)(catToTuple)

Let’s define some Cats.

302

val garfield = Cat("Garfield", 1978, List("Lasagne"))

val heathcliff = Cat("Heathcliff", 1988, List("Junk Food"))

Now our Monoid allows us to create “empty” Cats, and add Cats
together using the syntax we first saw in Chapter 8.

garfield |+| heathcliff

// res12: Cat = Cat(

// name = "GarfieldHeathcliff",

// yearOfBirth = 3966,

// favoriteFoods = List("Lasagne", "Junk Food")

//)

12.3. Semigroupal Applied to

Different Types

Semigroupal doesn’t always provide the behaviour we expect,
particularly for types that also have instances of Monad. We have
seen the behaviour of the Semigroupal for Option. Let’s look at
some examples for other types.

12.3.1. Semigroupal Applied to List

Combining Lists with Semigroupal produces some potentially
unexpected results. We might expect code like the following to zip
the lists, but we actually get the cartesian product of their
elements:

import cats.Semigroupal

import cats.syntax.all.*

Semigroupal[List].product(List(1, 2), List(3, 4))

303

This is perhaps surprising. Zipping lists tends to be a more
common operation. We’ll see why we get this behaviour in a
moment, but let’s first look at Either.

12.3.2. Semigroupal Applied to Either

We opened this chapter with a discussion of fail-fast versus
accumulating error-handling. We might expect product applied to
Either to accumulate errors instead of fail fast. Again, perhaps
surprisingly, we find that product implements the same fail-fast
behaviour as flatMap.

type ErrorOr[A] = Either[Vector[String], A]

Semigroupal[ErrorOr].product(

 Left(Vector("Error 1")),

 Left(Vector("Error 2"))

)

// res1: Either[Vector[String], Tuple2[Nothing, Nothing]] = Left(

// value = Vector("Error 1")

//)

In this example product sees the first failure and stops, even
though it is possible to examine the second parameter and see that
it is also a failure.

12.3.3. Semigroupal Applied to Monads

The reason for the surprising results for List and Either is that
they are both monads. If we have a monad we can implement
product as follows.

import cats.Monad

def product[F[_]: Monad, A, B](fa: F[A], fb: F[B]): F[(A,B)] =

 fa.flatMap(a =>

304

 fb.map(b =>

 (a, b)

)

)

It would be very strange if we had different semantics for product
depending on how we implemented it. To ensure consistent
semantics, Cats’ Monad (which extends Semigroupal) provides a
standard definition of product in terms of map and flatMap as we
showed above.

So why bother with Semigroupal at all? The answer is that we can
create useful data types that have instances of Semigroupal (and
Applicative) but not Monad. This frees us to implement product
in different ways. We’ll examine this further in a moment when we
look at an alternative data type for error handling.

Exercise: The Product of Lists

Why does product for List produce the Cartesian product? We
saw an example above. Here it is again.

Semigroupal[List].product(List(1, 2), List(3, 4))

// res2: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3),

(2, 4))

We can also write this in terms of tupled.

(List(1, 2), List(3, 4)).tupled

// res3: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3),

(2, 4))

305

12.4. Parallel

In the previous section we saw that when call product on a type
that has a Monad instance we get sequential semantics. This makes
sense from the point-of-view of keeping consistency with
implementations of product in terms of flatMap and map.
However it’s not always what we want. The Parallel type class,
and its associated syntax, allows us to access alternate semantics
for certain monads.

We’ve seen how the product method on Either stops at the first
error. If we define some Left instances of Either

import cats.Semigroupal

type ErrorOr[A] = Either[Vector[String], A]

val error1: ErrorOr[Int] = Left(Vector("Error 1"))

val error2: ErrorOr[Int] = Left(Vector("Error 2"))

and then call product on them

Semigroupal[ErrorOr].product(error1, error2)

// res0: Either[Vector[String], Tuple2[Int, Int]] = Left(

// value = Vector("Error 1")

//)

we see we only get the one Left.

We can also write this using tupled as a short-cut.

import cats.syntax.all.*

(error1, error2).tupled

To collect all the errors we simply replace tupled with its
“parallel” version called parTupled.

306

(error1, error2).parTupled

// res2: Either[Vector[String], Tuple2[Int, Int]] = Left(

// value = Vector("Error 1", "Error 2")

//)

Notice that both errors are returned! This behaviour is not special
to using Vector as the error type. Any type that has a Semigroup
instance will work. For example, we can use a use List instead

type ErrorOrList[A] = Either[List[String], A]

val errStr1: ErrorOrList[Int] = Left(List("error 1"))

val errStr2: ErrorOrList[Int] = Left(List("error 2"))

and parTupled will collect all the errors as before.

(errStr1, errStr2).parTupled

// res3: Either[List[String], Tuple2[Int, Int]] = Left(

// value = List("error 1", "error 2")

//)

There are many syntax methods provided by Parallel for
methods on Semigroupal and related types, but the most
commonly used is parMapN.

Let’s define some successes

val success1: ErrorOr[Int] = Right(1)

val success2: ErrorOr[Int] = Right(2)

val addTwo = (x: Int, y: Int) => x + y

and see how we can use parMapN to apply a function in an error
handling situation.

(error1, error2).parMapN(addTwo)

(success1, success2).parMapN(addTwo)

// res4: Either[Vector[String], Int] = Right(value = 3)

It’s time we looked into how Parallel works. The definition
below is the core of Parallel.

307

trait Parallel[M[_]] {

 type F[_]

 def applicative: Applicative[F]

 def monad: Monad[M]

 def parallel: ~>[M, F]

}

This tells us if there is a Parallel instance for some type
constructor M then:

• there must be a Monad instance for M;
• there is a related type constructor F that has an Applicative

instance; and
• we can convert M to F.

We haven’t seen ~> before. It’s a type alias for
cats.arrow.FunctionK and is what performs the conversion from
M to F. A normal function A => B converts values of type A to
values of type B. Remember that M and F are not types; they are
type constructors. A FunctionK M ~> F is a function from a value
with type M[A] to a value with type F[A]. Let’s see a quick
example by defining a FunctionK that converts an Option to a
List.

import cats.arrow.FunctionK

object optionToList extends FunctionK[Option, List] {

 def apply[A](fa: Option[A]): List[A] =

 fa match {

 case None => List.empty[A]

 case Some(a) => List(a)

 }

}

We can use it like a function to perform the expected
transformation.

optionToList(Some(1))

// res5: List[Int] = List(1)

308

optionToList(None)

// res6: List[Nothing] = List()

As the type parameter A is generic a FunctionK cannot inspect any
values contained with the type constructor M. The conversion must
be performed purely in terms of the structure of the type
constructors M and F. We can see in optionToList above this is
indeed the case.

So in summary, Parallel allows us to take a type that has a
monad instance and convert it to some related type that instead
has an applicative (which is equivalent to Semigroupal) instance.
This related type will have some useful alternate semantics. We’ve
seen the case above where the related applicative for Either
allows for accumulation of errors instead of fail-fast semantics.

Now we’ve seen Parallel it’s time to finally learn about
Applicative.

Exercise: Parallel List

Does List have a Parallel instance? If so, what does the
Parallel instance do?

12.5. Apply and Applicative

Semigroupals aren’t mentioned frequently in the wider functional
programming literature. They provide a subset of the functionality
of a related type class called an applicative functor (“applicative”
for short).

Cats models applicatives using two type classes. The first,
cats.Apply, extends Semigroupal and Functor and adds an ap
method that applies a parameter to a function within a context.
The second, cats.Applicative, extends Apply and adds the pure

309

method introduced in Chapter 10. Here’s a simplified definition in
code:

trait Apply[F[_]] extends Semigroupal[F] with Functor[F] {

 def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]

 def product[A, B](fa: F[A], fb: F[B]): F[(A, B)] =

 ap(map(fa)(a => (b: B) => (a, b)))(fb)

}

trait Applicative[F[_]] extends Apply[F] {

 def pure[A](a: A): F[A]

}

Breaking this down, the ap method applies a parameter fa to a
function ff within a context F[_]. The product method from
Semigroupal is defined in terms of ap and map.

Don’t worry too much about the implementation of product—it’s
difficult to read and the details aren’t particuarly important. The
main point is that there is a tight relationship between product,
ap, and map that allows any one of them to be defined in terms of
the other two.

Applicative also introduces the pure method. This is the same
pure we saw in Monad. It constructs a new applicative instance
from an unwrapped value. In this sense, Applicative is related to
Apply as Monoid is related to Semigroup.

12.5.1. The Hierarchy of Sequencing Type

Classes

With the introduction of Apply and Applicative, we can zoom out
and see a whole family of type classes that concern themselves
with sequencing computations in different ways. Figure 11 shows
the relationship between the type classes covered in this book.

310

Figure 11: Monad type class hierarchy

Each type class in the hierarchy represents a particular set of
sequencing semantics, introduces a set of characteristic methods,
and defines the functionality of its supertypes in terms of them:

• every monad is an applicative;
• every applicative a semigroupal;
• and so on.

Because of the lawful nature of the relationships between the type
classes, the inheritance relationships are constant across all
instances of a type class. Apply defines product in terms of ap and
map; Monad defines product, ap, and map, in terms of pure and
flatMap.

To illustrate this let’s consider two hypothetical data types:

• Foo is a monad. It has an instance of the Monad type class that
implements pure and flatMap and inherits standard definitions
of product, map, and ap;

• Bar is an applicative functor. It has an instance of Applicative
that implements pure and ap and inherits standard definitions of
product and map.

What can we say about these two data types without knowing
more about their implementation?

311

We know strictly more about Foo than Bar: Monad is a subtype of
Applicative, so we can guarantee properties of Foo (namely
flatMap) that we cannot guarantee with Bar. Conversely, we know
that Bar may have a wider range of behaviours than Foo. It has
fewer laws to obey (no flatMap), so it can implement behaviours
that Foo cannot.

This demonstrates the classic trade-off of power (in the
mathematical sense) versus constraint. The more constraints we
place on a data type, the more guarantees we have about its
behaviour, but the fewer behaviours we can model.

Monads happen to be a sweet spot in this trade-off. They are
flexible enough to model a wide range of behaviours and
restrictive enough to give strong guarantees about those
behaviours. However, there are situations where monads aren’t the
right tool for the job. Sometimes we want Thai food, and burritos
just won’t satisfy.

Whereas monads impose a strict sequencing on the computations
they model, applicatives and semigroupals impose no such
restriction. This puts them in a different sweet spot in the
hierarchy. We can use them to represent classes of independent
computations that monads cannot.

We choose our semantics by choosing our data structures. If we
choose a monad, we get strict sequencing. If we choose an
applicative, we lose the ability to flatMap. This is the trade-off
enforced by the consistency laws. So choose your types carefully!

12.6. Summary

While monads and functors are the most widely used sequencing
data types we’ve covered in this book, semigroupals and
applicatives are the most general. These type classes provide a

312

generic mechanism to combine values and apply functions within
a context, from which we can fashion monads and a variety of
other combinators.

Semigroupal and Applicative are most commonly used as a
means of combining independent values such as the results of
validation rules. Cats provides the Parallel type class to allow to
easily switch between a monad and an alternative applicative (or
semigroupal) semantics.

Applicative and semigroupal are both introduced in Applicative

Programming with Effects [54]83.

83Semigroupal is referred to as “monoidal” in the paper.

313

314

13. Foldable and Traverse

In this chapter we’ll look at two type classes that capture iteration
over collections:

• Foldable abstracts the familiar foldLeft and foldRight
operations;

• Traverse is a higher-level abstraction that uses Applicatives to
iterate with less pain than folding.

We’ll start by looking at Foldable, and then examine cases where
folding becomes complex and Traverse becomes convenient.

13.1. Foldable

The Foldable type class captures the foldLeft and foldRight
methods we’re used to using with sequences like List and Vector.
Using Foldable, we can write generic folds that work with a
variety of sequence types. We can also invent new sequences and
plug them into our code. Foldable gives us great use cases for
Monoids and the Eval monad.

13.1.1. Folds and Folding

Let’s start with a quick recap of the general concept of folding a
sequence. Here’s an example of a fold.

def show[A](list: List[A]): String =

 list.foldLeft("nil")((accum, item) => s"$item then $accum")

This produces output like the following.

315

show(Nil)

// res0: String = "nil"

show(List(1, 2, 3))

// res1: String = "3 then 2 then 1 then nil"

There are two parameters we pass to foldLeft: an accumulator
value and a binary function to combine it with each item in the
sequence.

The foldLeft method works recursively down the sequence. Our
binary function is called repeatedly for each item, the result of
each call becoming the accumulator for the next. When we reach
the end of the sequence, the final accumulator becomes our final
result.

Depending on the operation we’re performing, the order in which
we fold may be important. Because of this there are two standard
variants of fold:

• foldLeft traverses from “left” to “right” (start to finish);
• foldRight traverses from “right” to “left” (finish to start).

Figure 12 illustrates each direction.

1

1

2

2

3

3 0

3

5

6

+

+

+

1

2

3
1

2

3

0

1

3

+

+

+

6

Figure 12: Illustration of foldLeft and foldRight

foldLeft and foldRight are equivalent if our binary operation is
associative. For example, we can sum a List[Int] by folding in
either direction, using 0 as our accumulator and addition as our
operation:

316

List(1, 2, 3).foldLeft(0)(_ + _)

// res2: Int = 6

List(1, 2, 3).foldRight(0)(_ + _)

// res3: Int = 6

If we provide a non-associative operator the order of evaluation
makes a difference. For example, if we fold using subtraction, we
get different results in each direction:

List(1, 2, 3).foldLeft(0)(_ - _)

// res4: Int = -6

List(1, 2, 3).foldRight(0)(_ - _)

// res5: Int = 2

Folds on Sequences

In Section 3.3 we learned that folds are an abstraction of
structural recursion. Here we are looking only at folds on
sequences, which are ordered collections of data. Every
sequence, regardless of implementation, can be viewed as a
list. This means it is either an empty sequence or contains
an elements and a sequence. Using this view we can define
foldLeft and foldRight for any sequence.

Exercise: Reflecting on Folds

Try using foldLeft and foldRight with an empty list as the
accumulator and :: as the binary operator. What results do you
get in each case?

Exercise: Scaf-fold-ing Other Methods

foldLeft and foldRight are very general methods. We can use
them to implement many of the other high-level sequence

317

operations we know. Prove this to yourself by implementing
substitutes for List's map, flatMap, filter, and sum methods in
terms of foldRight.

13.1.2. Foldable in Cats

Cats’ Foldable abstracts foldLeft and foldRight into a type
class. Instances of Foldable define these two methods and inherit
a host of derived methods. Cats provides out-of-the-box instances
of Foldable for a handful of Scala data types: List, Vector,
LazyList, and Option.

We can summon instances as usual using Foldable.apply and call
their implementations of foldLeft directly. Let’s define an
instance of List.

val ints = List(1, 2, 3)

Here is an example using the Foldable instance on List.

import cats.Foldable

Foldable[List].foldLeft(ints, 0)(_ + _)

// res0: Int = 6

Other sequences like Vector and LazyList work in the same way.
Here is an example using Option, which is treated like a sequence
of zero or one elements.

val maybeInt = Option(123)

Foldable[Option].foldLeft(maybeInt, 10)(_ * _)

318

13.1.2.1. Folding Right

Foldable defines foldRight differently to foldLeft, in terms of
the Eval monad:

def foldRight[A, B](fa: F[A], lb: Eval[B])

 (f: (A, Eval[B]) => Eval[B]): Eval[B]

Using Eval means folding is always stack safe, even when the
collection’s default definition of foldRight is not. For example, the
default implementation of foldRight for LazyList is not stack
safe. The longer the lazy list, the larger the stack requirements for
the fold. A sufficiently large lazy list will trigger a
StackOverflowError:

val bigData = (1 to 100000).to(LazyList)

bigData.foldRight(0L)(_ + _)

// java.lang.StackOverflowError ...

Using Foldable forces us to use stack safe operations.

import cats.Eval

val eval: Eval[Long] =

 Foldable[LazyList].

 foldRight(bigData, Eval.now(0L)) { (num, eval) =>

 eval.map(_ + num)

 }

This fixes the overflow exception.

eval.value

// res3: Long = 5000050000L

319

Stack Safety in the Standard Library

Stack safety isn’t typically an issue when using the standard
library. The most commonly used collection types, such as
List and Vector, provide stack safe implementations of
foldRight.

(1 to 100000).toList.foldRight(0L)(_ + _)

(1 to 100000).toVector.foldRight(0L)(_ + _)

// res4: Long = 5000050000L

We’ve called out LazyList because it is an exception to this
rule. Whatever data type we’re using, though, it’s useful to
know that Eval has our back.

13.1.2.2. Folding with Monoids

Foldable provides us with a host of useful methods defined on top
of foldLeft. Many of these are copies of familiar methods from
the standard library: find, exists, forall, toList, isEmpty,
nonEmpty, and so on:

Foldable[Option].nonEmpty(Option(42))

// res5: Boolean = true

Foldable[List].find(List(1, 2, 3))(_ % 2 == 0)

// res6: Option[Int] = Some(value = 2)

In addition to these familiar methods, Cats provides two methods
that make use of Monoids:

• combineAll (and its alias fold) combines all elements in the
sequence using a Monoid;

• foldMap maps a user-supplied function over the sequence and
combines the results using a Monoid.

320

For example, we can use combineAll to sum over a List[Int].

Foldable[List].combineAll(List(1, 2, 3))

// res7: Int = 6

Alternatively, we can use foldMap to convert each Int to a String
and concatenate them.

Foldable[List].foldMap(List(1, 2, 3))(_.toString)

// res8: String = "123"

Finally, we can compose Foldables to work on nested sequences.
Take ints below.

val ints = List(Vector(1, 2, 3), Vector(4, 5, 6))

Composing Foldables for List and Vector supports deep
traversal on ints.

(Foldable[List].compose(using Foldable[Vector])).combineAll(ints)

// res9: Int = 21

13.1.2.3. Syntax for Foldable

Every method in Foldable is available in syntax form. In each
case, the first argument to the method on Foldable becomes the
receiver of the method call:

import cats.syntax.all.*

List(1, 2, 3).combineAll

// res10: Int = 6

List(1, 2, 3).foldMap(_.toString)

// res11: String = "123"

321

Explicits over Implicits

Remember that Scala will only use an instance of Foldable
if the method isn’t explicitly available on the receiver. For
example, the following code will use the version of
foldLeft defined on List

List(1, 2, 3).foldLeft(0)(_ + _)

// res12: Int = 6

whereas the following generic code will use Foldable.

def sum[F[_]: Foldable](values: F[Int]): Int =

 values.foldLeft(0)(_ + _)

We typically don’t need to worry about this distinction. It’s
a feature! We call the method we want and the compiler
uses a Foldable when needed to ensure our code works as
expected. If we need a stack-safe implementation of
foldRight, using Eval as the accumulator is enough to
force the compiler to select the method from Cats.

13.2. Traverse

foldLeft and foldRight are flexible iteration methods but they
require us to do a lot of work to define accumulators and
combinator functions. The Traverse type class is a higher level
tool that leverages Applicatives to provide a more convenient,
more lawful, pattern for iteration.

322

13.2.1. Traversing with Futures

We can demonstrate Traverse using the Future.traverse and
Future.sequence methods in the Scala standard library. These
methods provide Future-specific implementations of the traverse
pattern. As an example, suppose we have a list of server
hostnames and a method to poll a host for its uptime.

import scala.concurrent.*

import scala.concurrent.duration.*

import scala.concurrent.ExecutionContext.Implicits.global

val hostnames = List(

 "alpha.example.com",

 "beta.example.com",

 "gamma.demo.com"

)

def getUptime(hostname: String): Future[Int] =

 Future(hostname.length * 60) // just for demonstration

Now, suppose we want to poll all of the hosts and collect all of
their uptimes. We can’t simply map over hostnames because the
result—a List[Future[Int]]—would contain more than one
Future. We need to reduce the results to a single Future to get
something we can block on. Let’s start by doing this manually
using a fold.

val allUptimes: Future[List[Int]] =

 hostnames.foldLeft(Future(List.empty[Int])) {

 (accum, host) =>

 val uptime = getUptime(host)

 for {

 accum <- accum

 uptime <- uptime

 } yield accum :+ uptime

 }

Intuitively, we iterate over hostnames, call func for each item, and
combine the results into a list. This produces a correct result.

323

Await.result(allUptimes, 1.second)

// res0: List[Int] = List(1020, 960, 840)

However, the code is fairly unwieldy because of the need to create
and combine Futures at every iteration. We can improve on things
greatly using Future.traverse, which is tailor-made for this
pattern.

val allUptimes: Future[List[Int]] =

 Future.traverse(hostnames)(getUptime)

This produces the same result as before, but the code is much
clearer and more concise.

Await.result(allUptimes, 1.second)

// res2: List[Int] = List(1020, 960, 840)

Let’s see how it works. If we ignore distractions like CanBuildFrom
and ExecutionContext, the implementation of Future.traverse
in the standard library looks like this:

def traverse[A, B](values: List[A])

 (func: A => Future[B]): Future[List[B]] =

 values.foldLeft(Future(List.empty[B])) { (accum, host) =>

 val item = func(host)

 for {

 accum <- accum

 item <- item

 } yield accum :+ item

 }

This is essentially the same as our example code above.
Future.traverse is abstracting away the pain of folding and
defining accumulators and combination functions. It gives us a
clean high-level interface to do what we want:

• start with a List[A];
• provide a function A => Future[B]; and
• end up with a Future[List[B]].

324

The standard library also provides another method,
Future.sequence, that assumes we’re starting with a
List[Future[B]] and doesn’t require us to provide a
transformation function.

object Future {

 def sequence[B](futures: List[Future[B]]): Future[List[B]] =

 traverse(futures)(identity)

 // etc...

}

In this case the intuitive understanding is even simpler:

• start with a List[Future[A]]; and
• end up with a Future[List[A]].

Future.traverse and Future.sequence solve a very specific
problem: they allow us to iterate over a sequence of Futures and
accumulate a result. The simplified examples above only work
with Lists, but the real Future.traverse and Future.sequence
work with any standard Scala collection.

Cats’ Traverse type class generalises these patterns to work with
any type of Applicative: Future, Option, List, and so on. We’ll
approach Traverse in the next sections in two steps: first we’ll
generalise over the Applicative, then we’ll generalise over the
sequence type. We’ll end up with an extremely valuable tool that
trivialises many operations involving sequences and other data
types.

13.2.2. Traversing with Applicatives

If we squint, we’ll see that we can rewrite traverse in terms of an
Applicative. Our accumulator from the example above:

Future(List.empty[Int])

325

can be generalized to a use of Applicative.pure.

import cats.syntax.all.*

List.empty[Int].pure[Future]

Our combinator, which used to be this:

def oldCombine(

 accum : Future[List[Int]],

 host : String

): Future[List[Int]] = {

 val uptime = getUptime(host)

 for {

 accum <- accum

 uptime <- uptime

 } yield accum :+ uptime

}

can be rewritten to use mapN, another Applicative operation.

// Combining accumulator and hostname using an Applicative:

def newCombine(

 accum: Future[List[Int]],

 host: String

): Future[List[Int]] =

 (accum, getUptime(host)).mapN(_ :+ _)

By substituting these snippets back into the definition of traverse
we can generalise it to to work with any Applicative.

import cats.Applicative

def listTraverse[F[_]: Applicative, A, B]

 (list: List[A])(func: A => F[B]): F[List[B]] =

 list.foldLeft(List.empty[B].pure[F]) { (accum, item) =>

 (accum, func(item)).mapN(_ :+ _)

 }

def listSequence[F[_]: Applicative, B]

 (list: List[F[B]]): F[List[B]] =

 listTraverse(list)(identity)

326

We can use listTraverse to re-implement our uptime example.

val totalUptime = listTraverse(hostnames)(getUptime)

Once again, we get the same result.

Await.result(totalUptime, 1.second)

// res5: List[Int] = List(1020, 960, 840)

or we can use it with other Applicative data types as shown in
the following exercises.

Exercise: Traversing with Vectors

What is the result of the following?

listSequence(List(Vector(1, 2), Vector(3, 4)))

What about a list of three parameters?

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

Exercise: Traversing with Options

Here’s an example that uses Options:

def process(inputs: List[Int]) =

 listTraverse(inputs)(n => if(n % 2 == 0) Some(n) else None)

What is the return type of this method? What does it produce for
the following inputs?

process(List(2, 4, 6))

process(List(1, 2, 3))

327

Exercise: Traversing with Validated

Finally, here is an example that uses Validated:

import cats.data.Validated

type ErrorsOr[A] = Validated[List[String], A]

def process(inputs: List[Int]): ErrorsOr[List[Int]] =

 listTraverse(inputs) { n =>

 if(n % 2 == 0) {

 Validated.valid(n)

 } else {

 Validated.invalid(List(s"$n is not even"))

 }

 }

What does this method produce for the following inputs?

process(List(2, 4, 6))

process(List(1, 2, 3))

13.2.3. Traverse in Cats

Our listTraverse and listSequence methods work with any
type of Applicative, but they only work with one type of
sequence: List. We can generalise over different sequence types
using a type class, which brings us to Cats’ Traverse. Here’s the
abbreviated definition:

package cats

trait Traverse[F[_]] {

 def traverse[G[_]: Applicative, A, B]

 (inputs: F[A])(func: A => G[B]): G[F[B]]

 def sequence[G[_]: Applicative, B]

 (inputs: F[G[B]]): G[F[B]] =

328

 traverse(inputs)(identity)

}

Cats provides instances of Traverse for List, Vector, Stream,
Option, Either, and a variety of other types. We can summon
instances as usual using Traverse.apply and use the traverse
and sequence methods as described in the previous section.

import cats.Traverse

val totalUptime: Future[List[Int]] =

 Traverse[List].traverse(hostnames)(getUptime)

We get the same result as before.

Await.result(totalUptime, 1.second)

// res0: List[Int] = List(1020, 960, 840)

There are also syntax versions of the methods.

import cats.syntax.all.*

val numbers = hostnames.traverse(getUptime)

val numbers2 =

 List(Future(1), Future(2), Future(3)).sequence

As you can see, this is much more compact and readable than the
foldLeft code we started with earlier this chapter!

13.3. Conclusions

In this chapter we were introduced to Foldable and Traverse, two
type classes for iterating over sequences.

Foldable abstracts the foldLeft and foldRight methods we
know from collections in the standard library. It adds stack-safe
implementations of these methods to a handful of extra data types,

329

and defines a host of situationally useful additions. That said,
Foldable doesn’t introduce much that we didn’t already know.

The real power comes from Traverse, which abstracts and
generalises the traverse and sequence methods we know from
Future. Using these methods we can turn an F[G[A]] into a
G[F[A]] for any F with an instance of Traverse and any G with an
instance of Applicative. In terms of the reduction we get in lines
of code, Traverse is one of the most powerful patterns in this
book. We can reduce folds of many lines down to a single
traverse.

As far as I know, the Foldable type class was cooked up by the
Haskell community as a simple abstraction over the well known
left- and right-folds. The traverse method, however, comes from
The Essence of the Iterator Pattern [33].

330

Part III: Interpreters

331

332

14. Indexed Types

In this chapter we look at indexed types. An indexed type is a
type constructor, so a type like F[_], along with a set of types that
can fill in the constructor’s type parameters. Let’s say this set of
types is Int, String, and Option[Double]. Then, for a type
constructor F we can construct an indexed type from the set
F[Int], F[String], and F[Option[Double]]. The types Int,
String, and Option[Double] act as indices into the set F[Int],
F[String], and F[Option[Double]], hence the name. The type
constructor F can be either data and codata.

The description above is very abstract, and doesn’t help us
understand how indexed types are useful. We’ll see a lot of details
and examples in this chapter, but let’s start with a more useful
high-level overview. We can think of indexed types as working
with proofs that a type parameter is equal to a particular element
from the set of indices. Indexed data provides this evidence when
we destructure it, while indexed codata requires this evidence
when we call methods. Remember the definition of algebras we
gave in Section 6.2, where we said an algebra consists of three
different kinds of methods: constructors, combinators, and
interpreters. Indexed types allows us to do two things:

• We can restrict where constructors and combinators can be
used. We can think of representing some state using a type
parameter of F, and we can only call particular methods when
we are in the correct state. In this case we are working with
indexed codata.

• We restrict the types produced by interpreters, enabling us to
create type-safe interpreters that guarantee they only encounter
particular states when they run. Again these constraints are
represented using type parameters. In this case we are working
with indexed data.

333

Indexed data are more usually known as generalized algebraic

data types. Indexed codata are sometimes known as typestate.
Both can make use of what is known as phantom types. Indeed,
an early name for indexed data was first-class phantom types.
As you might expect, indexed data and indexed codata are dual to
one another.

14.1. Phantom Types

Phantom types are a basic building block of indexed types, so we’ll
start with an example of them. A phantom type is simply a type
parameter that doesn’t correspond to any value. In the example
below, the type parameter A is a phantom type, because there is no
value of type A, while B is not because there is a value of that type.

final case class PhantomExample[A, B](value: B)

Phantom types are used to shift constraints to compile time. A
simple example involves units of measurement. Most of the world
has standardized on SI units, such as metres and litres. However,
other measuring systems, such as Imperial units, remain in use
some countries or in some niches within countries that otherwise
use metric. Differences between different measurement systems
can cause problems. A dramatic example is the [loss of the Mars
orbiter][mars], caused by two software components using
incompatible measurements (one using metric, and one using US
customary measurements.)

With phantom types we can annotate measurements with their
units, which in turn can prevent us ever using incompatible units.
Let’s work with just length, which is sufficient to show the idea.
We’ll start by defining a length type with a phantom type
recording the unit, and a method that allows us to add together
lengths.

334

final case class Length[Unit](value: Double) {

 def +(that: Length[Unit]): Length[Unit] =

 Length[Unit](this.value + that.value)

}

We’ll need to define a few unit types to use this, and some Lengths
using these units.

trait Metres

trait Feet

val threeMetres = Length[Metres](3)

val threeFeetAndRising = Length[Feet](3)

Now we can add Lengths together if they have the same unit.

threeMetres + threeMetres

// res0: Length[Metres] = Length(value = 6.0)

However if we try to add Lengths with different units the code
will not compile.

threeMetres + threeFeetAndRising

// error:

// Found: (repl.MdocSession.MdocApp.threeFeetAndRising :

//

repl.MdocSession.MdocApp.Length[repl.MdocSession.MdocApp.Feet])

// Required:

repl.MdocSession.MdocApp.Length[repl.MdocSession.MdocApp.Metres]

// threeMetres + threeFeetAndRising

// ^^^^^^^^^^^^^^^^^^

There is one big problem with phantom types on their own: there
is no way to use the information stored in the phantom type in
further processing. For example, force times length gives torque
(with the SI unit of newton metres). However we cannot define a *
method on Length that can only be called if the Unit is Metre
using just the tool of phantom types. Similarly, we cannot define,
say, a toString method that uses the Unit type to appropriately

335

print the result. Solving these problems leads us to indexed codata,
so let’s now look at that.

[mars]: https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#
Cause_of_failure

14.2. Indexed Codata

The basic idea of indexed codata is to prevent methods being
called unless certain conditions, encoded in types, are met. More
precisely, methods are guarded by type equalities that callers must
prove they satisfy to call a method. The contextual abstraction
features, given instances and using clauses, are used to implement
this in Scala.

We’ll start our exploration of indexed codata with a very simple
example. We are going to define a switch that can only be turned
on when it is off, and off when it is on. Since this is codata, we
start with an interface.

trait Switch {

 def on: Switch

 def off: Switch

}

There are no constraints on this interface as defined; we can turn
any switch on, even if it is already on, and vice versa. The first step
to implement such a constraint is to add a type parameter, which
will hold the state of the Switch. This type parameter doesn’t
correspond to any data we store in Switch, so it is a phantom type.

trait Switch[A] {

 def on: Switch[A]

 def off: Switch[A]

}

336

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

We are now going to add constraints that say we can only call
certain methods when this type parameter corresponds to
particular concrete types. It is in this way that indexed codata goes
beyond what phantom types alone can do: we can inspect, at
compile-time, the type of a type parameter and make decisions
based on this type.

Implementing these constraints has two parts. The first is defining
types to represent on and off.

trait On

trait Off

The second step is to add the constraints to the relevant methods
on Switch. Here is how we do it.

trait Switch[A] {

 def on(using ev: A =:= Off): Switch[On]

 def off(using ev: A =:= On): Switch[Off]

}

We can create an implementation to show it really works.

final case class SimpleSwitch[A]() extends Switch[A] {

 def on(using ev: A =:= Off): Switch[On] =

 SimpleSwitch()

 def off(using ev: A =:= On): Switch[Off] =

 SimpleSwitch()

}

object SimpleSwitch {

 val on: Switch[On] = SimpleSwitch()

 val off: Switch[Off] = SimpleSwitch()

}

Here are some examples of using it correctly

SimpleSwitch.on.off

// res2: Switch[Off] = SimpleSwitch()

SimpleSwitch.off.on

// res3: Switch[On] = SimpleSwitch()

337

Incorrect uses fail to compile.

SimpleSwitch.on.on

// error:

// Cannot prove that MdocApp1.this.On =:= MdocApp1.this.Off.

The constraint is made of two parts: using clauses, which we
learned about in Chapter 5, and the [A =:= B][scala.=:=]
construction, which is new. =:= represents a type equality. If a
given instance A =:= B exists, then the type A is equal to the type
B. (Note we can write this with the more familiar prefix notation
=:=[A, B] if we prefer.) We never create these instances ourselves;
instead the compiler creates them for us. In the method on we are
asking the compiler to construct an instance A =:= Off, which can
only be done if A is Off. This in turn means we can only call the
method when the Switch is Off. This is the core idea of indexed
codata: we raise states into types, and restrict method calls to a
subset of states.

This is a different use of contextual abstraction to type classes.
Type classes associate operations with types. What we’re doing
here is proving some property of a type with respect to another
type. More precisely we’re proving that a type parameter is equal
to a particular type. The given instance only exists when the
compiler can prove this is the case. Hence these given instances
are sometimes called evidence or witnesses. This different view
subsumes type classes, as we can think of type classes as evidence
that a type implements a certain interface.

14.2.0.1. Exercise: Torque {-}

In Section 14.1 we saw we could use phantom types to represent
units. We also ran into a limitation: we had no way to inspect the
phantom types and hence make decisions based on them. Now,
with indexed codata, we can do solve this problem.

338

Below if the definition of Length we previously used. Your mission
is to:

1. implement a type Force, parameterized by a phantom type that
represents the units of force;

2. implement a type Torque, parameterized by a phantom type
that represents the units of torque;

3. define types Newtons and NewtonMetres to represent force in SI
units;

4. implement a method * on Force that accepts a Length and
returns a Torque. It can only be called if the Force is in Newtons
and the Length is in Metres. In this case the Torque is in
NewtonMetres. (Torque is force times length.)

final case class Length[Unit](value: Double) {

 def +(that: Length[Unit]): Length[Unit] =

 Length[Unit](this.value + that.value)

}

14.2.1. API Protocols

An API protocol defines the order in which methods must be
called. The protocol in the case of Switch is that we can only call
off after calling on and vice versa. This protocol is a simple finite
state machine, and illustrated in Figure 13. Many common types
have similar protocols. For example, files can only be read once
they are opened and cannot be read once they have been closed.

On Off

off

on

Figure 13: The switch API protocol

Indexed codata allows us to enforce API protocols at compile-time.
Often these protocols are finite-state machines. We can represent

339

these protocols with a single type parameter that represents the
state, as we did with Switch. We can also use multiple type
parameters if that makes for a more convenient representation.

Let’s see an example using multiple type parameters. We’re going
to build an API that represents a very limited subset of [HTML]
[html], the language the defines web pages. An example of HTML
is below.

<!DOCTYPE html>

<html>

 <head><title>Our Amazing Web Page</title></head>

 <body>

 <h1>This Is Our Amazing Web Page</h1>

 <p>Please be in awe of its amazingness</p>

 </body>

</html>

In HTML the content of the page is marked up with tags, like
<h1>, that give it meaning. For example, <h1> means a heading at
level one, and <p> means a paragraph. An opening tag is closed by
a corresponding closing tag, such as </h1> for <h1> and </p> for
<p>.

There are several rules for valid HTML[^valid-html]. We’re going
to focus on the following:

1. Within the html tag there can only be a head and a body tag, in
that order.

2. Within the head tag there must be exactly one title, and there
can be any other number of allowed tags (of which we’re only
going to model link).

3. Within the body there can be any number of allowed tags (of
which we are only going to model h1 and p).

We’re going to use a Church-encoded representation for HTML, so
tags are created by method calls. Figure 14 shows the finite state
machine representation of the API protocol. I find it easier to read
as a regular expression, which we can write down as

340

head link title link body (h1 | p)∗

Head

Link

Title

Link

Body

H1 P

Figure 14: The HTML API protocol

As the code is fairly repetitive I will just present all the code and
then discuss the important parts. Here’s the implementation.

sealed trait StructureState

trait Empty extends StructureState

trait InHead extends StructureState

trait InBody extends StructureState

sealed trait TitleState

trait WithoutTitle extends TitleState

trait WithTitle extends TitleState

// Not a case class so external users cannot copy it

// and break invariants

final class Html[S <: StructureState, T <: TitleState](

 head: Vector[String],

 body: Vector[String]

) {

 // Head tags ---

 def head(using S =:= Empty): Html[InHead, WithoutTitle] =

 Html(head, body)

 def title(

 text: String

)(using S =:= InHead, T =:= WithoutTitle): Html[InHead,

WithTitle] =

 Html(head :+ s"<title>$text</title>", this.body)

 def link(rel: String, href: String)(using S =:= InHead):

Html[InHead, T] =

 Html(head :+ s"<link rel=\"$rel\" href=\"$href\"/>", body)

 // Body tags ---

341

 def body(using S =:= InHead, T =:= WithTitle): Html[InBody,

WithTitle] =

 Html(head, body)

 def h1(text: String)(using S =:= InBody): Html[InBody, T] =

 Html(head, body :+ s"<h1>$text</h1>")

 def p(text: String)(using S =:= InBody): Html[InBody, T] =

 Html(head, body :+ s"<p>$text</p>")

 // Interpreter --

 override def toString(): String = {

 val h = head.mkString(" <head>\n ", "\n ", "\n </

head>")

 val b = body.mkString(" <body>\n ", "\n ", "\n </

body>")

 s"\n<html>\n$h\n$b\n</html>"

 }

}

object Html {

 val empty: Html[Empty, WithoutTitle] = Html(Vector.empty,

Vector.empty)

}

The key point is that we factor the state into two components.
StructureState represents where in the overall structure we are
(inside the head, inside the body, or inside neither). TitleState
represents the state when defining the elements inside the head,
specifically whether we have a title element or not. We could
certainly represent this with one state type variable, but I find the
factored representation both easier to work with and easier for
other developers to understand.

Here’s an example in use.

Html.empty.head

 .link("stylesheet", "styles.css")

 .title("Our Amazing Webpage")

 .body

 .h1("Where Amazing Exists")

342

 .p("Right here")

 .toString

// res6: String = """

// <html>

// <head>

// <link rel="stylesheet" href="styles.css"/>

// <title>Our Amazing Webpage</title>

// </head>

// <body>

// <h1>Where Amazing Exists</h1>

// <p>Right here</p>

// </body>

// </html>"""

Here’s an example of the type system preventing an invalid
construction, in this case the lack of a title.

Html.empty.head

 .link("stylesheet", "styles.css")

 .body

 .h1("This Shouldn't Work")

// error:

// Cannot prove that MdocApp2.this.WithoutTitle =:=

MdocApp2.this.WithTitle.

These error messages are not great. We’ll address this in
Chapter 17.

We can implement more complex protocols, such as those that can
be represented by context-free or even context-sensitive
grammars, using the same technique.

14.2.1.1. Exercise: HTML API Design {-}

I don’t particularly like the HTML API we developed above, as the
flat method call structure doesn’t match the nesting in the HTML
structure we’re creating. I would prefer to write the following.

Html.empty

 .head(_.title("Our Amazing Webpage"))

343

 .body(_.h1("Where Amazing Happens").p("Right here"))

 .toString

We still require the head is specified before the body, but now the
nesting of the method calls matches the nesting of the structure.
Notice we’re still using a Church-encoded representation.

Can you think of how to implement this? You’ll need to use
indexed codata, and perhaps a bit of inspiration. This is a very
open ended question, so don’t worry if you struggle with it!

[html]: https://html.spec.whatwg.org/multipage/

[^valid-html]: The HTML specification allows for very lenient
parsing of HTML. For example, if we don’t define the head tag it
will usually be inferred. However we aren’t going to allow that
kind of leniency in our API.

14.2.2. Beyond Equality Constraints

Indexed data is all about equality constraints: proofs that some
type parameter is equal to some type. However we can go beyond
equality constraints with contextual abstraction. We can use [<:<]
[scala.<:<] for evidence of a subtyping relationship, and
[NotGiven][scala.NotGiven] for evidence that no given instance
exists (with which we can test that types are not equal, for
example). Beyond that, we can view any given instance as
evidence.

Let’s return to our example of length, force, and torque to see how
this is useful. In the exercise where we defined torque as force
times length, we fixed the computation to have SI units. The
example code is below.

final case class Force[Unit](value: Double) {

 def *[L](length: Length[L])(using Unit =:= Newtons, L =:=

344

https://html.spec.whatwg.org/multipage/

Metres): Torque[NewtonMetres] =

 Torque(this.value * length.value)

}

This is a reasonable thing to do, as other units are insane, but there
are a lot of insane people out there. To accommodate other unit
types we can create given instances that represent the result types
of operations of interest. In this case we want to represent the
result of multiplying a length unit by the force unit. In code we
can write the following.

// Weird units

trait Feet

trait Pounds

trait PoundsFeet

// An instance exists if A * B = C

trait Multiply[A, B, C]

object Multiply {

 given Multiply[Metres, Newtons, NewtonMetres] with {}

 given Multiply[Feet, Pounds, PoundsFeet] with {}

}

Now we can define * methods on Length and Force in terms of
Multiply.

final case class Length[L](value: Double) {

 def *[F, T](that: Force[F])(using Multiply[L, F, T]): Torque[T]

=

 Torque(this.value * that.value)

}

final case class Force[F](value: Double) {

 def *[L, T](that: Length[L])(using Multiply[F, L, T]):

Torque[T] =

 Torque(this.value * that.value)

}

Here’s an example showing it works.

345

Length[Metres](3) * Force[Newtons](4)

// res11: Torque[NewtonMetres] = Torque(value = 12.0)

Length[Feet](3) * Force[Pounds](4)

// res12: Torque[PoundsFeet] = Torque(value = 12.0)

Note that’s it hard to think of Multiply as a type class, as it does
not provide any methods. Viewing it as evidence, however, does
make sense.

14.2.2.1. Exercise: Commutivitiy {-}

In the example above we defined a Multiply type class to
represent that metres times newtons gives newton metres.

Multiplication is commutative. If 𝐴×𝐵 = 𝐶 , then 𝐵 ×𝐴 = 𝐶 .
However we have not represented this, and if we try newtons
times metres, as in the example below, the code will fail.

Force[Newtons](3) * Length[Metres](4)

// error:

// No given instance of type

MdocApp4.this.Multiply[MdocApp4.this.Newtons,

MdocApp4.this.Metres, Any] was found for parameter x$2 of method

* in class Force

// Force[Newtons](3) * Length[Metres](4)

// ^

Add evidence to Multiply that if Multiply[A, B, C] exists, then
so does Multiply[B, A, C], and show that it solves this problem.

Now that we have learned about indexed codata, we’ll turn to its
dual, indexed data.

14.3. Indexed Data

The key idea of indexed data is to encode type equalities in data.
When we come to inspect the data (usually, via structural

346

recursion) we discover these equalities, which in turn limit what
values we can produce. Notice, again, the duality with codata.
Indexed codata limits methods we can call. Indexed data limits
values we can produce. Also, remember that indexed data is often
known as generalized algebraic data types. We are using the
simpler term indexed data to emphasise the relationship to
indexed codata, and also because it’s much easier to type!

Concretely, indexed data in Scala occurs when:

1. we define a sum type with at least one type parameter; and
2. cases within the sum instantiate that type parameter with a

concrete type.

Let’s see an example. Imagine we are implementing a
programming language. We need some representation of values
within the language. Suppose our language supports strings,
integers, and doubles, which we will represent with the
corresponding Scala types. The code below shows how we can
implement this as a standard algebraic data type.

enum Value {

 case VString(value: String)

 case VInt(value: Int)

 case VDouble(value: Double)

}

Using indexed data we can use the alternate implementation
below.

enum Value[A] {

 case VString(value: String) extends Value[String]

 case VInt(value: Int) extends Value[Int]

 case VDouble(value: Double) extends Value[Double]

}

This is indexed data, as it meets the criteria above: we have a type
parameter A that is instantiated with a concrete type in the cases
VString, VInt, and VDouble. It’s quite easy to use indexed data in

347

Scala, and people often do so not knowing that it is anything
special. The natural next question is why is this useful? It will take
a more involved example to show why, so let us now dive into one
that makes good use of indexed data.

14.3.1. The Probability Monad

For our case study of indexed data we will create a probability
monad. This is a composable abstraction for defining probability
distributions. The probability monad has a lot of uses. The most
relevant to most developers is generating data for property-based
tests, so we’ll focus on this use case. However, it can also be used,
for example, for statistical inference or for creating generative art.
See the conclusions (Section 14.4) for some pointers to these uses.

Let’s start with an example of generating random data. [Doodle]
[doodle] is a Scala library for graphics and visualization. A core
part of the library is representing colors. Doodle has two different
representations of colors, RGB and OkLCH, with conversions
between the two. These conversions involve some somewhat
tricky mathematics. Testing these conversions is an excellent use
of property-based testing. If we can generate many, say, random
RGB colors, we can test the conversion by checking the roundrip
from RGB to OkLCH and back results in the original
color[^numerics].

To create an RGB color we need three unsigned bytes, so our first
task is to define how we generate a random byte. Doodle happens
to have an implementation of the probability monad that we will
use. Here is how we can do it.

import cats.syntax.all.*

import doodle.core.Color

import doodle.core.UnsignedByte

import doodle.random.{*, given}

348

val randomByte: Random[UnsignedByte] =

 Random.int(0, 255).map(UnsignedByte.clip)

Note that once again we see the interpreter strategy. A Random[A]
is a value representing a program that will generate a random
value of type A when it runs.

With three random unsigned bytes we can create a random RGB
color.

val randomRGB: Random[Color] =

 (randomByte, randomByte, randomByte)

 .mapN((r, g, b) => Color.rgb(r, g, b))

We might want to check our code by generating a few random
values.

randomRGB.replicateA(2).run

// res1: List[Color] = List(

// Rgb(

// r = UnsignedByte(value = 84),

// g = UnsignedByte(value = 23),

// b = UnsignedByte(value = -112),

// a = Normalized(get = 1.0)

//),

// Rgb(

// r = UnsignedByte(value = -46),

// g = UnsignedByte(value = -36),

// b = UnsignedByte(value = 69),

// a = Normalized(get = 1.0)

//)

//)

It seems to be working.

Once we have a source of random data we can write tests using it.
We can easily generate more data than is feasible for a
programmer to write by hand, and therefore have a higher degree
of certainty that our code is correct than we would get with
manual testing. The details of writing the tests are not important
to us here, so let’s move on.

349

We have seen is an illustration of using the probability monad to
generate random data. The probability monad works the same way
as every other algebra: we have constructors (Random.int),
combinators (map, and mapN), and interpreters (run). Being a monad
means the algebra has some specific structure. For example, it tells
us that we have pure and flatMap available, from which we can
derive mapN.

Let’s sketch an plausible interface for our probability monad.

trait Random[A] {

 def flatMap[B](f: A => Random[B]): Random[B]

}

object Random {

 def pure[A](value: A): Random[A] = ???

 // Generate a uniformly distributed random Double greater

 // than or equal to zero and less than one.

 val double: Random[Double] = ???

 // Generate a uniformly distributed random Int

 val int: Random[Int] = ???

}

The interface has the minimum requirements to be a monad, and a
few other constructors. We can make progress on the
implementation by applying the reification strategy, introduced in
Section 6.2.

enum Random[A] {

 def flatMap[B](f: A => Random[B]): Random[B] =

 RFlatMap(this, f)

 case RFlatMap[A, B](source: Random[A], f: A => Random[B])

 extends Random[B]

 case RPure(value: A)

 case RDouble extends Random[Double]

 case RInt extends Random[Int]

}

object Random {

 import Random.{RPure, RDouble, RInt}

350

 def pure[A](value: A): Random[A] = RPure(value)

 // Generate a uniformly distributed random Double greater

 // than or equal to zero and less than one.

 val double: Random[Double] = RDouble

 // Generate a uniformly distributed random Int

 val int: Random[Int] = RInt

}

The next step is to implement an interpreter, which is a standard
structural recursion. The interpreter has a parameter that provides
a source of random numbers.

def run(rng: scala.util.Random = scala.util.Random): A =

 this match {

 case RFlatMap(source, f) => f(source.run(rng)).run(rng)

 case RPure(value) => value

 case RDouble => rng.nextDouble()

 case RInt => rng.nextInt()

 }

This is an example of indexed data, as the cases RDouble and RInt
provide a concrete type for the type parameter A. This means that
these cases in the interpreter can produce values of that concrete
type. If we did not use indexed data we could only generate values
of type A, which the programmer would have to supply to use like
in the RPure case.

To finish this implementation we should implement the Monad type
class, which would give us mapN and other methods for free.
However, this is outside the scope of this case study, which is
focused on indexed data. I encourage you to do this yourself if you
feel you would benefit from the practice.

Note that indexed data can mix concrete and generic types. Let’s
say we add a product method to Random.

enum Random[A] {

 // ...

351

 def product[B](that: Random[B]): Random[(A, B)] =

 RProduct(this, that)

 case RProduct[A, B](left: Random[A], right: Random[B]) extends

Random[(A, B)]

 // .. other cases here

}

The right-hand side of the RProduct case instantiates the type
parameter to (A, B), which mixes the concrete tuple type with the
generic types A and B

There are a few tricks to using indexed data that are essential in
Scala 2, and can sometimes be useful in Scala 3. Take the following
translation of the probability monad into Scala 2. (I’ve placed a
using directive in this code, so if you paste it into a file and run it
with the Scala CLI it will use the latest version of Scala 2.13.)

//> using scala 2.13

sealed trait Random[A] {

 import Random._

 def flatMap[B](f: A => Random[B]): Random[B] =

 RFlatMap(this, f)

 def product[B](that: Random[B]): Random[(A, B)] =

 RProduct(this, that)

 def run(rng: scala.util.Random = scala.util.Random): A =

 this match {

 case RFlatMap(source, f) => f(source.run(rng)).run(rng)

 case RProduct(l, r) => (l.run(rng), r.run(rng))

 case RPure(value) => value

 case RDouble => rng.nextDouble()

 case RInt => rng.nextInt()

 }

}

object Random {

 final case class RFlatMap[A, B](source: Random[A], f: A =>

Random[B])

352

 extends Random[B]

 final case class RProduct[A, B](left: Random[A], right:

Random[B])

 extends Random[(A, B)]

 final case class RPure[A](value: A) extends Random[A]

 case object RDouble extends Random[Double]

 case object RInt extends Random[Int]

 def pure[A](value: A): Random[A] = RPure(value)

 // Generate a uniformly distributed random Double greater

 // than or equal to zero and less than one.

 val double: Random[Double] = RDouble

 // Generate a uniformly distributed random Int

 val int: Random[Int] = RInt

}

In Scala 2 this generates a lot of type errors like

[error] constructor cannot be instantiated to expected type;

[error] found : Random.RProduct[A(in class RProduct),B]

[error] required: Random[A(in trait Random)]

[error] case RProduct(l, r) => (l.run(rng),

r.run(rng))

[error] ^^^^^^^^

To solve this we need to create a nested method with a fresh type
parameter in the interpreter, as shown below. With this change
Scala 2′s type inference works and it can successfully compile the
code.

def run(rng: scala.util.Random = scala.util.Random): A = {

 def loop[A](random: Random[A]): A =

 random match {

 case RFlatMap(source, f) => loop(f(loop(source)))

 case RProduct(left, right) => (loop(left), loop(right))

 case RPure(value) => value

 case RDouble => rng.nextDouble()

 case RInt => rng.nextInt()

 }

353

 loop(this)

}

The other trick is for when we want to use pattern matches that
match type tags. This means the form like

case r: RPure[A] => ???

rather than

case RPure(value) => ???

For cases like RProduct it is not clear how to write these pattern
matches, as the type parameters A and B for RProduct don’t
correspond to the type parameter A on Random. The solution is use
lower case names from the type parameters. Concretely, this
means we can write

case r: RProduct[a, b] => ???

The type parameters a and b are existential types; we know they
exist but we don’t know what concrete type they correspond to.
I’ve found this is occasionally necessary in Scala 2, but very rare in
Scala 3.

[^numerics]: Due to numeric issues there may be small differences
between the colors that we should ignore.

[doodle]: https://www.creativescala.org/doodle/

14.4. Conclusions

In this chapter we looked at indexed data and indexed codata. The
key idea of indexed types is to encode equality constraints that a
type parameter equals some type. With indexed data these

354

https://www.creativescala.org/doodle/

constraints are encoded in the data and we discover them when
we destructure the data. In this way indexed data is a producer of
equalities. With indexed codata these constraints must be shown
to hold when methods are called. Hence indexed codata is a
consumer of equalities. We also saw that we can go beyond
equalities constraints with contextual abstraction, by encoding
other types of constraints in given instances.

Indexed types build on phantom types. The earliest reference I’ve
found to phantom types is Daan Leijen and Erik Meijer. [48]. Type
equalities were added soon afterwards, creating what we now
know as generalized algebraic data types or indexed data
[13,78,93]. Most work on generalized algebraic data types is
concerned with type inference algorithms (e.g. [68]), which is not
so relevant to the working programmer. Chuan-kai Lin and Tim
Sheard. [52] is not different in this respect, but it does have a
particularly clear breakdown of how GADTs are used in the most
common case.

Interest in indexed codata is much more recent [83], reflecting the
general lack of attention that codata has received in programming
language research (or at least the parts that I read.) Scala has
excellent support for indexed codata but, even so, we can see in
Scala a lack of symmetry in the support for indexed data and
codata. While indexed data is built into the language, indexed
codata is something we must built ourselves from contextual
abstractions. This is not necessarily a bad thing, as contextual
abstraction allows us to go beyond the simple type equalities of
indexed data and codata. Recent research has looked to address
this asymmetry. For example, Klaus Ostermann and Julian Jabs.
[66] considers indexed data and indexed codata as related by
transposition of a matrix defining the API and Weixin Zhang,
Cristina David, and Meng Wang. [94] develops a system,
implemented in Scala, that translates between data and codata.

355

In a case study we used indexed codata to implement an API
protocol: a restriction on the order in which methods can be called.
We can view this as an elaboration on the basic algebra or
combinator library strategy we have seen in some many different
case studies. We can also relate it to work in the object-oriented
programming (OOP) community. It is worth doing so to show that
these problems bridge programming communities and sometimes
disparate communities discover very similar solutions.

In the OOP world a combinator library is called a fluent interface.
The same article that introduces the term fluent interface also
mentions the need for API protocols: “choose your return type
based on what you need to continue fluent action” [28]. Many case
studies have explored fluent interfaces (e.g. [30]; [41]; [18]; [80])
and this style of code is increasing in popularity [61]. Encoding an
API protocol can be quite involved, so another research direction
is the creation of tools to generate code from a protocol definition
[50]; [60]; [37]; [87]. [74] translates API protocols back to the
functional world, showing a variety of encodings in Standard ML.

The probability monad we developed, which is specialized to
sampling data, is only one of many possibilities. Sampling gives us
an approximate representation of a distribution. Small discrete
distributions can be represented exactly. [26] show how this can be
done, in addition to the sampling approach we used. [43] shows
how the exact and sampling approaches can be factored into
monad transformer stacks. [76] uses probability monad as the
underlying abstraction on which a variety of different statistical
inference algorithms are defined. This is application of the idea of
multiple interpretations that we have stressed throughout this
book. [77] expands on this idea, breaking down inference
algorithms into reusable components.

We introduced the probability monad in the context of property
based testing [14]. Randomly generating test data is not the only
approach. [75] describes an elegant way of enumerating data. Also

356

see [23] for an approach specialized to enumerating algebraic data
types. More recently machine learning techniques are being
explored. See, for example, [72] and [49]. [38] studies how
property based testing is used in practice.

I mentioned that the probability monad can be used in generative
art. Generative art is, broadly, art that is generated by some
algorithmic process. This can include an element of randomness.
While there are papers on generative art (e.g. [7]; [20]), and many
other resources that discuss it, it’s much more fun to create some
yourself. Figure 15 shows an example of generative art. The code is
below, and it has many knobs that you can play with to create
your own example. Just add the @main annotation to the cycloid
method and you can run the code from the Scala CLI. Have fun!

357

Figure 15: A set of cycloids showing five-fold symmetry

//> using dep org.creativescala::doodle:0.30.0

import cats.Monoid

import cats.syntax.all.*

import cats.effect.unsafe.implicits.global

import doodle.core.*

import doodle.core.format.{Pdf, Png}

import doodle.interact.syntax.interpolation.*

import doodle.random.{*, given}

import doodle.syntax.all.*

import doodle.java2d.*

def cycloid(): Unit = {

 given Monoid[Angle => Vec] with {

 def combine(a: Angle => Vec, b: Angle => Vec): Angle => Vec =

358

 angle => a(angle) + b(angle)

 val empty: Angle => Vec = angle => Vec.zero

 }

 /** Reverse the rolling direction of the cycloid. */

 val reverse: Angle => Angle = angle => -angle

 /** Multiply the angle by the given speed, which determines how

rapidly the

 * cycloid rotates.

 */

 def speed(speed: Double): Angle => Angle =

 angle => angle * speed

 /** Increment the angle by the given amount. In other words

move it out of

 * phase.

 */

 def phase(p: Angle): Angle => Angle =

 angle => p - angle

 /** Set the radius of the cycloid */

 def radius(r: Double): Angle => Vec =

 angle => Vec(r, angle)

 /** Cycloid is speed of rotation and radius (+ve or -ve) */

 def cycloid(v: Double, r: Double): Angle => Vec =

 speed(v).andThen(radius(r))

 /** Inspired by "Creating Symmetry" by Frank Farris. */

 def c1(amplitude: Double) =

 cycloid(1.0, amplitude) |+| cycloid(6.0, 0.5 * amplitude) |+|

(speed(14.0)

 .andThen(phase(90.degrees))

 .andThen(radius(0.33 * amplitude)))

 val randomCycloid: Random[Double => Angle => Vec] =

 for {

 d <- Random.int(3, 25) // Degree of symmetry

 n <- Random.natural(d) // Offset from d

 m1 <- Random.int(1, 5)

 m2 <- Random.int(m1, m1 + 5)

 } yield amplitude =>

 cycloid(n, amplitude) |+| cycloid(

 m1 * d + n,

 0.5 * amplitude

359

) |+| phase(90.degrees).andThen(cycloid(m2 * d + n, 0.33 *

amplitude))

 def drawCycloid(

 cycloid: Angle => Vec,

 start: Angle = 0.degrees,

 stop: Angle = 720.degrees,

 steps: Int = 1000

): Picture[Unit] =

 interpolatingSpline[Algebra](

 (start)

 .upTo(stop)

 .forSteps(steps)

 .map(angle => cycloid(angle).toPoint)

 .toList

)

 /** Repeatedly draw a cycloid with increasing size and a slow

turn */

 def drawCycloids(cycloid: Double => Angle => Vec):

Picture[Unit] =

 (0.0)

 .upTo(1.0)

 .forSteps(30)

 .map { m =>

 drawCycloid(cycloid(350 * m + 100)).rotate(30.degrees *

m)

 }

 .toList

 .allOn

 // val picture = drawCycloids(c1)

 val picture = randomCycloid.map(drawCycloids).run

 val frame = Frame.default

 picture.drawWithFrame(frame)

 picture.write[Png]("cycloid.png", frame)

 picture.write[Pdf]("cycloid.pdf", frame)

}

360

15. Tagless Final

Interpreters

In this chapter we’ll explore the codata approach to interpreters,
building up to a strategy known as tagless final. Along the way
we will build two interpreters: one for terminal interaction and
one for user interfaces.

We’ve seen the duality between data and codata in many places,
starting with Chapter 4. This chapter will begin by applying that
duality to build an interpreter using codata, which contrasts with
the data approach we saw in Section 6.2. This will illustrate the
technique and give us a concrete example to discuss its
shortcoming. In particular we’ll see that extensibility is limited, a
problem we first encountered in Section 4.5.

Solving the problem of extensibility, otherwise known as the
expression problem, will lead us to tagless final. In the context of
interpreters, solving the expression problem means allowing
extensibility of both the programs we write and the interpreters
that run them. We’ll start with the standard encoding of tagless
final in Scala, and see that it is a bit painful to use in practice. We’ll
then develop an alternative encoding that is easier to use. Solving
the expression problem allows for very expressive code but it adds
complexity, so we’ll finish by talking about when tagless final is
appropriate and when it’s best to use a different strategy.

15.1. Codata Interpreters

In this section we’ll explore codata interpreters, using a DSL for
terminal interaction as a case study. The terminal is familiar to

361

most programmers, and terminal applications are common for
developer focused tools. Most terminal features are controlled by
writing so-called escape codes to the terminal. However,
applications benefit from higher-level abstractions, motivating
textual user interface (TUI) libraries that present a more
ergonomic interface[^tuis]. Our library will showcase codata
interpreters, monads, and the central role of designing for
composition and reasoning.

15.1.1. The Terminal

The modern terminal is an accretion of features that started with
the VT-100 in 1978 and continues [to this day][kitty-kp]. Most
terminal features are accessed by reading and writing ANSI escape
codes, which are sequence of characters starting with the escape
character. We will work only with escape codes that change the
text style. This allows us to produce interesting output, and raises
all the design issues we want to address, but keeps the system
simple. The ideas here are extended to a more complete system in
the Terminus library.

The code below is written so that with a single change it can
pasted into a file and run with any recent version of Scala with
just scala <filename>. The required change is to add the @main
annotation before the method go. That is, change

def go(): Unit =

to

@main def go(): Unit =

(This is due to a limitation of the software that compiles the code
in the book.)

362

https://www.creativescala.org/terminus/

The examples should work with any terminal from the last 40 odd
years. If you’re on Windows you can use Windows Terminal, WSL,
or another terminal that runs on Windows such as WezTerm.

15.1.2. Color Codes

We will start by writing color codes straight to the terminal. This
will introduce us to controlling the terminal, and show the
problems of using ANSI escape codes directly. Here’s our starting
point:

val csiString = "\u001b["

def printRed(): Unit =

 print(csiString)

 print("31")

 print("m")

def printReset(): Unit =

 print(csiString)

 print("0")

 print("m")

def go(): Unit =

 print("Normal text, ")

 printRed()

 print("now red text, ")

 printReset()

 println("and now back to normal.")

Try running the above code (e.g. add the @main annotation to go,
save it to a file ColorCodes.scala and run scala
ColorCodes.scala.) You should see text in the normal style for
your terminal, followed by text colored red, and then some more
text in the normal style. The change in color is controlled by
writing escape codes. These are strings starting with ESC (which is
the character '\u001b') followed by '['. This is the value of
csiString (where CSI stands for Control Sequence Introducer).
The CSI is followed by a string indicating the text style to use, and

363

https://learn.microsoft.com/en-us/windows/wsl/about
https://wezfurlong.org/wezterm/index.html

ended with a "m" The string "\u001b[31m" tells the terminal to set
the text foreground color to red, and the string "\u001b[0m" tells
the terminal to reset all text styling to the default.

15.1.3. The Trouble with Escape Codes

Escape codes are simple for the terminal to process but lack useful
structure for the programmer generating them. The code above
shows one potential problem: we must remember to reset the color
when we finish a run of styled text. This problem is no different to
that of remembering to free manually allocated memory, and the
long history of memory safety problems in C programs show us
that we cannot expect to do this reliably. Luckily, we’re unlikely to
crash our program if we forget an escape code!

To solve this problem we might decide to write functions like
printRed below, which prints a colored string and resets the
styling afterwards.

val csiString = "\u001b["

val redCode = s"${csiString}31m"

val resetCode = s"${csiString}0m"

def printRed(output: String): Unit =

 print(redCode)

 print(output)

 print(resetCode)

def go(): Unit =

 print("Normal text, ")

 printRed("now red text, ")

 println("and now back to normal.")

Changing color is the not the only way that we can style terminal
output. We can also, for example, turn text bold. Continuing the
above design gives us the following.

364

val csiString = "\u001b["

val redCode = s"${csiString}31m"

val resetCode = s"${csiString}0m"

val boldOnCode = s"${csiString}1m"

val boldOffCode = s"${csiString}22m"

def printRed(output: String): Unit =

 print(redCode)

 print(output)

 print(resetCode)

def printBold(output: String): Unit =

 print(boldOnCode)

 print(output)

 print(boldOffCode)

def go(): Unit =

 print("Normal text, ")

 printRed("now red text, ")

 printBold("and now bold.\n")

This works, but what if we want text that is both red and bold? We
cannot express this with our current design, without creating
methods for every possible combination of styles. Concretely this
means methods like

def printRedAndBold(output: String): Unit =

 print(redCode)

 print(boldOnCode)

 print(output)

 print(resetCode)

This is not feasible to implement for all possible combinations of
styles. The root problem is that our design is not compositional:
there is no way to build a combination of styles from smaller
pieces.

365

15.1.4. Programs and Interpreters

To solve the problem above we need printRed and printBold to
accept not a String to print but a program to run. We don’t need
to know what these programs do; we just need a way to run them.
Then the combinators printRed, printBold, and so on, can also
return programs. These programs will set the style appropriately
before running their program parameter, and reset it after the
parameter program has finished running. By accepting and
returning programs the combinators have the property of closure,
meaning that type of the input (a program) is the same as the type
of the output. Closure in turn makes composition possible.

How should we represent a program? We will choose codata and
in particular functions, the simplest form of codata. In the code
below we define the type Program[A], which is a function () =>
A. The interpreter, which is the thing that runs programs, is just
function application. To make it clearer when we are running
programs I have a created method run that does just that.

type Program[A] = () => A

val csiString = "\u001b["

val redCode = s"${csiString}31m"

val resetCode = s"${csiString}0m"

val boldOnCode = s"${csiString}1m"

val boldOffCode = s"${csiString}22m"

def run[A](program: Program[A]): A = program()

def print(output: String): Program[Unit] =

 () => Console.print(output)

def printRed[A](output: Program[A]): Program[A] =

 () => {

 run(print(redCode))

 val result = run(output)

 run(print(resetCode))

 result

366

 }

def printBold[A](output: Program[A]): Program[A] =

 () => {

 run(print(boldOnCode))

 val result = run(output)

 run(print(boldOffCode))

 result

 }

def go(): Unit =

 run(() => {

 run(print("Normal text, "))

 run(printRed(print("now red text, ")))

 run(printBold(print("and now bold ")))

 run(printBold(printRed(print("and now bold and red.\n"))))

 })

Notice that we have the usual structure for an algebra, which we
first met in Section 6.2.1:

1. we have a constructor in print;
2. we have two combinators in printRed and printBold; and
3. we have an interpreter in run.

This code works, for the example we have chosen, but there are
two issues: composition and ergonomics. That we have a problem
with composition is perhaps surprising, as that’s the problem we
set out to solve. We have made the system compositional in some
aspects, but there are still ways in which it does not work
correctly. For example, take the following code:

run(printBold(() => {

 run(print("This should be bold, "))

 run(printBold(print("as should this ")))

 run(print("and this.\n"))

}))

We would expect output like

367

This should be bold, as should this and this

but we get

This should be bold, as should this and this.

The inner call to printBold resets the bold styling when it
finishes, which means the surrounding call to printBold does not
have effect on later statements.

The issue with ergonomics is that this code is tedious and error-
prone to write. We have to pepper calls to run in just the right
places, and even in these small examples I found myself making
mistakes. This is actually another failing of composition, because
we don’t have methods to combine together programs. For
example, we don’t have methods to say that the program above is
the sequential composition of three sub-programs.

We can solve the first problem by keeping track of the state of the
terminal. If printBold is called within a state that is already
printing bold it should do nothing, otherwise it should update the
state to indicate bold styling has been turned on. This means the
type of programs changes from () => A to Terminal =>
(Terminal, A), where Terminal holds the current state of the
terminal.

To solve the second problem we’re looking for a way to
sequentially compose programs. Remember programs have type
Terminal => (Terminal, A) and pass around the state in
Terminal. When you hear the phrase “sequentially compose”, or
see that type, your monad sense might start tingling. You are
correct: this is an instance of the state monad, which we first met
in Section 10.9.

Using Cats we can define

import cats.data.State

type Program[A] = State[Terminal, A]

368

assuming some suitable definition of Terminal. Let’s accept this
definition for now, and focus on defining Terminal.

Terminal has two pieces of state: the current bold setting and the
current color. (The real terminal has much more state, but these
are representative and modelling additional state does not
introduce any new concepts.) The bold setting could simply be a
toggle that is either on or off, but when we come to the
implementation it will be easier to work with a counter that
records the depth of the nesting. The current color must be a stack.
We can nest color changes, and the color should change back to
the surrounding color when a nested level exits. Concretely, we
should be able to write code like

printBlue(.... printRed(...) ...)

and have output in blue or red as we would expect.

Given this we can define Terminal as

final case class Terminal(bold: Int, color: List[String]) {

 def boldOn: Terminal = this.copy(bold = bold + 1)

 def boldOff: Terminal = this.copy(bold = bold - 1)

 def pushColor(c: String): Terminal = this.copy(color = c ::

color)

 // Only call this when we know there is at least one color on

the

 // stack

 def popColor: Terminal = this.copy(color = color.tail)

 def peekColor: Option[String] = this.color.headOption

}

where we use List to represent the stack of color codes. (We could
also use a mutable stack, as working with the state monad ensures
the state will be threaded through our program.) I’ve also defined
some convenience methods to simplify working with the state.

With this in place we can write the rest of the code, which is
shown below. Compared to the previous code I’ve shortened a few
method names and abstracted the escape codes. Remember this

369

code can be directly executed by scala. Just copy it into a file (e.g.
Terminal.scala), add the @main annotation to go, and run scala
Terminal.scala.

//> using dep org.typelevel::cats-core:2.13.0

import cats.data.State

import cats.syntax.all.*

object AnsiCodes {

 val csiString: String = "\u001b["

 def csi(arg: String, terminator: String): String =

 s"${csiString}${arg}${terminator}"

 // SGR stands for Select Graphic Rendition.

 // All the codes that change formatting are SGR codes.

 def sgr(arg: String): String =

 csi(arg, "m")

 val reset: String = sgr("0")

 val boldOn: String = sgr("1")

 val boldOff: String = sgr("22")

 val red: String = sgr("31")

 val blue: String = sgr("34")

}

final case class Terminal(bold: Int, color: List[String]) {

 def boldOn: Terminal = this.copy(bold = bold + 1)

 def boldOff: Terminal = this.copy(bold = bold - 1)

 def pushColor(c: String): Terminal = this.copy(color = c ::

color)

 // Only call this when we know there is at least one color on

the

 // stack

 def popColor: Terminal = this.copy(color = color.tail)

 def peekColor: Option[String] = this.color.headOption

}

object Terminal {

 val empty: Terminal = Terminal(0, List.empty)

}

type Program[A] = State[Terminal, A]

object Program {

 def print(output: String): Program[Unit] =

 State[Terminal, Unit](

370

 terminal => (terminal, Console.print(output))

)

 def bold[A](program: Program[A]): Program[A] =

 for {

 _ <- State.modify[Terminal] { terminal =>

 if terminal.bold == 0 then

Console.print(AnsiCodes.boldOn)

 terminal.boldOn

 }

 a <- program

 _ <- State.modify[Terminal] { terminal =>

 val newTerminal = terminal.boldOff

 if terminal.bold == 0 then

Console.print(AnsiCodes.boldOff)

 newTerminal

 }

 } yield a

 // Helper to construct methods that deal with color

 def withColor[A](code: String)(program: Program[A]): Program[A]

=

 for {

 _ <- State.modify[Terminal] { terminal =>

 Console.print(code)

 terminal.pushColor(code)

 }

 a <- program

 _ <- State.modify[Terminal] { terminal =>

 val newTerminal = terminal.popColor

 newTerminal.peekColor match {

 case None => Console.print(AnsiCodes.reset)

 case Some(c) => Console.print(c)

 }

 newTerminal

 }

 } yield a

 def red[A](program: Program[A]): Program[A] =

 withColor(AnsiCodes.red)(program)

 def blue[A](program: Program[A]): Program[A] =

 withColor(AnsiCodes.blue)(program)

 def run[A](program: Program[A]): A =

 program.runA(Terminal.empty).value

}

371

def go(): Unit = {

 val program =

 Program.blue(

 Program.print("This is blue ") >>

 Program.red(Program.print("and this is red ")) >>

 Program.bold(Program.print("and this is blue and bold "))

) >>

 Program.print("and this is back to normal.\n")

 Program.run(program)

}

Having defined the structure of Terminal, the majority of the
remaining code manipulates the Terminal state. Most of the
methods on Program have a common structure that specifies a
state change before and after the main program runs.

Notice we don’t need to implement combinators like flatMap or >>
because we get them from the State monad. This is one of the big
benefits of reusing abstractions like monads: we get a full library
of methods without doing additional work.

15.1.5. Composition and Reasoning

In Section 1.2.1 I argued that the core of functional programming
is reasoning and composition. Both of these are central to this case
study. We’ve explicitly designed the DSL for ease of reasoning.
Indeed that’s the whole point of creating a DSL instead of just
spitting control codes at the terminal. An example is how we paid
attention to making sure nested calls work as we’d expect.
Composition comes in at two levels: both our design and our
implementation are compositional. Within the case study we
discussed compositionality in the design. Implementationally, a
Program is a composition of the state monad and the functions
inside the state monad. The state monad provides the sequential

372

flow of the Terminal state, and the functions provide the domain
specific actions.

15.1.6. Codata and Extensibility

We made a seemingly arbitrary choice to use a codata interpreter.
Let’s now explore this choice and its implications.

We described codata as programming to an interface. The interface
for functions is essentially one method: the ability to apply them.
This corresponds to the single interpretation we have for Program:
run it and carry out the effects therein. If we wanted to have
multiple interpretations (such as logging the Terminal state or
saving the output to a buffer) we would need to have a richer
interface. In Scala this would be a trait or class exposing more
than one method.

Keen readers will recall that data makes it easy to add new
interpreters but hard to add new operations, while codata makes it
easy to add new operations but hard to add new interpreters. We
see that in action here. For example, it’s trivial to add a new color
combinator by defining a method like the below.

def green[A](program: Program[A]): Program[A] =

 withColor(AnsiCodes.sgr("32"))(program)

However, changing Program to something that allows more
interpretations requires changing all of the existing code.

Another advantage of codata is that we can mix in arbitrary other
Scala code. For example, we can use map like shown below.

Program.print("Hello").map(_ => 42)

Using the native representation of programs (i.e. functions) gives
us the entire Scala language for free. In a data representation we

373

have to reify every kind of expression we wish to support. There is
a downside to this as well: we get Scala semantics whether we like
them or not. A codata representation would not be appropriate if
we wanted to make an exotic language that worked in a different
way.

We could factor the interpreter in different ways, and it would still
be a codata interpreter. For example, we could put a method to
write to the terminal on the Terminal type. This would give us a
bit more flexibility as changing the implementation of Terminal
could, say, write to a network socket or a terminal embedded in a
browser. We still have the limitation that we cannot create truly
different interpretations, such as serializing programs to disk, with
the codata approach. We’ll address this limitation in the next
section where we look at tagless final.

[^tuis]: If you’re interested in TUI libraries you might like to look
at the brilliantly named ratatui for Rust, brick for Haskell, or
Textual for Python.

15.2. Tagless Final Interpreters

We’ll now explore tagless final, an extension to the basic codata
interpreter. In the terminal DSL case study we used an ad-hoc
process to produce the DSL, fixing problems as we uncovered
them. In this section we will be more systematic, illustrating how
we can apply strategies to derive code. This will in turn make it
clearer how we can derive tagless final for the basic codata
interpreter.

We’ll start by being explicit about the role of the different types in
the codata interpreter. Following Section 6.2.1, remember there are
three different kinds of methods in an algebra:

• constructors, with type A => Program,

374

https://en.wikipedia.org/wiki/Text-based_user_interface
https://github.com/ratatui/ratatui
https://github.com/jtdaugherty/brick
https://textual.textualize.io/

• combinators, with type Program => Program, and
• interpreters, with type Program => A.

In the terminal DSL we defined the Program type as

type Program[A] = State[Terminal, A]

There is a single constructor, print, with type String =>
Program[Unit]. All of the methods that change the output style,
such as bold, red, and blue, are combinators with the type
Program[A] => Program[A]. Finally, there is a single interpreter,
function application, with type Program[A] => A.

In a codata interpreter the available interpretations are limited to
the methods available on the Program type. The terminal DSL
represents programs as functions, and therefore only has a single
interpretation available. The key idea in tagless final, to get around
this restriction, is to parameterize the Program type by the
program operations. It’s not entirely clear what this means, so let’s
see a simple example of tagless final to illustrate it.

Our example will be arithmetic expressions. This is not a
particularly compelling example, but it is familiar. This means we
can focus on the details of tagless final without any confusion
about the domain. We’ll see a more compelling example soon.

We’ll start with a data interpreter, convert it to a codata
interpreter, and then apply tagless final. Here’s our program type,
defined using an algebraic data type. We don’t need to explicitly
define constructors as they come as part of the ADT.

enum Expr {

 case Add(l: Expr, r: Expr)

 case Sub(l: Expr, r: Expr)

 case Mul(l: Expr, r: Expr)

 case Div(l: Expr, r: Expr)

 case Literal(value: Double)

}

375

We will now define two interpreters, one that evaluates Expr to a
Double and one that prints them to String. They are implemented
using structural recursion.

object EvalInterpreter {

 import Expr.*

 def eval(expr: Expr): Double =

 expr match {

 case Add(l, r) => eval(l) + eval(r)

 case Sub(l, r) => eval(l) - eval(r)

 case Mul(l, r) => eval(l) * eval(r)

 case Div(l, r) => eval(l) / eval(r)

 case Literal(value) => value

 }

}

object PrintInterpreter {

 import Expr.*

 def print(expr: Expr): String =

 expr match {

 case Add(l, r) => s"(${print(l)} + ${print(r)})"

 case Sub(l, r) => s"(${print(l)} - ${print(r)})"

 case Mul(l, r) => s"(${print(l)} * ${print(r)})"

 case Div(l, r) => s"(${print(l)} / ${print(r)})"

 case Literal(value) => value.toString

 }

}

Finally, let’s see a quick example. We start by defining an
expression, in this case representing 1 + 2.

val onePlusTwo = Expr.Add(Expr.Literal(1), Expr.Literal(2))

Now we can interpret this expression in two different ways.

EvalInterpreter.eval(onePlusTwo)

// res0: Double = 3.0

PrintInterpreter.print(onePlusTwo)

// res1: String = "(1.0 + 2.0)"

376

We have the usual trade-off for data: we can easily add more
interpreters, but we cannot extend the program type with new
operations.

Let’s now convert this to codata. The interpreters become methods
on the Expr type.

trait Expr {

 def eval: Double

 def print: String

}

The constructors and combinators create instances of Expr. We
could define explicit subtypes of Expr but here I’ve used
anonymous subtypes to keep the code more compact. The
implementation uses structural corecursion.

trait Expr {

 def eval: Double

 def print: String

 def +(that: Expr): Expr = {

 val self = this

 new Expr {

 def eval: Double = self.eval + that.eval

 def print: String = s"(${self.print} + ${that.print})"

 }

 }

 def -(that: Expr): Expr = {

 val self = this

 new Expr {

 def eval: Double = self.eval - that.eval

 def print: String = s"(${self.print} - ${that.print})"

 }

 }

 def *(that: Expr): Expr = {

 val self = this

 new Expr {

 def eval: Double = self.eval * that.eval

 def print: String = s"(${self.print} * ${that.print})"

 }

377

 }

 def /(that: Expr): Expr = {

 val self = this

 new Expr {

 def eval: Double = self.eval / that.eval

 def print: String = s"(${self.print} / ${that.print})"

 }

 }

}

object Expr {

 def literal(value: Double): Expr =

 new Expr {

 def eval: Double = value

 def print: String = value.toString

 }

}

Now we can create the same example as before

val onePlusTwo = Expr.literal(1) + Expr.literal(2)

and interpret it as before

onePlusTwo.eval

// res4: Double = 3.0

onePlusTwo.print

// res5: String = "(1.0 + 2.0)"

As expected we have the opposite extensibility. We can add new
program operations such as sin.

def sin(expr: Expr): Expr = {

 new Expr {

 def eval: Double = Math.sin(expr.eval)

 def print: String = s"sin(${expr.print})"

 }

}

However we are restricted to the two interpretations we have
defined on Expr, eval and print.

378

We now need to introduce a bit of terminology, so we can talk
more precisely. We will use the term program algebras to refer to
constructors and combinators, as they are the portion of the
algebra used to create programs. We must also distinguish
between programs and the program type. In the example above,
Expr is the program type. A program is an expression that
produces a value of the program type.

The core of tagless final is to:

1. define program algebras parameterized by their program type,
and

2. parameterize programs by the program algebras they depend
on.

For the example we have just seen we could define a program
algebra as follows:

trait Arithmetic[Expr] {

 def +(l: Expr, r: Expr): Expr

 def -(l: Expr, r: Expr): Expr

 def *(l: Expr, r: Expr): Expr

 def /(l: Expr, r: Expr): Expr

 def literal(value: Double): Expr

}

Notice how it is parameterized by a type Expr. This is the program
type.

Now we can create a program. Here’s the same example we saw
above, but written in tagless final style.

def onePlusTwo[Expr](arithmetic: Arithmetic[Expr]): Expr =

 arithmetic.+(arithmetic.literal(1.0), arithmetic.literal(2.0))

Notice the distinction between a program and the program type: a
program creates a value of the program type, but a program is not
itself of the program type. In tagless final a program is a function
from program algebras to the program type.

379

We can finish our example by creating an instance of Arithmetic.

object DoubleArithmetic extends Arithmetic[Double] {

 def +(l: Double, r: Double): Double =

 l + r

 def -(l: Double, r: Double): Double =

 l - r

 def *(l: Double, r: Double): Double =

 l * r

 def /(l: Double, r: Double): Double =

 l / r

 def literal(value: Double): Double =

 value

}

Now we can run our example.

onePlusTwo(DoubleArithmetic)

// res7: Double = 3.0

Tagless final gives us both forms of extensibility. We can add a
new interpreter.

object PrintArithmetic extends Arithmetic[String] {

 def +(l: String, r: String): String =

 s"($l + $r)"

 def -(l: String, r: String): String =

 s"($l - $r)"

 def *(l: String, r: String): String =

 s"($l * $r)"

 def /(l: String, r: String): String =

 s"($l / $r)"

 def literal(value: Double): String =

 value.toString

}

This works in the same way.

onePlusTwo(PrintArithmetic)

// res8: String = "(1.0 + 2.0)"

380

We can also define new program algebras

trait Trigonometry[Expr] {

 def sin(expr: Expr): Expr

}

and use them in a program.

def sinOnePlusTwo[Expr](

 arithmetic: Arithmetic[Expr],

 trigonometry: Trigonometry[Expr]

): Expr =

 trigonometry.sin(onePlusTwo(arithmetic))

Notice that we are using composition here; the program
sinOnePlusTwo reuses onePlusTwo.

A few notes before we move on.

In this example the program type is the same as the type we
interpret to. We can use Double as the program type when we
want to interpret to Double, and likewise with String. This is
usually not the case. It’s just a coincidence of using arithmetic that
we don’t need any additional information to calculate the final
result, and hence the program type and interpreter result type are
the same.

There is quite a high notational overhead of tagless final,
compared to the data and codata interpreters. We’ll address this
later, and end up with an encoding of tagless final in Scala that
looks like ordinary code. First, however, we’ll introduce a more
compelling example: cross-platform user interfaces.

15.3. Algebraic User Interfaces

Changing the interpretation of our terminal programs is more a
theoretical than a practical problem. While it is true that different

381

interpretations, such as saving to a text buffer, or tracing the state
changes, will have niche uses, the vast majority of the time we’ll
use the default interpretation. A much more motivating example is
a cross-platform user interface library. Frameworks such as Flutter,
React Native, and Capacitor derive a lot of their value by allowing
programmers to define a single interface that works across web
and mobile. We will build such a library here, but our ambitions
are a bit reduced: we will create a terminal backend but leave other
backends up to your inspiration and perspiration.

Broadly speaking, there are two kinds of user interfaces. When
operating, say, a digital musical instrument, we require a
continuous stream of values from the user interface. In contrast,
when working with a form we only require the values once, when
the form is submitted. Modelling a continuous stream of values is
certainly doable (see functional reactive programming) but it adds
inessential complexity. Therefore we will stick with the simpler
kind of interface where the user submits values once.

We’ll consider each of constructors, combinators, and interpreters
in turn.

Constructors will define the atomic units of user interface for our
library. The granularity we use here trades off expressivity and
convenience. At the very lowest level we could work with vertex
buffers and the like, which would make our library a general
purpose graphics library. This gives us the ultimate flexibility but
is far too low level for this case study. At a higher level we might
think of atomic units as user interface elements like labels,
buttons, text inputs, and so on. This is the level at which HTML
operates. At this level we still usually require multiple elements to
construct a complete control. For example, in HTML what is
conceptually a single form field will often consist of separate DOM
elements for the label, the input control, and the control to show
validation errors, plus some Javascript to add interactivity. We will
go even higher level. Our atomic elements will specify the kind of

382

https://flutter.dev/
https://reactnative.dev/
https://capacitorjs.com/

user input we wants, such as a choice between a number of
elements, and leave it up to the interpreter to decide how to render
this using the platform’s available controls. For example, we could
render a one-of-many control using either radio buttons or a
dropdown, or choose between the two depending on the number
of choices. We’ll also add labels, and optional validation rules, to
each element. Let’s model two such elements, to illustrate the idea.

type Validation[A] = A => Either[String, A]

// The validation rule that always succeeds

def succeed[A](value: A): Either[String, A] = Right(value)

trait Controls[Ui[_]] {

 def textInput(

 label: String,

 placeholder: String,

 validation: Validation[String] = succeed

): Ui[String]

 def choice[A](label: String, options: Seq[(String, A)]): Ui[A]

}

Here we defined two controls:

• textInput, which creates a text input where the user can enter
any text that passes the validation rule; and

• choice, which gives the user a choice of one of the given items.

Notice how our modelling decisions restrict our expressivity. For
example, textInput has a placeholder, which is displayed before
the user enters input, but does not have a default value. By
reducing expressivity we gain convenience. If the user’s
requirements fit our model it is very easy to create controls. Also
notice that we don’t have any way to control the appearance of
controls. This is deliberate; we are pushing that concern into the
interpreters.

These controls generate an element of the program type Ui. Each
particular interpreter, corresponding to a backend, will choose a

383

concrete type for Ui corresponding to the needs of the user
interface toolkit it is working with.

These two constructors are enough to illustrate the idea, so we will
move on to combinators. In the context of user interfaces the most
common combinators will specify the layout of elements. As with
the constructors there are a number of possible designs: we could
allow a lot of precision in layout, as CSS does for HTML, or we
could provide a few pre-defined layouts, or we could even push
layout into the interpreter. In keeping with our design for the
constructors, and with the need to keep things simple, we will go
with a very high-level design. Our single combinator, and, only
specifies that two elements should occur together. It leaves it up to
the interpreter how this should be rendered on the screen.

trait Layout[Ui[_]] {

 def and[A, B](first: Ui[A], second: Ui[B]): Ui[(A, B)]

}

You might have noticed that and is another name for product from
Semigroupal, which we encountered in Section 12.1. It has exactly
the same signature, apart from the name, and it represents the
same concept as applied to user interfaces.

At this point we have defined two program algebras, Controls and
Layout, and shown examples of both constructors and
combinators. The next step is to create an interpreter. Here we are
going to create an extremely simple interpreter to illustrate the
idea and to allow us to show how to write programs using our
algebras. More full featured interpreters are certainly possible, but
they don’t introduce any new concepts and take considerably
more code.

Our interpreter will use the Console IO features of the standard
library to interact with the user.

384

import cats.syntax.all.*

import scala.io.StdIn

import scala.util.Try

type Program[A] = () => A

object Simple extends Controls[Program], Layout[Program] {

 def and[A, B](first: Program[A], second: Program[B]):

Program[(A, B)] =

 // Use Cats Semigroupal for Function0

 (first, second).tupled

 def textInput(

 label: String,

 placeholder: String,

 validation: Validation[String] = succeed

): Program[String] =

 () => {

 def loop(): String = {

 println(s"$label (e.g. $placeholder):")

 val input = StdIn.readLine

 validation(input).fold(

 msg => {

 println(msg)

 loop()

 },

 value => value

)

 }

 loop()

 }

 def choice[A](label: String, options: Seq[(String, A)]):

Program[A] =

 () => {

 def loop(): A = {

 println(label)

 options.zipWithIndex.foreach { case ((desc, _), idx) =>

 println(s"$idx: $desc")

 }

 Try(StdIn.readInt).fold(

 _ => {

 println("Please enter a valid number.")

 loop()

385

 },

 idx => {

 if idx >= 0 && idx < options.size then options(idx)

(1)

 else {

 println("Please enter a valid number.")

 loop()

 }

 }

)

 }

 loop()

 }

}

Now we can implement a simple example.

def quiz[Ui[_]](

 controls: Controls[Ui],

 layout: Layout[Ui]

): Ui[(String, Int)] =

 layout.and(

 controls.textInput("What is your name?", "John Doe"),

 controls.choice(

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

)

We can run this example with code like the following.

val (name, rating) = quiz(Simple, Simple)()

println(s"Hello $name!")

println(s"You gave tagless final a rating of $rating.")

Here is an example of interaction.

386

What is your name? (e.g. John Doe):

Noel Welsh

Tagless final is the greatest thing ever

0: Strongly disagree

1: Disagree

2: Neutral

3: Agree

4: Strongly agree

4

Hello Noel Welsh!

You gave tagless final a rating of 5.

We have a basic example working, but it is not very nice to work
with. The way in which we write code in tagless final style is very
convoluted compared to normal code. In the next section we’ll see
a different encoding of tagless final that gives the user a much
better experience.

15.4. A Better Encoding

The basic implementation of tagless final has quite a poor
developer experience. Consider the refactoring of our example
below.

def name[Ui[_]](controls: Controls[Ui]): Ui[String] =

 controls.textInput("What is your name?", "John Doe")

def rating[Ui[_]](controls: Controls[Ui]): Ui[Int] =

 controls.choice(

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

387

def quiz[Ui[_]](

 controls: Controls[Ui],

 layout: Layout[Ui]

): Ui[(String, Int)] =

 layout.and(name(controls), rating(controls))

This style of code quickly becomes tedious to write. The method
signatures are quite involved, and passing the program algebras
from method to method is annoying busy work.

An improvement is to make the program algebras given instances.
If we define accessors

object Controls {

 def apply[Ui[_]](using controls: Controls[Ui]): Controls[Ui] =

 controls

}

object Layout {

 def apply[Ui[_]](using layout: Layout[Ui]): Layout[Ui] =

 layout

}

we can then write

def name[Ui[_]: Controls]: Ui[String] =

 Controls[Ui].textInput("What is your name?", "John Doe")

def rating[Ui[_]: Controls]: Ui[Int] =

 Controls[Ui].choice(

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

def quiz[Ui[_]: Controls: Layout]: Ui[(String, Int)] =

 Layout[Ui].and(name, rating)

388

This is the encoding of tagless final that is common in the Scala
community, but there is still a lot of notational overhead for the
developer who has to write this code. We can use Scala language
features to reduce the overhead of writing code using a tagless
final style to the point where is a simple as standard code.

We’ll use a combination of five techniques:

1. creating a base type for program algebras;
2. making the program type a type member;
3. defining a type for programs;
4. defining constructors on companion objects; and
5. using extension methods for combinators.

This is quite involved, but each step is relatively simple. Let’s see
how it works.

Our first step is to create a base type for algebras. This is just a
trait like

trait Algebra[Ui[_]]

Our program algebras extend this trait.

trait Controls[Ui[_]] extends Algebra[Ui]{

 def textInput(

 label: String,

 placeholder: String,

 validation: Validation[String] = succeed

): Ui[String]

 def choice[A](label: String, options: Seq[(String, A)]): Ui[A]

}

trait Layout[Ui[_]] extends Algebra[Ui]{

 def and[A, B](first: Ui[A], second: Ui[B]): Ui[(A, B)]

}

Now we make the program type a type member.

389

trait Algebra {

 type Ui[_]

}

trait Controls extends Algebra {

 def textInput(

 label: String,

 placeholder: String,

 validation: Validation[String] = succeed

): Ui[String]

 def choice[A](label: String, options: Seq[(String, A)]): Ui[A]

}

trait Layout extends Algebra {

 def and[A, B](first: Ui[A], second: Ui[B]): Ui[(A, B)]

}

At this point we’ve made sufficient changes that our example
program is meaningfully changed. Our starting point was

def quiz[Ui[_]: Controls: Layout](

 controls: Controls[Ui],

 layout: Layout[Ui]

): Ui[(String, Int)] =

 Layout[Ui].and(

 Controls[Ui].textInput("What is your name?", "John Doe"),

 Controls[Ui].choice(

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

)

With the changes above we can instead write

def quiz(using alg: Controls & Layout): alg.Ui[(String, Int)] =

 alg.and(

 alg.textInput("What is your name?", "John Doe"),

390

 alg.choice(

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

)

The key changes are:

1. the program algebras are a single parameter to the method,
which is possible because they extend a common base type;

2. the Ui type parameter is no longer needed, as it has become a
type member; and

3. we must now use a dependent method to specify the result
type.

Our next step is to define a type for programs. Programs are
conceptually functions from an algebra to a program type, so we
can define such a type.

trait Program[-Alg <: Algebra, A] {

 def apply(alg: Alg): alg.Ui[A]

}

Pay particular attention to the result type, alg.Ui[A]. As Program
requires a dependent method type it cannot be a standard
function.

The example now becomes

val quiz =

 new Program[Controls & Layout, (String, Int)] {

 def apply(alg: Controls & Layout) =

 alg.and(

 alg.textInput("What is your name?", "John Doe"),

 alg.choice(

391

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

)

 }

Programs are now values instead of methods. Notice that first type
parameter of Program declares all the program algebras the
program requires. It’s still quite involved to write this code,
though we can simplify it a bit by using the single abstract method
technique, which means a trait with a single abstract method
(like Program) can be implemented with a function.

val quiz: Program[Controls & Layout, (String, Int)] =

 (alg: Controls & Layout) =>

 alg.and(

 alg.textInput("What is your name?", "John Doe"),

 alg.choice(

 "Tagless final is the greatest thing ever",

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

)

Programs-as-values is the key that unlocks the next two
improvements. The first is to define constructors as methods on
companion objects.

object Controls {

 def textInput(

 label: String,

392

 placeholder: String,

 validation: Validation[String] = succeed

): Program[Controls, String] =

 alg => alg.textInput(label, placeholder, validation)

 def choice[A](

 label: String,

 options: Seq[(String, A)]

): Program[Controls, A] =

 alg => alg.choice(label, options)

}

This works because methods can now return programs.

The second and final improvement is to define extension methods
for combinators. Since we only have one combinator, and, that
means a single extension method.

extension [Alg <: Algebra, A](p: Program[Alg, A]) {

 def and[Alg2 <: Algebra, B](

 second: Program[Alg2, B]

): Program[Alg & Alg2 & Layout, (A, B)] =

 alg => alg.and(p(alg), second(alg))

}

Pay particular attention to how the types are defined for this
extension method. We define the extension on a Program requiring
algebras Alg. The parameter to the and method is a Program
requiring algebras Alg2. The result requires algebras Alg & Alg2
& Layout, which is the union of the algebras required by the two
programs and the Layout algebra. In this way the combinators
build up the algebras required for the program.

The net result is that users can write

val quiz =

 Controls

 .textInput("What is your name?", "John Doe")

 .and(

 Controls.choice(

 "Tagless final is the greatest thing ever",

393

 Seq(

 "Strongly disagree" -> 1,

 "Disagree" -> 2,

 "Neutral" -> 3,

 "Agree" -> 4,

 "Strongly agree" -> 5

)

)

)

which looks just like normal code. The type of quiz shows that
type inference has correctly inferred all the needed program
algebras.

quiz

// res0: Program[Controls & Layout, Tuple2[String, Int]] =

repl.MdocSession$MdocApp$

$Lambda$13618/0x0000000803a75840@669e8eb8

This encoding requires more work from the library developer.
However this is a one off cost, and result is that library users write
much simpler code. For most applications of tagless final I think
this is an appropriate trade off.

15.5. Conclusions

In this chapter we looked at codata interpreters, and their
extension to tagless final. Tagless final is particularly interesting
because it solves the expression problem, allowing us to extend
both the operations a program can perform and the interpretations
of that program.

Our exploration of tagless final nicely illustrates the distinction
between theory and craft introduced in Section 1.1. We saw two
different encoding of tagless final in Scala (three, if we count using
context bounds as a different encoding). They are both tagless final
at the theory level, but are very different to implement or use as a

394

programmer. The “standard” encoding is relatively easy to
implement for the library author, but tedious and potentially
confusing for the user. The improved encoding places more work
on the library author, but the user writes code in a natural style.

Tagless final is very powerful and it can be tempting to use it
everywhere. I want to caution against this urge. Tagless final can
cause problems, both for the author and the user. From the user’s
point of view everything works fine until they make a mistake.
Then the errors can be confusing. Consider this code, where we
have missed a parameter to and.

Controls.textInput("Name", "John Doe").and()

// error:

// missing argument for parameter second of method and in object

MdocApp: (second: repl.MdocSession.MdocApp.Program[Alg2, B]):

// repl.MdocSession.MdocApp.Program[

// Alg & Alg2 & repl.MdocSession.MdocApp.Layout, (String, B)]

// Controls.textInput("Name", "John Doe").and()

// ^^^

The error message does tell us the problem, but it exposes a lot of
the internal machinery that the user is not normally exposed to,
and hence they’ll probably have difficult understanding. A
straightforward data or codata interpreter does not have this
problem.

From the library author’s point of view, it is a lot more work to
create tagless final code. It can also be difficult to onboard new
developers to this code, as the techniques are not familiar to most.

As always, the applicability of tagless final comes down to the
context in which it is used. In cases where the extensibility is truly
justified it is a powerful tool. In other cases it just introduces
unwarranted complexity.

The term “expression problem” was first introduced in an email by
Phil Wadler [89], but there are much earlier sources that discuss
the same issue. (One example is William Cook. [16].) Tagless final

395

was first introduced in Jacques Carette, Oleg Kiselyov, and Chung-
chieh Shan. [10] and expanded on in Oleg Kiselyov. [45]. It is just
one of many solutions that have been proposed to the expression
problem. I’m no expert on the wider field of solutions to the
expression problem, but of the papers I’ve read the ones I’d like to
highlight are object algebras [63] and data types à la carte [82].
Object algebras are, in all essentials, the same as tagless final. They
were developed in object-oriented languages rather than
functional programming languages, making an interesting case of
convergent evolution in two distinct, but connected, fields of
research. The object algebras paper is also a good read for a more
formal, if brief, discussion of the theory behind the concepts we’ve
been dealing with. Data types à la carte is a data, rather than
codata, approach to the expression problem, and so makes an
interesting contrast to tagless final. I find tagless final much
simpler, so we have not explored data types à la carte in this book.
Another noteworthy paper is Jeremy Gibbons and Nicolas Wu.
[34], which discuss the duality between data and codata and its
implication for embedded domain specific languages.

Tagless final was introduced using Haskell as the implementation
language. The standard encoding in Scala is a direct translation of
the Haskell implementation. The improved Scala encoding is my
own creation. The use of the single abstract method shortcut was
suggested by Jakub Kozłowski.

396

16. Optimizing

Interpreters and

Compilers

In a previous chapter we introduced interpreters as a key strategy
in functional programming. In many cases simple structurally
recursive interpreters are sufficient. However, in a few cases we
need more performance than they can offer so in this chapter we’ll
turn to optimization. This is a huge subject, which we cannot hope
to cover in just one book chapter. Instead we’ll focus on two
techniques that I believe use key ideas found in more complex
techniques: algebraic manipulation and compilation to a virtual
machine.

We’ll start looking at algebraic manipulation, returning to the
regular expression example we used earlier. We’ll then move to
virtual machine, this time using a simple arithmetic interpreter
example. We’ll see how we can compile code to a stack machine,
and then look at some of the optimizations that are available when
we use a virtual machine.

16.1. Algebraic Manipulation

Reifying a program represents it as a data structure. We can
rewrite this data structure to several ends: as a way to simplify
and therefore optimize the program being interpreted, but also as a
general form of computation implementing the interpreter. In this
section we’re going to return to our regular expression example,
and show how rewriting can be used perform both of these tasks.

397

We will use a technique known as regular expression derivatives.
Regular expression derivatives provide a simple way to match a
regular expression against input (with the correct semantics for
union, which you may recall we didn’t deal with in the previous
chapter). The derivative of a regular expression, with respect to a
character, is the regular expression that remains after matching
that character. Say we have the regular expression that matches
the string "osprey". In our library this would be
Regexp("osprey"). The derivative with respect to the character o
is Regexp("sprey"). In other words it’s the regular expression that
is looking for the string "sprey". The derivative with respect to
the character a is the regular expression that matches nothing,
which is written Regexp.empty in our library. To take a more
complicated example, the derivative with respect to c of
Regexp("cats").repeat is Regexp("ats") ++
Regexp("cats").repeat. This indicates we’re looking for the
string "ats" followed by zero or more repeats of "cats"

All we need to do to determine if a regular expression matches
some input is to calculate successive derivatives with respect to
the characters in the input in the order in which they occur. If the
resulting regular expression matches the empty string then we
have a successful match. Otherwise it has failed to match.

To implement this algorithm we need three things:

1. an explicit representation of the regular expression that
matches the empty string;

2. a method that tests if a regular expression matches the empty
string; and

3. a method that computes the derivative of a regular expression
with respect to a given character.

Our starting point is the basic reified interpreter we developed in
the previous chapter. This is the simplest code and therefore the
easiest to work with.

398

enum Regexp {

 def ++(that: Regexp): Regexp =

 Append(this, that)

 def orElse(that: Regexp): Regexp =

 OrElse(this, that)

 def repeat: Regexp =

 Repeat(this)

 def `*` : Regexp = this.repeat

 def matches(input: String): Boolean = {

 def loop(regexp: Regexp, idx: Int): Option[Int] =

 regexp match {

 case Append(left, right) =>

 loop(left, idx).flatMap(i => loop(right, i))

 case OrElse(first, second) =>

 loop(first, idx).orElse(loop(second, idx))

 case Repeat(source) =>

 loop(source, idx)

 .flatMap(i => loop(regexp, i))

 .orElse(Some(idx))

 case Apply(string) =>

 Option.when(input.startsWith(string, idx))(idx +

string.size)

 case Empty =>

 None

 }

 // Check we matched the entire input

 loop(this, 0).map(idx => idx == input.size).getOrElse(false)

 }

 case Append(left: Regexp, right: Regexp)

 case OrElse(first: Regexp, second: Regexp)

 case Repeat(source: Regexp)

 case Apply(string: String)

 case Empty

}

object Regexp {

 val empty: Regexp = Empty

 def apply(string: String): Regexp =

 Apply(string)

}

399

We want to explicitly represent the regular expression that
matches the empty string, as it plays an important part in the
algorithms that follow. This is simple to do: we just reify it and
adjust the constructors as necessary. I’ve called this case “epsilon”,
which matches the terminology used in the literature.

enum Regexp {

 // ...

 case Epsilon

}

object Regexp {

 val epsilon: Regexp = Epsilon

 def apply(string: String): Regexp =

 if string.isEmpty() then Epsilon

 else Apply(string)

}

Next up we will create a predicate that tells us if a regular
expression matches the empty string. Such a regular expression is
called “nullable”. The code is so simple it’s easier to read it than try
to explain it in English.

def nullable: Boolean =

 this match {

 case Append(left, right) => left.nullable && right.nullable

 case OrElse(first, second) => first.nullable ||

second.nullable

 case Repeat(source) => true

 case Apply(string) => false

 case Epsilon => true

 case Empty => false

 }

Now we can implement the actual regular expression derivative. It
consists of two parts: the method to calculate the derivative which
in turn depends on a method that handles a nullable regular
expression. Both parts are quite simple so I’ll give the code first
and then explain the more complicated parts.

400

def delta: Regexp =

 if nullable then Epsilon else Empty

def derivative(ch: Char): Regexp =

 this match {

 case Append(left, right) =>

 (left.derivative(ch) ++ right).orElse(left.delta ++

right.derivative(ch))

 case OrElse(first, second) =>

 first.derivative(ch).orElse(second.derivative(ch))

 case Repeat(source) =>

 source.derivative(ch) ++ this

 case Apply(string) =>

 if string.size == 1 then

 if string.charAt(0) == ch then Epsilon

 else Empty

 else if string.charAt(0) == ch then Apply(string.tail)

 else Empty

 case Epsilon => Empty

 case Empty => Empty

 }

I think this code is reasonably straightforward, except perhaps for
the cases for OrElse and Append. The case for OrElse is trying to
match both regular expressions simultaneously, which gets around
the problem in our earlier implementation. The definition of
nullable ensures we match if either side matches. The case for
Append is attempting to match the left side if it is still looking for
characters; otherwise it is attempting to match the right side.

With this we redefine matches as follows.

def matches(input: String): Boolean = {

 val r = input.foldLeft(this){ (regexp, ch) =>

regexp.derivative(ch) }

 r.nullable

}

We can show the code works as expected.

val regexp = Regexp("Sca") ++ Regexp("la") ++ Regexp("la").repeat

401

regexp.matches("Scala")

// res1: Boolean = true

regexp.matches("Scalalalala")

// res2: Boolean = true

regexp.matches("Sca")

// res3: Boolean = false

regexp.matches("Scalal")

// res4: Boolean = false

It also solves the problem with the earlier implementation.

Regexp("cat").orElse(Regexp("cats")).matches("cats")

// res5: Boolean = true

This is a nice result for a very simple algorithm. However there is
a problem. You might notice that regular expression matching can
become very slow. In fact we can run out of heap space trying a
simple match like

Regexp("cats").repeat.matches("catscatscatscats")

// java.lang.OutOfMemoryError: Java heap space

This happens because the derivative of the regular expression can
grow very large. Look at this example, after only a few derivatives.

Regexp("cats").repeat.derivative('c').derivative('a').derivative('t')

// res6: Regexp =

OrElse(OrElse(Append(Apply(s),Repeat(Apply(cats))),Append(Empty,Append(Empty,Repeat(Apply(cats))))),OrElse(Append(Empty,Append(Empty,Repeat(Apply(cats)))),Append(Empty,OrElse(Append(Empty,Repeat(Apply(cats))),Append(Empty,Append(Empty,Repeat(Apply(cats))))))))

The root cause is that the derivative rules for Append, OrElse, and
Repeat can produce a regular expression that is larger than the
input. However this output often contains redundant information.
In the example above there are multiple occurrences of
Append(Empty, ...), which is equivalent to just Empty. This is
similar to adding zero or multiplying by one in arithmetic, and we
can use similar algebraic simplification rules to get rid of these
unnecessary elements.

402

We can implement this simplification in one of two ways: we can
make simplification a separate method that we apply to an existing
Regexp, or we can do the simplification as we construct the
Regexp. I’ve chosen to do the latter, modifying ++, orElse, and
repeat as follows:

def ++(that: Regexp): Regexp = {

 (this, that) match {

 case (Epsilon, re2) => re2

 case (re1, Epsilon) => re1

 case (Empty, _) => Empty

 case (_, Empty) => Empty

 case _ => Append(this, that)

 }

}

def orElse(that: Regexp): Regexp = {

 (this, that) match {

 case (Empty, re) => re

 case (re, Empty) => re

 case _ => OrElse(this, that)

 }

}

def repeat: Regexp = {

 this match {

 case Repeat(source) => this

 case Epsilon => Epsilon

 case Empty => Empty

 case _ => Repeat(this)

 }

}

With this small change in-place, our regular expressions stay at a
reasonable size for any input.

Regexp("cats").repeat.derivative('c').derivative('a').derivative('t')

// res8: Regexp = Append(Apply(s),Repeat(Apply(cats)))

Here’s the final code.

enum Regexp {

 def ++(that: Regexp): Regexp = {

403

 (this, that) match {

 case (Epsilon, re2) => re2

 case (re1, Epsilon) => re1

 case (Empty, _) => Empty

 case (_, Empty) => Empty

 case _ => Append(this, that)

 }

 }

 def orElse(that: Regexp): Regexp = {

 (this, that) match {

 case (Empty, re) => re

 case (re, Empty) => re

 case _ => OrElse(this, that)

 }

 }

 def repeat: Regexp = {

 this match {

 case Repeat(source) => this

 case Epsilon => Epsilon

 case Empty => Empty

 case _ => Repeat(this)

 }

 }

 def `*` : Regexp = this.repeat

 /** True if this regular expression accepts the empty string */

 def nullable: Boolean =

 this match {

 case Append(left, right) => left.nullable && right.nullable

 case OrElse(first, second) => first.nullable ||

second.nullable

 case Repeat(source) => true

 case Apply(string) => false

 case Epsilon => true

 case Empty => false

 }

 def delta: Regexp =

 if nullable then Epsilon else Empty

 def derivative(ch: Char): Regexp =

 this match {

 case Append(left, right) =>

 (left.derivative(ch) ++ right).orElse(left.delta ++

404

right.derivative(ch))

 case OrElse(first, second) =>

 first.derivative(ch).orElse(second.derivative(ch))

 case Repeat(source) =>

 source.derivative(ch) ++ this

 case Apply(string) =>

 if string.size == 1 then

 if string.charAt(0) == ch then Epsilon

 else Empty

 else if string.charAt(0) == ch then Apply(string.tail)

 else Empty

 case Epsilon => Empty

 case Empty => Empty

 }

 def matches(input: String): Boolean = {

 val r = input.foldLeft(this){ (regexp, ch) =>

regexp.derivative(ch) }

 r.nullable

 }

 case Append(left: Regexp, right: Regexp)

 case OrElse(first: Regexp, second: Regexp)

 case Repeat(source: Regexp)

 case Apply(string: String)

 case Epsilon

 case Empty

}

object Regexp {

 val empty: Regexp = Empty

 val epsilon: Regexp = Epsilon

 def apply(string: String): Regexp =

 if string.isEmpty() then Epsilon

 else Apply(string)

}

Notice that our implementation is tail recursive. The only
“looping” is the call to the tail recursive foldLeft in matches. No
continuation-passing style transform is necessary here!
(Calculating the derivatives is not tail recursive but it very unlikely
this would overflow the stack.) This may not be surprising if
you’ve studied theory of computation. A key result from that field
is the equivalence between regular expressions and finite state

405

machines. If you know this you may have found it a bit surprising
we had to use a stack at all in our prior implementations. But hold
on a minute. If we think carefully about regular expression
derivatives we’ll see that they actually are continuations! A
continuation means “what comes next”, which is exactly what a
regular expression derviative defines for a regular expression and a
particular character. So our interpreter does use CPS, but reified as
a regular expression not a function, and derived through a
different route.

Continuations reify control-flow. That is, they give us an explicit
representation of how control moves through our program. This
means we can change the control flow by applying continuations
in a different order. Let’s make this concrete. A regular expression
derivative represents a continuation. So imagine we’re running a
regular expression on data that arrives asynchronously; we want
to match as much data as we have available, and then suspend the
regular expression and continue matching when more data arrives.
This is trival. When we run out of data we just store the current
derivative. When more data arrives we continue processing using
the derivative we stored. Here’s an example.

Start by defining the regular expression.

val cats = Regexp("cats").repeat

Process the first piece of data and store the continuation.

val next = "catsca".foldLeft(cats){ (regexp, ch) =>

regexp.derivative(ch) }

Continue processing when more data arrives.

"tscats".foldLeft(next){ (regexp, ch) => regexp.derivative(ch) }

Notice that we could just as easily go back to a previous regular
expression if we wanted to. This would give us backtracking. We

406

don’t need backtracking for regular expressions, but for more
general parsers we do. In fact with continuations we can define
any control flow we like, including backtracking search,
exceptions, cooperative threading, and much much more.

In this section we’ve also seen the power of rewrites. Regular
expression matching using derivatives works solely by rewriting
the regular expression. We also used rewriting to simplify the
regular expressions, avoiding the explosion in size that derivatives
can cause. The abstract type of these methods is Program =>
Program so we might think they are combinators. However the
implementation uses structural recursion and they serve the role
of interpreters. Rewrites are the one place where the types alone
can lead us astray.

I hope you find regular expression derivatives interesting and a bit
surprising. I certainly did when I first read about them. There is a
deeper point here, which runs throughout the book: most
problems have already been solved and we can save a lot of time if
we can just find those solutions. I elevate this idea of the status of
a strategy, which I call read the literature for reasons that will
soon be clear. Most developers read the occasional blog post and
might attend a conference from time to time. Many fewer, I think,
read academic papers. This is unfortunate. Part of the fault is with
the academics: they write in a style that is hard to read without
some practice. However I think many developers think the
academic literature is irrelevant. One of the goals of this book is to
show the relevance of academic work, which is why each chapter
conclusion sketches the development of its main ideas with links
to relevant papers.

407

16.2. From Continuations to

Stacks

In the previous section we explored regular expression derivatives.
We saw that they are continuations, but reified as data structures
rather than the functions we used when we first worked with
continuation-passing style. In this section we’ll reify
continuations-as-functions as data. In doing so we’ll find
continuations implicitly encode a stack structure. Explicitly
reifying this structure is a step towards implementing a stack
machine.

We’ll start with the CPSed regular expression interpreter (not
using derivatives), shown below.

enum Regexp {

 def ++(that: Regexp): Regexp =

 Append(this, that)

 def orElse(that: Regexp): Regexp =

 OrElse(this, that)

 def repeat: Regexp =

 Repeat(this)

 def `*` : Regexp = this.repeat

 def matches(input: String): Boolean = {

 // Define a type alias so we can easily write continuations

 type Continuation = Option[Int] => Option[Int]

 def loop(regexp: Regexp, idx: Int, cont: Continuation):

Option[Int] =

 regexp match {

 case Append(left, right) =>

 val k: Continuation = _ match {

 case None => cont(None)

 case Some(i) => loop(right, i, cont)

 }

 loop(left, idx, k)

408

 case OrElse(first, second) =>

 val k: Continuation = _ match {

 case None => loop(second, idx, cont)

 case some => cont(some)

 }

 loop(first, idx, k)

 case Repeat(source) =>

 val k: Continuation =

 _ match {

 case None => cont(Some(idx))

 case Some(i) => loop(regexp, i, cont)

 }

 loop(source, idx, k)

 case Apply(string) =>

 cont(Option.when(input.startsWith(string, idx))(idx +

string.size))

 case Empty =>

 cont(None)

 }

 // Check we matched the entire input

 loop(this, 0, identity).map(idx => idx ==

input.size).getOrElse(false)

 }

 case Append(left: Regexp, right: Regexp)

 case OrElse(first: Regexp, second: Regexp)

 case Repeat(source: Regexp)

 case Apply(string: String)

 case Empty

}

object Regexp {

 val empty: Regexp = Empty

 def apply(string: String): Regexp =

 Apply(string)

}

To reify the continuations we can apply the same recipe as before:
we create a case for each place in which we construct a
continuation. In our interpreter loop this is for Append, OrElse,
and Repeat. We also construct a continuation using the identity

409

function when we first call loop, which represents the
continuation to call when the loop has finished. This gives us four
cases.

enum Continuation {

 case AppendK

 case OrElseK

 case RepeatK

 case DoneK

}

What data does each case next to hold? Let’s let look at the
structure of the cases within the CPS interpreter. The case for
Append is typical.

case Append(left, right) =>

 val k: Cont = _ match {

 case None => cont(None)

 case Some(i) => loop(right, i, cont)

 }

 loop(left, idx, k)

The continuation k refers to the Regexp right, the method loop,
and the continuation cont. Our reification should reflect this by
holding the same data. If we consider all the cases we end up with
the following definition. Notice that I implemented an apply
method so we can still call these continuations like a function.

type Loop = (Regexp, Int, Continuation) => Option[Int]

enum Continuation {

 case AppendK(right: Regexp, loop: Loop, next: Continuation)

 case OrElseK(second: Regexp, index: Int, loop: Loop, next:

Continuation)

 case RepeatK(regexp: Regexp, index: Int, loop: Loop, next:

Continuation)

 case DoneK

 def apply(idx: Option[Int]): Option[Int] =

 this match {

 case AppendK(right, loop, next) =>

 idx match {

410

 case None => next(None)

 case Some(i) => loop(right, i, next)

 }

 case OrElseK(second, index, loop, next) =>

 idx match {

 case None => loop(second, index, next)

 case some => next(some)

 }

 case RepeatK(regexp, index, loop, next) =>

 idx match {

 case None => next(Some(index))

 case Some(i) => loop(regexp, i, next)

 }

 case DoneK =>

 idx

 }

}

Now we can rewrite the interpreter loop using the Continuation
type.

def matches(input: String): Boolean = {

 def loop(

 regexp: Regexp,

 idx: Int,

 cont: Continuation

): Option[Int] =

 regexp match {

 case Append(left, right) =>

 val k: Continuation = AppendK(right, loop, cont)

 loop(left, idx, k)

 case OrElse(first, second) =>

 val k: Continuation = OrElseK(second, idx, loop, cont)

 loop(first, idx, k)

 case Repeat(source) =>

 val k: Continuation = RepeatK(regexp, idx, loop, cont)

 loop(source, idx, k)

 case Apply(string) =>

 cont(Option.when(input.startsWith(string, idx))(idx +

411

string.size))

 case Empty =>

 cont(None)

 }

 // Check we matched the entire input

 loop(this, 0, DoneK)

 .map(idx => idx == input.size)

 .getOrElse(false)

}

The point of this construction is that we’ve reified the stack: it’s
now explicitly represented as the next field in each Continuation.
The stack is a last-in first-out (LIFO) data structure: the last
element we add to the stack is the first element we use. (This is
exactly the same as efficient use of a List.) We construct
continuations by adding elements to the front of the existing
continuation, which is exactly how we construct lists or stacks. We
use continuations from front-to-back; in other words in last-in
first-out (LIFO) order. This is the correct access pattern to use a list
efficiently, and also the access pattern that defines a stack. Reifying
the continuations as data has reified the stack. In the next section
we’ll use this fact to build a compiler that targets a stack machine.

16.3. Compilers and Virtual

Machines

We’ve reified continuations and seen they contain a stack
structure: each continuation contains a references to the next
continuation, and continuations are constructed in a last-in first-
out order. We’ll now, once again, reify this structure. This time
we’ll create an explicit stack, giving rise to a stack-based virtual

machine to run our code. We’ll also introduce a compiler,
transforming our code into a sequence of operations that run on

412

this virtual machine. We’ll then look at optimizing our virtual
machine. As this code involves benchmarking, there is an
[accompanying repository][stack-machine] that contains
benchmarks you can run on your own computer.

16.3.1. Virtual and Abstract Machines

A virtual machine is a computational machine implemented in
software rather than hardware. A virtual machine runs programs
written in some instruction set. The Java Virtual Machine (JVM),
for example, runs programs written in Java bytecode. Closely
related are abstract machines. The two terms are sometimes used
interchangeably but I’ll make the distinction that a virtual machine
has an implementation in software, while an abstract machine is a
theoretical model without an implementation. Thus we can think
of an abstract machine as a concept, and a virtual machine as a
realization of a concept. This is a distinction we’ve made in many
other parts of the book.

As an abstract machine, stack machines are represented by models
such as push down automata and the SECD machine. From
abstract stack machines we firstly get the concept itself of a stack
machine. The two core operations for a stack are pushing a value
on to the top of the stack, and popping the top value off the stack.
Function arguments and results are both passed via the stack. So,
for example, a binary operation like addition will pop the top two
values off the stack, add them, and push the result onto the stack.
Abstract stack machines also tell us that stack machines with a
single stack are not universal computers. In other words, they are
not as powerful as Turing machines. If we add a second stack, or
some other form of additional memory, we have a universal
computer. This informs the design of virtual machines based on a
stack machine.

413

Stack machines are also very common virtual machines. The Java
Virtual Machine is a stack machine, as are the .Net and WASM
virtual machines. They are easy to implement, and to write
compilers for. We’ve already seen how easy it is to implement an
interpreter so why should we care about stack machines, or virtual
machines in general? The usual answer is performance.
Implementing a virtual machine opens up opportunities for
optimizations that are difficult to implement in interpreters.
Virtual machines also give us a lot of flexibility. It’s simple to trace
or otherwise inspect the execution of a virtual machine, which
makes debugging easier. They are easy to port to different
platforms and languages. Virtual machines are often very compact,
as is the code they run. This makes them suitable for embedded
devices. Our focus will be on performance. Although we won’t go
down the rabbit-hole of compiler and virtual machine
optimizations, which would easily take up an entire book, we’ll at
least tip-toe to the edge and peek down.

16.3.2. Compilation

Let’s now briefly talk about compilation. A compiler transforms a
program from one representation to another. In our case we will
transform our programs represented as an algebraic data type of
reified constructors and combinators into the instruction set for
our virtual machine. The virtual machine itself is an interpreter for
its instruction set. Computation always bottoms out in
interpretation: a hardware CPU is nothing but an interpreter for
it’s machine code.

Notice there are two notions of program here, and two
corresponding instruction sets: there is the program the
structurally recursive interpreter executes, with an instruction set
consisting of reified constructors and combinators, and there is the
program we compile this into for the stack machine using the

414

stack machine’s instruction set. We will call these the interpreter
program and instruction set, and stack machine program and
instruction set respectively.

The structurally recursive interpreter is an example of a tree-

walking interpreter or abstract syntax tree (AST) interpreter.
The stack machine is an example of a byte-code interpreter.

16.4. From Interpreter to Stack

Machine

There are three parts to transforming an interpreter to a stack
machine:

1. creating the instruction set the stack machine will run;
2. creating the compiler from interpreter programs to stack

machine programs; and
3. implementing the stack machine to execute stack machine

instructions.

Let’s make this concrete by returning to our arithmetic interpreter.

enum Expression {

 def +(that: Expression): Expression = Addition(this, that)

 def *(that: Expression): Expression = Multiplication(this,

that)

 def -(that: Expression): Expression = Subtraction(this, that)

 def /(that: Expression): Expression = Division(this, that)

 def eval: Double =

 this match {

 case Literal(value) => value

 case Addition(left, right) => left.eval + right.eval

 case Subtraction(left, right) => left.eval - right.eval

 case Multiplication(left, right) => left.eval * right.eval

 case Division(left, right) => left.eval / right.eval

 }

415

 case Literal(value: Double)

 case Addition(left: Expression, right: Expression)

 case Subtraction(left: Expression, right: Expression)

 case Multiplication(left: Expression, right: Expression)

 case Division(left: Expression, right: Expression)

}

object Expression {

 def literal(value: Double): Expression = Literal(value)

}

Interpreter programs are defined by the interpreter instruction set

enum Expression {

 case Literal(value: Double)

 case Addition(left: Expression, right: Expression)

 case Subtraction(left: Expression, right: Expression)

 case Multiplication(left: Expression, right: Expression)

 case Division(left: Expression, right: Expression)

}

Transforming the interpreter instruction set to the stack machine
instruction set works as follows:

• each constructor interpreter instruction corresponds to stack
machine instruction carrying exactly the same data; and

• each combinator interpreter instruction has a corresponding
stack machine instruction that carries only non-recursive data.
Recursive data, which is executed by recursive calls to the
interpreter, will be represented by data on the stack machine’s
stack.

Turning to the arithmetic interpreter’s instruction set, we see that
Literal is our sole constructor and thus has a mirror in our stack
machine’s instruction set. Here I’ve named the interpreter
instruction set Op (short for “operation”), and shortened the name
from Literal to Lit to make it clearer which instruction set we
are using.

416

enum Op {

 case Lit(value: Double)

}

The other instructions are all combinators. They also all only
contain values of type Expression, and hence in the stack machine
the corresponding values will be found on the stack. This gives us
the complete stack machine instruction set.

enum Op {

 case Lit(value: Double)

 case Add

 case Sub

 case Mul

 case Div

}

This completes the first step of the process. The second step is to
implement the compiler. The secret to compiling for a stack
machine is to transfrom instructions into reverse polish

notation (RPN). In RPN operations follow their operands. So,
instead of writing 1 + 2 we write 1 2 +. This is exactly the order
in which a stack machine works. To evaluate 1 + 2 we should first
push 1 onto the stack, then push 2, and finally pop both these
values, perform the addition, and push the result back to the stack.
RPN also does not need nesting. To represent 1 + (2 + 3) in RPN
we simply use 2 3 + 1 +. Doing away with brackets means that
stack machine programs can be represented as a linear sequence of
instructions, not a tree. Concretely, we can use List[Op].

How we should we implement the conversion to RPN. We are
performing a transformation on an algebraic data type, our
interpreter instruction set and therefore we can use structural
recursion. The following code shows one way to implement this.
It’s not very efficient (appending lists is a slow operation) but this
doesn’t matter for our purposes.

417

def compile: List[Op] =

 this match {

 case Literal(value) => List(Op.Lit(value))

 case Addition(left, right) =>

 left.compile ++ right.compile ++ List(Op.Add)

 case Subtraction(left, right) =>

 left.compile ++ right.compile ++ List(Op.Sub)

 case Multiplication(left, right) =>

 left.compile ++ right.compile ++ List(Op.Mul)

 case Division(left, right) =>

 left.compile ++ right.compile ++ List(Op.Div)

 }

We now are left to implement the stack machine. We’ll start by
sketching out the interface for the stack machine.

final case class StackMachine(program: List[Op]) {

 def eval: Double = ???

}

In this design the program is fixed for a given StackMachine
instance, but we can run the program multiple times.

Now we’ll implement eval. It is a structural recursion over an
algebraic data type, in this case the program of type List[Op]. It’s
a little bit more complicated than some of the structural recursions
we have seen, because we need to implement the stack as well.
We’ll represent the stack as a List[Double], and define methods
to push and pop the stack.

final case class StackMachine(program: List[Op]) {

 def eval: Double = {

 def pop(stack: List[Double]): (Double, List[Double]) =

 stack match {

 case head :: next => (head, next)

 case Nil =>

 throw new IllegalStateException(

 s"The data stack does not have any elements."

)

 }

 def push(value: Double, stack: List[Double]): List[Double] =

418

 value :: stack

 ???

 }

}

Now we can define the main stack machine loop. It takes as
parameters the program and the stack, and is a structural
recursion over the program.

def eval: Double = {

 // pop and push defined here ...

 def loop(stack: List[Double], program: List[Op]): Double =

 program match {

 case head :: next =>

 head match {

 case Op.Lit(value) => loop(push(value, stack), next)

 case Op.Add =>

 val (a, s1) = pop(stack)

 val (b, s2) = pop(s1)

 val s = push(a + b, s2)

 loop(s, next)

 case Op.Sub =>

 val (a, s1) = pop(stack)

 val (b, s2) = pop(s1)

 val s = push(a + b, s2)

 loop(s, next)

 case Op.Mul =>

 val (a, s1) = pop(stack)

 val (b, s2) = pop(s1)

 val s = push(a + b, s2)

 loop(s, next)

 case Op.Div =>

 val (a, s1) = pop(stack)

 val (b, s2) = pop(s1)

 val s = push(a + b, s2)

 loop(s, next)

 }

 case Nil => stack.head

 }

 loop(List.empty, program)

}

419

I’ve implemented a simple benchmark for this code (see [the
repository][stack-machine]) and it’s roughly five times slower
than the interpreter we started with. Clearly some optimization is
needed.

[stack-machine]: https://github.com/scalawithcats/stack-machine

16.4.1. Effectful Interpreters

One of the reasons for using the interpreter strategy is to isolate
effects, such as state or input and output. An interpreter can be
effectful without impacting the ability to reason about or compose
the programs the interpreter runs. Sometimes the effects are the
entire point of the interpreter as the program may describe
effectful actions, such as parsing network data or drawing on a
screen, which the interpreter then carries out. Sometimes effects
may just be optimizations, which is how we are going to use them
in our arithmetic stack machine.

There are many inefficiencies in the stack machine we have just
created. A List is a poor choice of data structure for both the stack
and program. We can avoid a lot of pointer chasing and memory
allocation by using a fixed size Array. The program never changes
in size, and we can simply allocate a large enough stack that
resizing it becomes very unlikely. We can also avoid the
indirection of pushing and popping and operate directly on the
stack array.

The code below shows a simple implementation, which in my
benchmarking is about thirty percent faster than the tree-walking
interpreter.

final case class StackMachine(program: Array[Op]) {

 // The data stack

 private val stack: Array[Double] = Array.ofDim[Double](256)

420

https://github.com/scalawithcats/stack-machine

 def eval: Double = {

 // sp points to first free element on the stack

 // stack(sp - 1) is the first element with data

 //

 // pc points to the current instruction in program

 def loop(sp: Int, pc: Int): Double =

 if (pc == program.size) stack(sp - 1)

 else

 program(pc) match {

 case Op.Lit(value) =>

 stack(sp) = value

 loop(sp + 1, pc + 1)

 case Op.Add =>

 val a = stack(sp - 1)

 val b = stack(sp - 2)

 stack(sp - 2) = (a + b)

 loop(sp - 1, pc + 1)

 case Op.Sub =>

 val a = stack(sp - 1)

 val b = stack(sp - 2)

 stack(sp - 2) = (a - b)

 loop(sp - 1, pc + 1)

 case Op.Mul =>

 val a = stack(sp - 1)

 val b = stack(sp - 2)

 stack(sp - 2) = (a * b)

 loop(sp - 1, pc + 1)

 case Op.Div =>

 val a = stack(sp - 1)

 val b = stack(sp - 2)

 stack(sp - 2) = (a / b)

 loop(sp - 1, pc + 1)

 }

 loop(0, 0)

 }

}

16.4.2. Further Optimization

The above optimization is, to me, the most obvious and
straightforward to implement. In this section we’ll attempt to go
further, by looking at some of the optimizations described in the

421

literature. We’ll see that there is not always a straight path to
faster code.

The benchmark I used is the simple recursive Fibonacci.

Calculating the 𝑛th Fibonacci number produces a large expression

for a modest choice of 𝑛. I used a value of 25, and the expression
has over one million elements. Notably the expressions only
involve addition, and the only literals in use are zero and one. This
limits the applicability of the optimizations to a wider range of
inputs, but the intention is not to produce an optimized interpreter
for this specific case but rather to discuss possible optimizations
and issues that arise when attempting to optimize an interpreter in
general.

We’ll look at four different optimizations, which all use the
optimized stack machine above as their base:

• Algebraic simplification performs simplifications at compile-
time to produce smaller expressions. A small expression should
require fewer interpreter steps and hence be faster. The only

simplification I used was replacing 𝑥 + 0 or 0 + 𝑥 with 𝑥. This
occurs frequently in the Fibonacci series. Since the expressions
we are working with have no variables or control flow we could
simplify the entire expression to a single literal at compile-time.
This would be an extremely good optimization but rather defeats
the purpose of trying to generalize to other applications.

• Byte code replaces the Op algebraic data type with a single byte.
The hope here is that the smaller representation will lead to
better cache utilization, and possibly a faster match expression,
and therefore a faster overall interpreter. In this representation
literals are also stored in a separate array of Doubles. More on
this later.

• Stack caching stores the top of the stack in a variable, which
we hope will be allocated to a register and therefore be
extremely fast to access. The remainder of the stack is stored in
an array as above. Stack caching involves more work when

422

pushing values on to the stack, as we must copy the value from
the top into the array, but less work when popping values off the
stack. The hope is that the savings will outweigh the costs.

• Superinstructions replace common sequences of instructions
with a single instruction. We already do this to an extent; a
typical stack machine would have separate instructions for
pushing and popping, but our instruction set merges these into
the arithmetic operations. I used two superinstructions: one for
incrementing a value, which frequently occurs in the Fibonacci,
and one for adding two values from the stack and a literal.

Below are the benchmarks results obtained on an AMD Ryzen 5
3600 and an Apple M1, both running JDK 21. Results are shown in
operations per second. The Baseline interpreter is the one using
structural recursion. The Stack interpreter uses a List to represent
the stack and program. The Optimized Stack represents the stack
and program as arrays. The other interpreters build on the
Optimized Stack interpreter and add the optimizations described
above. The All interpreter has all the optimizations.

Interpreter Ryzen 5 Speedup M1 Speedup

Baseline 2754.43 1.00 3932.93 1.00

Stack 676.43 0.25 1004.16 0.26

Optimized
Stack

3631.19 1.32 2953.21 0.75

Algebraic
Simplification

1630.93 0.59 4818.45 1.23

Byte Code 4057.11 1.47 3355.75 0.85

Stack Caching 3698.10 1.34 3237.17 0.82

Superinstructions 3706.10 1.35 4689.02 1.19

423

Interpreter Ryzen 5 Speedup M1 Speedup

All 7612.45 2.76 7098.06 1.80

There are a few lessons to take from this. The most important, in
my opinion, is that performance is not compositional. The results of
applying two optimizations is not simply the sum of applying the
optimizations individually. You can see that most of the
optimizations on their own make little or no change to
performance relative to the Optimized Stack interpreter. Taken
together, however, they make a significant improvement.

Basic structural recursion, the Baseline interpreter, is surprisingly
fast; a bit slower than the Optimized Stack interpreter on the
Ryzen 5 but faster on the M1. A stack machine emulates the
processor’s built-in call stack. The native call stack is extremely
fast, so we need a good reason to avoid using it.

Details really matter in optimization. We see the choice of data
structure makes a massive difference between the Stack and
Optimized Stack interpreters. An earlier version of the Byte Code
interpreter had worse performance than the Optimized Stack. As
best I could tell this was because I was storing literals alongside
byte code, and loading a Double from an Array[Byte] (using a
ByteBuffer) was slow. Superinstructions are very dependent on
the chosen superinstructions. The superinstruction to add two
values from the stack plus a literal had little effect on it’s own; in
fact the interpreter with this single superinstruction was much
slower on the Ryzen 5.

Compilers, and JIT compilers in particular, are difficult to
understand. I cannot explain why, for example, the Algebraic
Simplification interpreter is so slow on the Ryzen 5. This
interpreter does strictly less work than the Optimized Stack
interpreter. Just like the interpreter optimizations I implemented,
compiler optimizations apply in restricted cases that the
algorithms recognize. If code does not match the patterns the

424

algorithms look for, the optimizations will not apply, which can
lead to strange performance cliffs. My best guess is that something
about my implementation caused me to run afoul of such an issue.

Finally, differences between platforms are also significant. It’s hard
to know how much this due to differences in the computer’s
architecture, and how much is down to differences in the JVM.
Either way, be aware of which platform or platforms you expect
the majority of users to run on, and don’t naively assume
performance on one platform will directly translate to another.

16.5. Conclusions

In this chapter we explored two main techniques for optimizing
interpeters: algebraic simplification of programs, and
interpretation in a virtual machine.

Our regular expression derivative algorithm is taken from Regular-

Expression Derivatives Re-Examined [67]. Regular expression
derivatives are very easy to implement and nicely illustrate
algebraic simplification. However we have to recompute the
derivative on each input character. If we instead compile the
regular expression to a finite state machine ahead of time, we save
time when parsing input. The details of this algorithm are in the
paper.

Regular-Expression Derivatives Re-Examined [67] is in turn based
on Derivatives of Regular Expressions [8], published in 1964.
Although the style of the paper will be immediately recognizable
to anyone familiar with the more theoretical end of computer
science, anachronisms like “State Diagram Construction” are a
reminder that this comes from the very beginnings of the
discipline.

425

Regular expression derivatives can be extended to context-free
grammars and therefore used to implement parsers [57]. Other
work has added additional operators to regular expression
derivatives, such as anchors and restricted lookaround, and created
best-in-class regular expression engines [59,86]. The ease of
algebraically manipulating regular expression derivatives a key to
this advance.

A lot of work has looked at systematically transforming an
interpreter into a compiler and virtual machine. See, for example,
From Interpreter to Compiler and Virtual Machine: A Functional

Derivation [2] for some earlier work, and Calculating correct

compilers [3] for more recent work. These are only a few examples;
there is too much work in this field for me to adequately
summarise.

Interpreters and their optimization has a similarly enormous body
of work. However, we spent a bit more time on this, and it’s also a
personal interest, so I’ve been a bit more through in collecting
references for this section.

We looked at four techniques for optimization: algebraic
simplification, byte code, stack caching, and superinstructions.
Algebraic simplification is as old as algebra, and something
familiar to any secondary school student. In the world of
compilers, different aspects of algebraic simplification are known
as constant folding, constant propagation, and common
subexpression elimination. Byte code is probably as old as
interpreters, and dates back to at least the 1960s in the form of P-
code84. Stack Caching for Interpreters [25] introduces the idea of
stack caching, and shows some rather more complex realizations
than the simple system I used. Superinstructions were introduced
in Optimizing an ANSI C Interpreter with Superoperators [71].
Towards Superinstructions for Java Interpreters [11] is a nice
example of applying superinstructions to an interpreted JVM.

84https://en.wikipedia.org/wiki/P-code_machine

426

https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/P-code_machine

Let’s now talk about instruction dispatch, which is area we did not
consider for optimization. Instruction dispatch is the process by
which the interpreter chooses the code to run for a given
interpreter instruction. The Structure and Performance of Efficient

Interpreters [24] argues that instruction dispatch makes up a major
portion of an interpreter’s execution time. The approach we used
is known as switch dispatch in the literature. There are several
alternative approaches. Direct threading [5] represents an
instruction by the function that implements it. This requires first-
class functions and full tail calls. It is generally considered the
fastest form of dispatch. Notice that it leverages the duality
between data and functions. Subroutine threading is like direct
threading, but uses normal calls and returns instead of tail calls.
Indirect threaded code [19] represents each bytecode as an index
into a lookup table that points to the implementing function.

Stack machines are not the only virtual machine used for
implementing interpreters. Register machines are the most
common alternative. The Lua virtual machine, for example, is a
register machine. Virtual Machine Showdown: Stack versus Registers
[79] compares the two and concludes that register machines are
faster. However, register machines are more complex to
implement.

If you’re interested in the design considerations in a general
purpose stack based instruction set, Bringing the Web up to Speed

with WebAssembly [39] is the paper for you. It covers the design of
WebAssembly, and the rationale behind the design choices. An
interpreter for WebAssembly is described in A Fast In-Place

Interpreter for WebAssembly [84]. Notice how often tail calls arise
in the discussion!

427

428

Part IV: Case Studies

429

430

17. Creating Usable Code

APIs are interfaces and should be designed as such.

 scala.annotation.implicitNotFound and
scala.annotation.implicitAmbiguous

431

432

18. Case Study: Testing

Asynchronous Code

We’ll start with a straightforward case study: how to simplify unit
tests for asynchronous code by making them synchronous.

Let’s return to the example from Chapter 13 where we’re
measuring the uptime on a set of servers. We’ll flesh out the code
into a more complete structure. There will be two components.
The first is an UptimeClient that polls remote servers for their
uptime:

import scala.concurrent.Future

trait UptimeClient {

 def getUptime(hostname: String): Future[Int]

}

We’ll also have an UptimeService that maintains a list of servers
and allows the user to poll them for their total uptime:

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

import cats.syntax.traverse._ // for traverse

import scala.concurrent.ExecutionContext.Implicits.global

class UptimeService(client: UptimeClient) {

 def getTotalUptime(hostnames: List[String]): Future[Int] =

 hostnames.traverse(client.getUptime).map(_.sum)

}

We’ve modelled UptimeClient as a trait because we’re going to
want to stub it out in unit tests. For example, we can write a test
client that allows us to provide dummy data rather than calling out
to actual servers:

433

class TestUptimeClient(hosts: Map[String, Int]) extends

UptimeClient {

 def getUptime(hostname: String): Future[Int] =

 Future.successful(hosts.getOrElse(hostname, 0))

}

Now, suppose we’re writing unit tests for UptimeService. We
want to test its ability to sum values, regardless of where it is
getting them from. Here’s an example:

def testTotalUptime() = {

 val hosts = Map("host1" -> 10, "host2" -> 6)

 val client = new TestUptimeClient(hosts)

 val service = new UptimeService(client)

 val actual = service.getTotalUptime(hosts.keys.toList)

 val expected = hosts.values.sum

 assert(actual == expected)

}

// error:

// Values of types scala.concurrent.Future[Int] and Int cannot be

compared with == or !=

// assert(actual == expected)

// ^^^^^^^^^^^^^^^^^^

The code doesn’t compile because we’ve made a classic
error[^warnings]. We forgot that our application code is
asynchronous. Our actual result is of type Future[Int] and our
expected result is of type Int. We can’t compare them directly!

[^warnings]: Technically this is a warning not an error. It has been
promoted to an error in our case because we’re using the -Xfatal-
warnings flag on scalac.

There are a couple of ways to solve this problem. We could alter
our test code to accommodate the asynchronousness. However,
there is another alternative. Let’s make our service code
synchronous so our test works without modification!

434

18.1. Abstracting over Type

Constructors

We need to implement two versions of UptimeClient: an
asynchronous one for use in production and a synchronous one
for use in our unit tests:

trait RealUptimeClient extends UptimeClient {

 def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient {

 def getUptime(hostname: String): Int

}

The question is: what result type should we give to the abstract
method in UptimeClient? We need to abstract over Future[Int]
and Int:

trait UptimeClient {

 def getUptime(hostname: String): ???

}

At first this may seem difficult. We want to retain the Int part
from each type but “throw away” the Future part in the test code.
Fortunately, Cats provides a solution in terms of the identity type,
Id, that we discussed way back in Section 10.3. Id allows us to
“wrap” types in a type constructor without changing their
meaning:

package cats

type Id[A] = A

Id allows us to abstract over the return types in UptimeClient.
Implement this now:

435

• write a trait definition for UptimeClient that accepts a type
constructor F[_] as a parameter;

• extend it with two traits, RealUptimeClient and
TestUptimeClient, that bind F to Future and Id respectively;

• write out the method signature for getUptime in each case to
verify that it compiles.

You should now be able to flesh your definition of
TestUptimeClient out into a full class based on a Map[String,
Int] as before.

18.2. Abstracting over Monads

Let’s turn our attention to UptimeService. We need to rewrite it to
abstract over the two types of UptimeClient. We’ll do this in two
stages: first we’ll rewrite the class and method signatures, then the
method bodies. Starting with the method signatures:

• comment out the body of getTotalUptime (replace it with ??? to
make everything compile);

• add a type parameter F[_] to UptimeService and pass it on to
UptimeClient.

Now uncomment the body of getTotalUptime. You should get a
compilation error similar to the following:

// <console>:28: error: could not find implicit value for

// evidence parameter of type cats.Applicative[F]

// hostnames.traverse(client.getUptime).map(_.sum)

// ^

The problem here is that traverse only works on sequences of
values that have an Applicative. In our original code we were
traversing a List[Future[Int]]. There is an applicative for
Future so that was fine. In this version we are traversing a

436

List[F[Int]]. We need to prove to the compiler that F has an
Applicative. Do this by adding an implicit constructor parameter
to UptimeService.

Finally, let’s turn our attention to our unit tests. Our test code now
works as intended without any modification. We create an
instance of TestUptimeClient and wrap it in an UptimeService.
This effectively binds F to Id, allowing the rest of the code to
operate synchronously without worrying about monads or
applicatives:

def testTotalUptime() = {

 val hosts = Map("host1" -> 10, "host2" -> 6)

 val client = new TestUptimeClient(hosts)

 val service = new UptimeService(client)

 val actual = service.getTotalUptime(hosts.keys.toList)

 val expected = hosts.values.sum

 assert(actual == expected)

}

testTotalUptime()

18.3. Summary

This case study provides an example of how Cats can help us
abstract over different computational scenarios. We used the
Applicative type class to abstract over asynchronous and
synchronous code. Leaning on a functional abstraction allows us
to specify the sequence of computations we want to perform
without worrying about the details of the implementation.

Back in Figure 11, we showed a “stack” of computational type
classes that are meant for exactly this kind of abstraction. Type
classes like Functor, Applicative, Monad, and Traverse provide
abstract implementations of patterns such as mapping, zipping,

437

sequencing, and iteration. The mathematical laws on those types
ensure that they work together with a consistent set of semantics.

We used Applicative in this case study because it was the least
powerful type class that did what we needed. If we had required
flatMap, we could have swapped out Applicative for Monad. If we
had needed to abstract over different sequence types, we could
have used Traverse. There are also type classes like
ApplicativeError and MonadError that help model failures as
well as successful computations.

Let’s move on now to a more complex case study where type
classes will help us produce something more interesting: a map-
reduce-style framework for parallel processing.

438

19. Error Handling

439

440

20. Case Study: Map-

Reduce

<!– TODO:

• DONE - talk about map-reduce - it’s just foldMap
• DONE - introduce/reimplement foldMap
• DONE - implement parallelFoldMap to mimic map-reduce

‣ DONE - mention that we’re specifically imitating multi-
machine map-reduce where we need to split data between
machines in large blocks

‣ DONE - implement in terms of our foldMap first
‣ DONE - then implement in terms of Cats’ foldMap
‣ DONE - talk about traverse

• summary
‣ DONE - real-world map-reduce has communication costs
‣ DONE - multi-cpu map-reduce doesn’t have communication

costs
‣ DONE - parallelFoldMap mimics multi-machine
‣ DONE - our final version of parallelFoldMap (based on

traverse) is far simpler
‣ talk about substitution and the things it doesn’t model:

– performance
– parallelism
– side-effects (future starts immediately)
– etc…

TODO:

• DONE - drop the current foldMapM stuff
• DONE - maybe move it elsewhere

–>

441

In this case study we’re going to implement a simple-but-powerful
parallel processing framework using Monoids, Functors, and a
host of other goodies.

If you have used Hadoop or otherwise worked in “big data” you
will have heard of MapReduce85, which is a programming model
for doing parallel data processing across clusters of machines (aka
“nodes”). As the name suggests, the model is built around a map
phase, which is the same map function we know from Scala and the
Functor type class, and a reduce phase, which we usually call
fold[^hadoop-shuffle] in Scala.

[^hadoop-shuffle]: In Hadoop there is also a shuffle phase that we
will ignore here.

20.1. Parallelizing map and fold

Recall the general signature for map is to apply a function A => B
to a F[A], returning a F[B]:

!generic-map.svg, caption: [Type chart: functor map]

map transforms each individual element in a sequence
independently. We can easily parallelize map because there are no
dependencies between the transformations applied to different
elements (the type signature of the function A => B shows us this,
assuming we don’t use side-effects not reflected in the types).

What about fold? We can implement this step with an instance of
Foldable. Not every functor also has an instance of foldable but
we can implement a map-reduce system on top of any data type
that has both of these type classes. Our reduction step becomes a
foldLeft over the results of the distributed map.

!generic-foldleft.svg, caption: [Type chart: fold]

85http://research.google.com/archive/map-reduce.html

442

http://research.google.com/archive/map-reduce.html
generic-map.svg
generic-foldleft.svg

By distributing the reduce step we lose control over the order of
traversal. Our overall reduction may not be entirely left-to-right—
we may reduce left-to-right across several subsequences and then
combine the results. To ensure correctness we need a reduction
operation that is associative:

reduce(a1, reduce(a2, a3)) == reduce(reduce(a1, a2), a3)

If we have associativity, we can arbitrarily distribute work
between our nodes provided the subsequences at every node stay
in the same order as the initial dataset.

Our fold operation requires us to seed the computation with an
element of type B. Since fold may be split into an arbitrary number
of parallel steps, the seed should not affect the result of the
computation. This naturally requires the seed to be an identity
element:

reduce(seed, a1) == reduce(a1, seed) == a1

In summary, our parallel fold will yield the correct results if:

• we require the reducer function to be associative;
• we seed the computation with the identity of this function.

What does this pattern sound like? That’s right, we’ve come full
circle back to Monoid, the first type class we discussed in this book.
We are not the first to recognise the importance of monoids. The
monoid design pattern for map-reduce jobs86 is at the core of
recent big data systems such as Twitter’s Summingbird87.

In this project we’re going to implement a very simple single-
machine map-reduce. We’ll start by implementing a method called
foldMap to model the data-flow we need.

86http://arxiv.org/abs/1304.7544
87https://github.com/twitter/summingbird

443

http://arxiv.org/abs/1304.7544
https://github.com/twitter/summingbird

20.2. Implementing foldMap

We saw foldMap briefly back when we covered Foldable. It is one
of the derived operations that sits on top of foldLeft and
foldRight. However, rather than use Foldable, we will re-
implement foldMap here ourselves as it will provide useful insight
into the structure of map-reduce.

Start by writing out the signature of foldMap. It should accept the
following parameters:

• a sequence of type Vector[A];
• a function of type A => B, where there is a Monoid for B;

You will have to add implicit parameters or context bounds to
complete the type signature.

Now implement the body of foldMap. Use the flow chart in
Figure 16 as a guide to the steps required:

1. start with a sequence of items of type A;
2. map over the list to produce a sequence of items of type B;
3. use the Monoid to reduce the items to a single B.

444

4. Final result

3. Fold/reduce step

2. Map step

1. Initial data sequence

Figure 16: foldMap algorithm

Here’s some sample output for reference:

import cats.instances.int._ // for Monoid

foldMap(Vector(1, 2, 3))(identity)

// res1: Int = 6

import cats.instances.string._ // for Monoid

// Mapping to a String uses the concatenation monoid:

foldMap(Vector(1, 2, 3))(_.toString + "! ")

// res2: String = "1! 2! 3! "

// Mapping over a String to produce a String:

foldMap("Hello world!".toVector)(_.toString.toUpperCase)

// res3: String = "HELLO WORLD!"

445

20.3. Parallelising foldMap

Now we have a working single-threaded implementation of
foldMap, let’s look at distributing work to run in parallel. We’ll use
our single-threaded version of foldMap as a building block.

We’ll write a multi-CPU implementation that simulates the way
we would distribute work in a map-reduce cluster as shown in
Figure 17:

1. we start with an initial list of all the data we need to process;
2. we divide the data into batches, sending one batch to each CPU;
3. the CPUs run a batch-level map phase in parallel;
4. the CPUs run a batch-level reduce phase in parallel, producing

a local result for each batch;
5. we reduce the results for each batch to a single final result.

446

6. Final result

5. Reduce the batches

4. Reduce each batch in parallel

3. Map over the batches in parallel

2. Divide into batches for each CPU

1. Initial data sequence

Figure 17: parallelFoldMap algorithm

Scala provides some simple tools to distribute work amongst
threads. We could use the parallel collections library88 to
implement a solution, but let’s challenge ourselves by diving a bit
deeper and implementing the algorithm ourselves using Futures.

88http://docs.scala-lang.org/overviews/parallel-collections/overview.html

447

http://docs.scala-lang.org/overviews/parallel-collections/overview.html

20.3.1. Futures, Thread Pools, and

ExecutionContexts

We already know a fair amount about the monadic nature of
Futures. Let’s take a moment for a quick recap, and to describe
how Scala futures are scheduled behind the scenes.

Futures run on a thread pool, determined by an implicit
ExecutionContext parameter. Whenever we create a Future,
whether through a call to Future.apply or some other
combinator, we must have an implicit ExecutionContext in scope:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

val future1 = Future {

 (1 to 100).toList.foldLeft(0)(_ + _)

}

// future1: Future[Int] = Future(Success(5050))

val future2 = Future {

 (100 to 200).toList.foldLeft(0)(_ + _)

}

// future2: Future[Int] = Future(Success(15150))

In this example we’ve imported a
ExecutionContext.Implicits.global. This default context
allocates a thread pool with one thread per CPU in our machine.
When we create a Future the ExecutionContext schedules it for
execution. If there is a free thread in the pool, the Future starts
executing immediately. Most modern machines have at least two
CPUs, so in our example it is likely that future1 and future2 will
execute in parellel.

Some combinators create new Futures that schedule work based
on the results of other Futures. The map and flatMap methods, for
example, schedule computations that run as soon as their input
values are computed and a CPU is available:

448

val future3 = future1.map(_.toString)

// future3: Future[String] = Future(Success(5050))

val future4 = for {

 a <- future1

 b <- future2

} yield a + b

// future4: Future[Int] = Future(Success(20200))

As we saw in Section 13.2, we can convert a List[Future[A]] to a
Future[List[A]] using Future.sequence:

Future.sequence(List(Future(1), Future(2), Future(3)))

// res6: Future[List[Int]] = Future(Success(List(1, 2, 3)))

or an instance of Traverse:

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

import cats.syntax.traverse._ // for sequence

List(Future(1), Future(2), Future(3)).sequence

// res7: Future[List[Int]] = Future(Success(List(1, 2, 3)))

An ExecutionContext is required in either case. Finally, we can
use Await.result to block on a Future until a result is available:

import scala.concurrent._

import scala.concurrent.duration._

Await.result(Future(1), 1.second) // wait for the result

// res8: Int = 1

There are also Monad and Monoid implementations for Future
available from cats.instances.future:

import cats.{Monad, Monoid}

import cats.instances.int._ // for Monoid

import cats.instances.future._ // for Monad and Monoid

449

Monad[Future].pure(42)

Monoid[Future[Int]].combine(Future(1), Future(2))

20.3.2. Dividing Work

Now we’ve refreshed our memory of Futures, let’s look at how we
can divide work into batches. We can query the number of
available CPUs on our machine using an API call from the Java
standard library:

Runtime.getRuntime.availableProcessors

// res11: Int = 4

We can partition a sequence (actually anything that implements
Vector) using the grouped method. We’ll use this to split off
batches of work for each CPU:

(1 to 10).toList.grouped(3).toList

// res12: List[List[Int]] = List(

// List(1, 2, 3),

// List(4, 5, 6),

// List(7, 8, 9),

// List(10)

//)

20.3.3. Implementing parallelFoldMap

Implement a parallel version of foldMap called parallelFoldMap.
Here is the type signature:

def parallelFoldMap[A, B : Monoid]

 (values: Vector[A])

 (func: A => B): Future[B] = ???

450

Use the techniques described above to split the work into batches,
one batch per CPU. Process each batch in a parallel thread. Refer
back to Figure 17 if you need to review the overall algorithm.

For bonus points, process the batches for each CPU using your
implementation of foldMap from above.

20.3.4. parallelFoldMap with more Cats

Although we implemented foldMap ourselves above, the method is
also available as part of the Foldable type class we discussed in
Section 13.1.

Reimplement parallelFoldMap using Cats’ Foldable and
Traverseable type classes.

20.4. Summary

In this case study we implemented a system that imitates map-
reduce as performed on a cluster. Our algorithm followed three
steps:

1. batch the data and send one batch to each “node”;
2. perform a local map-reduce on each batch;
3. combine the results using monoid addition.

Our toy system emulates the batching behaviour of real-world
map-reduce systems such as Hadoop. However, in reality we are
running all of our work on a single machine where communcation
between nodes is negligible. We don’t actually need to batch data
to gain efficient parallel processing of a list. We can simply map
using a Functor and reduce using a Monoid.

Regardless of the batching strategy, mapping and reducing with
Monoids is a powerful and general framework that isn’t limited to

451

simple tasks like addition and string concatenation. Most of the
tasks data scientists perform in their day-to-day analyses can be
cast as monoids. There are monoids for all the following:

• approximate sets such as the Bloom filter;
• set cardinality estimators, such as the HyperLogLog algorithm;
• vectors and vector operations like stochastic gradient descent;
• quantile estimators such as the t-digest

to name but a few.

452

21. Case Study: Data

Validation

In this case study we will build a library for validation. What do
we mean by validation? Almost all programs must check their
input meets certain criteria. Usernames must not be blank, email
addresses must be valid, and so on. This type of validation often
occurs in web forms, but it could be performed on configuration
files, on web service responses, and any other case where we have
to deal with data that we can’t guarantee is correct.
Authentication, for example, is just a specialised form of
validation.

We want to build a library that performs these checks. What
design goals should we have? For inspiration, let’s look at some
examples of the types of checks we want to perform:

• A user must be over 18 years old or must have parental consent.

• A String ID must be parsable as a Int and the Int must
correspond to a valid record ID.

• A bid in an auction must apply to one or more items and have a
positive value.

• A username must contain at least four characters and all
characters must be alphanumeric.

• An email address must contain a single @ sign. Split the string at
the @. The string to the left must not be empty. The string to the
right must be at least three characters long and contain a dot.

With these examples in mind we can state some goals:

• We should be able to associate meaningful messages with each
validation failure, so the user knows why their data is not valid.

453

• We should be able to combine small checks into larger ones.
Taking the username example above, we should be able to
express this by combining a check of length and a check for
alphanumeric values.

• We should be able to transform data while we are checking it.
There is an example above requiring we parse data, changing its
type from String to Int.

• Finally, we should be able to accumulate all the failures in one
go, so the user can correct all the issues before resubmitting.

These goals assume we’re checking a single piece of data. We will
also need to combine checks across multiple pieces of data. For a
login form, for example, we’ll need to combine the check results
for the username and the password. This will turn out to be quite a
small component of the library, so the majority of our time will
focus on checking a single data item.

21.1. Sketching the Library

Structure

Let’s start at the bottom, checking individual pieces of data. Before
we start coding let’s try to develop a feel for what we’ll be
building. We can use a graphical notation to help us. We’ll go
through our goals one by one.

Providing error messages

Our first goal requires us to associate useful error messages with a
check failure. The output of a check could be either the value
being checked, if it passed the check, or some kind of error
message. We can abstractly represent this as a value in a context,
where the context is the possibility of an error message as shown
in Figure 18.

454

F[A]

Figure 18: A validation result

A check itself is therefore a function that transforms a value into a
value in a context as shown in Figure 19.

A => F[A]

Figure 19: A validation check

Combine checks

How do we combine smaller checks into larger ones? Is this an
applicative or semigroupal as shown in Figure 20?

A => F[A] A => F[A] A => F[(A, A)]

,).tupled(

Figure 20: Applicative combination of checks

Not really. With applicative combination, both checks are applied
to the same value and result in a tuple with the value repeated.
What we want feels more like a monoid as shown in Figure 21. We
can define a sensible identity—a check that always passes—and
two binary combination operators—and and or:

A => F[A] A => F[A] A => F[A]

|+|

Figure 21: Monoid combination of checks

455

We’ll probably be using and and or about equally often with our
validation library and it will be annoying to continuously switch
between two monoids for combining rules. We consequently won’t
actually use the monoid API: we’ll use two separate methods, and
and or, instead.

Accumulating errors as we check

Monoids also feel like a good mechanism for accumulating error
messages. If we store messages as a List or NonEmptyList, we can
even use a pre-existing monoid from inside Cats.

Transforming data as we check it

In addition to checking data, we also have the goal of transforming
it. This seems like it should be a map or a flatMap depending on
whether the transform can fail or not, so it seems we also want
checks to be a monad as shown in Figure 22.

A => F[B] B => (A => F[C]) A => F[C]

flatMap

A => F[B] B => C A => F[C]

map

Figure 22: Monadic combination of checks

We’ve now broken down our library into familiar abstractions and
are in a good position to begin development.

21.2. The Check Datatype

Our design revolves around a Check, which we said was a function
from a value to a value in a context. As soon as you see this
description you should think of something like

456

type Check[A] = A => Either[String, A]

Here we’ve represented the error message as a String. This is
probably not the best representation. We may want to accumulate
messages in a List, for example, or even use a different
representation that allows for internationalization or standard
error codes.

We could attempt to build some kind of ErrorMessage type that
holds all the information we can think of. However, we can’t
predict the user’s requirements. Instead let’s let the user specify
what they want. We can do this by adding a second type
parameter to Check:

type Check[E, A] = A => Either[E, A]

We will probably want to add custom methods to Check so let’s
declare it as a trait instead of a type alias:

trait Check[E, A] {

 def apply(value: A): Either[E, A]

 // other methods...

}

As we said in [Essential Scala][link-essential-scala], there are two
functional programming patterns that we should consider when
defining a trait:

• we can make it a typeclass, or;
• we can make it an algebraic data type (and hence seal it).

Type classes allow us to unify disparate data types with a common
interface. This doesn’t seem like what we’re trying to do here.
That leaves us with an algebraic data type. Let’s keep that thought
in mind as we explore the design a bit further.

457

21.3. Basic Combinators

Let’s add some combinator methods to Check, starting with and.
This method combines two checks into one, succeeding only if
both checks succeed. Think about implementing this method now.
You should hit some problems. Read on when you do!

trait Check[E, A] {

 def and(that: Check[E, A]): Check[E, A] =

 ???

 // other methods...

}

The problem is: what do you do when both checks fail? The
correct thing to do is to return both errors, but we don’t currently
have any way to combine Es. We need a type class that abstracts
over the concept of “accumulating” errors as shown in Figure 23
What type class do we know that looks like this? What method or
operator should we use to implement the ? operation?

E • E => E

List[String] • List[String] => List[String]

Figure 23: Combining error messages

There is another semantic issue that will come up quite quickly:
should and short-circuit if the first check fails. What do you think
the most useful behaviour is?

Use this knowledge to implement and. Make sure you end up with
the behaviour you expect!

458

Strictly speaking, Either[E, A] is the wrong abstraction for the
output of our check. Why is this the case? What other data type
could we use instead? Switch your implementation over to this
new data type.

Our implementation is looking pretty good now. Implement an or
combinator to complement and.

With and and or we can implement many of checks we’ll want in
practice. However, we still have a few more methods to add. We’ll
turn to map and related methods next.

21.4. Transforming Data

One of our requirements is the ability to transform data. This
allows us to support additional scenarios like parsing input. In this
section we’ll extend our check library with this additional
functionality.

The obvious starting point is map. When we try to implement this,
we immediately run into a wall. Our current definition of Check
requires the input and output types to be the same:

type Check[E, A] = A => Either[E, A]

When we map over a check, what type do we assign to the result?
It can’t be A and it can’t be B. We are at an impasse:

def map(check: Check[E, A])(func: A => B): Check[E, ???]

To implement map we need to change the definition of Check.
Specifically, we need to a new type variable to separate the input
type from the output:

type Check[E, A, B] = A => Either[E, B]

459

Checks can now represent operations like parsing a String as an
Int:

val parseInt: Check[List[String], String, Int] =

 // etc...

However, splitting our input and output types raises another issue.
Up until now we have operated under the assumption that a Check
always returns its input when successful. We used this in and and
or to ignore the output of the left and right rules and simply
return the original input on success:

(this(a), that(a)) match {

 case And(left, right) =>

 (left(a), right(a))

 .mapN((result1, result2) => Right(a))

 // etc...

}

In our new formulation we can’t return Right(a) because its type
is Either[E, A] not Either[E, B]. We’re forced to make an
arbitrary choice between returning Right(result1) and
Right(result2). The same is true of the or method. From this we
can derive two things:

• we should strive to make the laws we adhere to explicit; and
• the code is telling us we have the wrong abstraction in Check.

21.4.1. Predicates

We can make progress by pulling apart the concept of a predicate,
which can be combined using logical operations such as and and
or, and the concept of a check, which can transform data.

460

What we have called Check so far we will call Predicate. For
Predicate we can state the following identity law encoding the
notion that a predicate always returns its input if it succeeds:

> For a predicate p of type Predicate[E, A] > and elements a1
and a2 of type A, > if p(a1) == Success(a2) then a1 == a2.

Making this change gives us the following code:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.data.Validated._ // for Valid and Invalid

sealed trait Predicate[E, A] {

 def and(that: Predicate[E, A]): Predicate[E, A] =

 And(this, that)

 def or(that: Predicate[E, A]): Predicate[E, A] =

 Or(this, that)

 def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

 this match {

 case Pure(func) =>

 func(a)

 case And(left, right) =>

 (left(a), right(a)).mapN((_, _) => a)

 case Or(left, right) =>

 left(a) match {

 case Valid(_) => Valid(a)

 case Invalid(e1) =>

 right(a) match {

 case Valid(_) => Valid(a)

 case Invalid(e2) => Invalid(e1 |+| e2)

 }

 }

 }

}

final case class And[E, A](

 left: Predicate[E, A],

 right: Predicate[E, A]) extends Predicate[E, A]

461

final case class Or[E, A](

 left: Predicate[E, A],

 right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

 func: A => Validated[E, A]) extends Predicate[E, A]

21.4.2. Checks

We’ll use Check to represent a structure we build from a
Predicate that also allows transformation of its input. Implement
Check with the following interface:

sealed trait Check[E, A, B] {

 def apply(a: A): Validated[E, B] =

 ???

 def map[C](func: B => C): Check[E, A, C] =

 ???

}

What about flatMap? The semantics are a bit unclear here. The
method is simple enough to declare but it’s not so obvious what it
means or how we should implement apply. The general shape of
flatMap is shown in Figure 24.

F[A] F[B]A => F[B]

flatMap

Figure 24: Type chart for flatMap

How do we relate F in the figure to Check in our code? Check has
three type variables while F only has one.

To unify the types we need to fix two of the type parameters. The
idiomatic choices are the error type E and the input type A. This

462

gives us the relationships shown in Figure 25. In other words, the
semantics of applying a FlatMap are:

• given an input of type A, convert to F[B];

• use the output of type B to choose a Check[E, A, C];

• return to the original input of type A and apply it to the chosen
check to generate the final result of type F[C].

A => F[B] B => (A => F[C]) A => F[C]

flatMap

Figure 25: Type chart for flatMap applied to Check

This is quite an odd method. We can implement it, but it is hard to
find a use for it. Go ahead and implement flatMap for Check, and
then we’ll see a more generally useful method.

We can write a more useful combinator that chains together two
Checks. The output of the first check is connected to the input of
the second. This is analogous to function composition using
andThen:

val f: A => B = ???

val g: B => C = ???

val h: A => C = f andThen g

A Check is basically a function A => Validated[E, B] so we can
define an analagous andThen method:

trait Check[E, A, B] {

 def andThen[C](that: Check[E, B, C]): Check[E, A, C]

}

Implement andThen now!

463

21.4.3. Recap

We now have two algebraic data types, Predicate and Check, and
a host of combinators with their associated case class
implementations. Look at the following solution for a complete
definition of each ADT.

We have a complete implementation of Check and Predicate that
do most of what we originally set out to do. However, we are not
finished yet. You have probably recognised structure in Predicate
and Check that we can abstract over: Predicate has a monoid and
Check has a monad. Furthermore, in implementing Check you
might have felt the implementation doesn’t do much—all we do is
call through to underlying methods on Predicate and Validated.

There are a lot of ways this library could be cleaned up. However,
let’s implement some examples to prove to ourselves that our
library really does work, and then we’ll turn to improving it.

Implement checks for some of the examples given in the
introduction:

• A username must contain at least four characters and consist
entirely of alphanumeric characters

• An email address must contain an @ sign. Split the string at the
@. The string to the left must not be empty. The string to the
right must be at least three characters long and contain a dot.

You might find the following predicates useful:

import cats.data.{NonEmptyList, Validated}

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

 NonEmptyList(s, Nil)

def longerThan(n: Int): Predicate[Errors, String] =

464

 Predicate.lift(

 error(s"Must be longer than $n characters"),

 str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

 Predicate.lift(

 error(s"Must be all alphanumeric characters"),

 str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

 Predicate.lift(

 error(s"Must contain the character $char"),

 str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

 Predicate.lift(

 error(s"Must contain the character $char only once"),

 str => str.filter(c => c == char).size == 1)

21.5. Kleislis

We’ll finish off this case study by cleaning up the implementation
of Check. A justifiable criticism of our approach is that we’ve
written a lot of code to do very little. A Predicate is essentially a
function A => Validated[E, A], and a Check is basically a
wrapper that lets us compose these functions.

We can abstract A => Validated[E, A] to A => F[B], which
you’ll recognise as the type of function you pass to the flatMap
method on a monad. Imagine we have the following sequence of
operations:

• We lift some value into a monad (by using pure, for example).
This is a function with type A => F[A].

• We then sequence some transformations on the monad using
flatMap.

465

We can illustrate this as shown in Figure 26. We can also write out
this example using the monad API as follows:

val aToB: A => F[B] = ???

val bToC: B => F[C] = ???

def example[A, C](a: A): F[C] =

 aToB(a).flatMap(bToC)

A => F[A]

flatMap flatMap

A => F[B] B => F[C]

Figure 26: Sequencing monadic transforms

Recall that Check is, in the abstract, allowing us to compose
functions of type A => F[B]. We can write the above in terms of
andThen as:

val aToC = aToB andThen bToC

The result is a (wrapped) function aToC of type A => F[C] that we
can subsequently apply to a value of type A.

We have achieved the same thing as the example method without
having to reference an argument of type A. The andThen method
on Check is analogous to function composition, but is composing
function A => F[B] instead of A => B.

The abstract concept of composing functions of type A => F[B]
has a name: a Kleisli.

Cats contains a data type [cats.data.Kleisli][cats.data.Kleisli]
that wraps a function just as Check does. Kleisli has all the
methods of Check plus some additional ones. If Kleisli seems
familiar to you, then congratulations. You’ve seen through its
disguise and recognised it as another concept from earlier in the
book: Kleisli is just another name for ReaderT.

466

Here is a simple example using Kleisli to transform an integer
into a list of integers through three steps:

import cats.data.Kleisli

import cats.instances.list._ // for Monad

These steps each transform an input Int into an output of type
List[Int]:

val step1: Kleisli[List, Int, Int] =

 Kleisli(x => List(x + 1, x - 1))

val step2: Kleisli[List, Int, Int] =

 Kleisli(x => List(x, -x))

val step3: Kleisli[List, Int, Int] =

 Kleisli(x => List(x * 2, x / 2))

We can combine the steps into a single pipeline that combines the
underlying Lists using flatMap:

val pipeline = step1 andThen step2 andThen step3

The result is a function that consumes a single Int and returns
eight outputs, each produced by a different combination of
transformations from step1, step2, and step3:

pipeline.run(20)

// res0: List[Int] = List(42, 10, -42, -10, 38, 9, -38, -9)

The only notable difference between Kleisli and Check in terms
of API is that Kleisli renames our apply method to run.

Let’s replace Check with Kleisli in our validation examples. To do
so we need to make a few changes to Predicate. We must be able
to convert a Predicate to a function, as Kleisli only works with
functions. Somewhat more subtly, when we convert a Predicate
to a function, it should have type A => Either[E, A] rather than

467

A => Validated[E, A] because Kleisli relies on the wrapped
function returning a monad.

Add a method to Predicate called run that returns a function of
the correct type. Leave the rest of the code in Predicate the same.

Now rewrite our username and email validation example in terms
of Kleisli and Predicate. Here are few tips in case you get stuck:

First, remember that the run method on Predicate takes an
implicit parameter. If you call aPredicate.run(a) it will try to
pass the implicit parameter explicitly. If you want to create a
function from a Predicate and immediately apply that function,
use aPredicate.run.apply(a)

Second, type inference can be tricky in this exercise. We found
that the following definitions helped us to write code with fewer
type declarations.

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

// Create a check from a function:

def check[A, B](func: A => Result[B]): Check[A, B] =

 Kleisli(func)

// Create a check from a Predicate:

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

 Kleisli[Result, A, A](pred.run)

We have now written our code entirely in terms of Kleisli and
Predicate, completely removing Check. This is a good first step to
simplifying our library. There’s still plenty more to do, but we
have a sophisticated building block from Cats to work with. We’ll
leave further improvements up to the reader.

468

21.6. Summary

This case study has been an exercise in removing rather than
building abstractions. We started with a fairly complex Check type.
Once we realised we were conflating two concepts, we separated
out Predicate leaving us with something that could be
implemented with Kleisli.

<!– Predicate is very much like a stripped down version of the
matchers found in testing libraries like ScalaTest and Specs2. One
next step would be to develop a more elaborate predicate library
along these lines. There are a few other directions to consider.

With the current representation of Predicate there is no way to
implement logical negation. To implement negation we need to
know the error message that a successful predicate would have
returned if it had failed (so that the negation can return that
message). One way to implement this is to have a predicate return
a Boolean flag indicating success or failure and the associated
message.

We could also do better in how error messages are represented. At
the moment there is no indication with an error message of the
structure of the predicates that failed. For example, if we represent
error messsages as a List[String] and we get back the message:

List("Must be longer than 4 characters",

 "Must not contain a number")

does this message indicate a failing conjunction (two ands) or a
failing disjunction (two ors)? We can probably guess in this case
but in general we don’t have sufficient information to work this
out. We can solve this problem by wrapping all messages in a type
as follows:

469

sealed trait Structure[E]

final case class Or[E](messages: List[Structure[E]])

 extends Structure[E]

final case class And[E](messages: List[Structure[E]])

 extends Structure[E]

final case class Not[E](messages: List[Structure[E]])

 extends Structure[E]

final case class Pure[E](message: E)

 extends Structure[E]

We can simplify this structure by converting all predicates into a
normal form. For example, if we use disjunctive normal form the
structure of the predicate will always be a disjunction (logical or)
of conjunctions (logical and). By doing so we could errors as a
List[List[Either[E, E]]], with the outer list representing
disjunction, the inner list representing conjunction, and the
Either representing negation. –>

We made several design choices above that reasonable developers
may disagree with. Should the method that converts a Predicate
to a function really be called run instead of, say, toFunction?
Should Predicate be a subtype of Function to begin with? Many
functional programmers prefer to avoid subtyping because it plays
poorly with implicit resolution and type inference, but there could
be an argument to use it here. As always the best decisions depend
on the context in which the library will be used.

470

22. Case Study: CRDTs

In this case study we will explore Commutative Replicated

Data Types (CRDTs), a family of data structures that can be used
to reconcile eventually consistent data.

We’ll start by describing the utility and difficulty of eventually
consistent systems, then show how we can use monoids and their
extensions to solve the issues that arise. Finally, we will model the
solutions in Scala.

Our goal here is to focus on the implementation in Scala of a
particular type of CRDT. We’re not aiming at a comprehensive
survey of all CRDTs. CRDTs are a fast-moving field and we advise
you to read the literature to learn about more.

22.1. Eventual Consistency

As soon as a system scales beyond a single machine we have to
make a fundamental choice about how we manage data.

One approach is to build a system that is consistent, meaning that
all machines have the same view of data. For example, if a user
changes their password then all machines that store a copy of that
password must accept the change before we consider the operation
to have completed successfully.

Consistent systems are easy to work with but they have their
disadvantages. They tend to have high latency because a single
change can result in many messages being sent between machines.
They also tend to have relatively low uptime because outages can
cut communications between machines creating a network

partition. When there is a network partition, a consistent system

471

may refuse further updates to prevent inconsistencies across
machines.

An alternative approach is an eventually consistent system. This
means that at any particular point in time machines are allowed to
have differing views of data. However, if all machines can
communicate and there are no further updates they will eventually
all have the same view of data.

Eventually consistent systems require less communication
between machines so latency can be lower. A partitioned machine
can still accept updates and reconcile its changes when the
network is fixed, so systems can also have better uptime.

The big question is: how do we do this reconciliation between
machines? CRDTs provide one approach to the problem.

22.2. The GCounter

Let’s look at one particular CRDT implementation. Then we’ll
attempt to generalise properties to see if we can find a general
pattern.

The data structure we will look at is called a GCounter. It is a
distributed increment-only counter that can be used, for example,
to count the number of visitors to a web site where requests are
served by many web servers.

22.2.1. Simple Counters

To see why a straightforward counter won’t work, imagine we
have two servers storing a simple count of visitors. Let’s call the
machines A and B. Each machine is storing an integer counter and
the counters all start at zero as shown in Figure 27.

472

Machine BMachine A

0 0

Figure 27: Simple counters: initial state

Now imagine we receive some web traffic. Our load balancer
distributes five incoming requests to A and B, A serving three
visitors and B two. The machines have inconsistent views of the
system state that they need to reconcile to achieve consistency.
One reconciliation strategy with simple counters is to exchange
counts and add them as shown in Figure 28.

5 5

3 2

Machine BMachine A

Add counters

Incoming requestsIncoming requests

Figure 28: Simple counters: first round of requests and
reconciliation

So far so good, but things will start to fall apart shortly. Suppose A
serves a single visitor, which means we’ve seen six visitors in total.
The machines attempt to reconcile state again using addition
leading to the answer shown in Figure 29.

473

11 11

6 5

Machine BMachine A

Add counters

Incorrect result!

Incoming request

Figure 29: Simple counters: second round of requests and
(incorrect) reconciliation

This is clearly wrong! The problem is that simple counters don’t
give us enough information about the history of interactions
between the machines. Fortunately we don’t need to store the
complete history to get the correct answer—just a summary of it.
Let’s look at how the GCounter solves this problem.

22.2.2. GCounters

The first clever idea in the GCounter is to have each machine
storing a separate counter for every machine it knows about
(including itself). In the previous example we had two machines, A
and B. In this situation both machines would store a counter for A
and a counter for B as shown in Figure 30.

Machine BMachine A

A:0
B:0

A:0
B:0

Figure 30: GCounter: initial state

The rule with GCounters is that a given machine is only allowed
to increment its own counter. If A serves three visitors and B serves
two visitors the counters look as shown in Figure 31.

474

A:3
B:0

A:0
B:2

Machine BMachine A

Incoming requestsIncoming requests

Figure 31: GCounter: first round of web requests

When two machines reconcile their counters the rule is to take the
largest value stored for each machine. In our example, the result of
the first merge will be as shown in Figure 32.

A:3
B:2

A:3
B:2

A:3
B:0

A:0
B:2

Machine BMachine A

Merge, take max

Incoming requestsIncoming requests

Figure 32: GCounter: first reconciliation

Subsequent incoming web requests are handled using the
increment-own-counter rule and subsequent merges are handled
using the take-maximum-value rule, producing the same correct
values for each machine as shown in Figure 33.

A:4
B:2

A:4
B:2

A:4
B:2

A:3
B:2

Machine BMachine A

Merge, take max

Correct result!

Incoming request

Figure 33: GCounter: second reconciliation

475

GCounters allow each machine to keep an accurate account of the
state of the whole system without storing the complete history of
interactions. If a machine wants to calculate the total traffic for the
whole web site, it sums up all the per-machine counters. The result
is accurate or near-accurate depending on how recently we
performed a reconciliation. Eventually, regardless of network
outages, the system will always converge on a consistent state.

22.2.3. Exercise: GCounter Implementation

We can implement a GCounter with the following interface, where
we represent machine IDs as Strings.

final case class GCounter(counters: Map[String, Int]) {

 def increment(machine: String, amount: Int) =

 ???

 def merge(that: GCounter): GCounter =

 ???

 def total: Int =

 ???

}

Finish the implementation!

22.3. Generalisation

We’ve now created a distributed, eventually consistent, increment-
only counter. This is a useful achievement but we don’t want to
stop here. In this section we will attempt to abstract the operations
in the GCounter so it will work with more data types than just
natural numbers.

The GCounter uses the following operations on natural numbers:

476

• addition (in increment and total);
• maximum (in merge);
• and the identity element 0 (in increment and merge).

You can probably guess that there’s a monoid in here somewhere,
but let’s look in more detail at the properties we’re relying on.

As a refresher, in Chapter 8 we saw that monoids must satisfy two
laws. The binary operation + must be associative:

(a + b) + c == a + (b + c)

and the empty element must be an identity:

0 + a == a + 0 == a

We need an identity in increment to initialise the counter. We also
rely on associativity to ensure the specific sequence of merges
gives the correct value.

In total we implicitly rely on associativity and commutativity to
ensure we get the correct value no matter what arbitrary order we
choose to sum the per-machine counters. We also implicitly
assume an identity, which allows us to skip machines for which
we do not store a counter.

The properties of merge are a bit more interesting. We rely on
commutativity to ensure that machine A merging with machine B
yields the same result as machine B merging with machine A. We
need associativity to ensure we obtain the correct result when
three or more machines are merging data. We need an identity
element to initialise empty counters. Finally, we need an additional
property, called idempotency, to ensure that if two machines hold
the same data in a per-machine counter, merging data will not lead
to an incorrect result. Idempotent operations are ones that return
the same result again and again if they are executed multiple
times. Formally, a binary operation max is idempotent if the
following relationship holds:

477

a max a = a

Written more compactly, we have:

——————————————————————– Method Identity
Commutative Associative Idempotent ————– ———– ————-
————- ————- increment Y N Y N

merge Y Y Y Y

total Y Y Y N ——————————————————————–

From this we can see that

• increment requires a monoid;
• total requires a commutative monoid; and
• merge required an idempotent commutative monoid, also called

a bounded semilattice.

Since increment and get both use the same binary operation
(addition) it’s usual to require the same commutative monoid for
both.

This investigation demonstrates the powers of thinking about
properties or laws of abstractions. Now we have identified these
properties we can substitute the natural numbers used in our
GCounter with any data type with operations satisfying these
properties. A simple example is a set, with the binary operation
being union and the identity element the empty set. With this
simple substitution of Int for Set[A] we can create a GSet type.

22.3.1. Implementation

Let’s implement this generalisation in code. Remember increment
and total require a commutative monoid and merge requires a
bounded semilattice (or idempotent commutative monoid).

478

Cats provides a type class for both Monoid and
CommutativeMonoid, but doesn’t provide one for bounded
semilattice[^spire]. That’s why we’re going to implement our own
BoundedSemiLattice type class.

import cats.kernel.CommutativeMonoid

trait BoundedSemiLattice[A] extends CommutativeMonoid[A] {

 def combine(a1: A, a2: A): A

 def empty: A

}

In the implementation above, BoundedSemiLattice[A] extends
CommutativeMonoid[A] because a bounded semilattice is a
commutative monoid (a commutative idempotent one, to be exact).

22.3.2. Exercise: BoundedSemiLattice

Instances

Implement BoundedSemiLattice type class instances for Ints and
for Sets. The instance for Int will technically only hold for non-
negative numbers, but you don’t need to model non-negativity
explicitly in the types.

22.3.3. Exercise: Generic GCounter

Using CommutativeMonoid and BoundedSemiLattice, generalise
GCounter.

When you implement this, look for opportunities to use methods
and syntax on Monoid to simplify your implementation. This is a
good example of how type class abstractions work at multiple
levels in our code. We’re using monoids to design a large
component—our CRDTs—but they are also useful in the small,
simplifying our code and making it shorter and clearer.

479

[^spire]: A closely related library called Spire already provides that
abstractions.

22.4. Abstracting GCounter to a

Type Class

We’ve created a generic GCounter that works with any value that
has instances of BoundedSemiLattice and CommutativeMonoid.
However we’re still tied to a particular representation of the map
from machine IDs to values. There is no need to have this
restriction, and indeed it can be useful to abstract away from it.
There are many key-value stores that we want to work with, from
a simple Map to a relational database.

If we define a GCounter type class we can abstract over different
concrete implementations. This allows us to, for example,
seamlessly substitute an in-memory store for a persistent store
when we want to change performance and durability tradeoffs.

There are a number of ways we can implement this. One approach
is to define a GCounter type class with dependencies on
CommutativeMonoid and BoundedSemiLattice. We define this as a
type class that takes a type constructor with two type parameters
represent the key and value types of the map abstraction.

trait GCounter[F[_,_],K, V] {

 def increment(f: F[K, V])(k: K, v: V)

 (implicit m: CommutativeMonoid[V]): F[K, V]

 def merge(f1: F[K, V], f2: F[K, V])

 (implicit b: BoundedSemiLattice[V]): F[K, V]

 def total(f: F[K, V])

 (implicit m: CommutativeMonoid[V]): V

}

480

https://github.com/non/spire

object GCounter {

 def apply[F[_,_], K, V]

 (implicit counter: GCounter[F, K, V]) =

 counter

}

Try defining an instance of this type class for Map. You should be
able to reuse your code from the case class version of GCounter
with some minor modifications.

You should be able to use your instance as follows:

import cats.instances.int._ // for Monoid

val g1 = Map("a" -> 7, "b" -> 3)

val g2 = Map("a" -> 2, "b" -> 5)

val counter = GCounter[Map, String, Int]

val merged = counter.merge(g1, g2)

// merged: Map[String, Int] = Map("a" -> 7, "b" -> 5)

val total = counter.total(merged)

// total: Int = 12

The implementation strategy for the type class instance is a bit
unsatisfying. Although the structure of the implementation will be
the same for most instances we define, we won’t get any code
reuse.

22.5. Abstracting a Key Value

Store

One solution is to capture the idea of a key-value store within a
type class, and then generate GCounter instances for any type that
has a KeyValueStore instance. Here’s the code for such a type
class:

481

trait KeyValueStore[F[_,_]] {

 def put[K, V](f: F[K, V])(k: K, v: V): F[K, V]

 def get[K, V](f: F[K, V])(k: K): Option[V]

 def getOrElse[K, V](f: F[K, V])(k: K, default: V): V =

 get(f)(k).getOrElse(default)

 def values[K, V](f: F[K, V]): List[V]

}

Implement your own instance for Map.

With our type class in place we can implement syntax to enhance
data types for which we have instances:

implicit class KvsOps[F[_,_], K, V](f: F[K, V]) {

 def put(key: K, value: V)

 (implicit kvs: KeyValueStore[F]): F[K, V] =

 kvs.put(f)(key, value)

 def get(key: K)(implicit kvs: KeyValueStore[F]): Option[V] =

 kvs.get(f)(key)

 def getOrElse(key: K, default: V)

 (implicit kvs: KeyValueStore[F]): V =

 kvs.getOrElse(f)(key, default)

 def values(implicit kvs: KeyValueStore[F]): List[V] =

 kvs.values(f)

}

Now we can generate GCounter instances for any data type that
has instances of KeyValueStore and CommutativeMonoid using an
implicit def:

implicit def gcounterInstance[F[_,_], K, V]

 (implicit kvs: KeyValueStore[F], km: CommutativeMonoid[F[K,

V]]): GCounter[F, K, V] =

 new GCounter[F, K, V] {

 def increment(f: F[K, V])(key: K, value: V)

 (implicit m: CommutativeMonoid[V]): F[K, V] = {

 val total = f.getOrElse(key, m.empty) |+| value

482

 f.put(key, total)

 }

 def merge(f1: F[K, V], f2: F[K, V])

 (implicit b: BoundedSemiLattice[V]): F[K, V] =

 f1 |+| f2

 def total(f: F[K, V])(implicit m: CommutativeMonoid[V]): V =

 f.values.combineAll

 }

The complete code for this case study is quite long, but most of it
is boilerplate setting up syntax for operations on the type class.
We can cut down on this using compiler plugins such as
[Simulacrum][link-simulacrum] and [Kind Projector][link-kind-
projector].

22.6. Summary

In this case study we’ve seen how we can use type classes to
model a simple CRDT, the GCounter, in Scala. Our implementation
gives us a lot of flexibility and code reuse: we aren’t tied to the
data type we “count”, nor to the data type that maps machine IDs
to counters.

The focus in this case study has been on using the tools that Scala
provides, not on exploring CRDTs. There are many other CRDTs,
some of which operate in a similar manner to the GCounter, and
some of which have very different implementations. A [fairly
recent survey][link-crdt-survey] gives a good overview of many of
the basic CRDTs. However this is an active area of research and we
encourage you to read the recent publications in the field if CRDTs
and eventually consistency interest you.

part{Appendices} appendix

483

484

23. Acknowledgements

No book is an island. This book wouldn’t exist without it’s
predecessor, Scala with Cats, and everyone involved in creating
that book implicitly played some part in this book’s creation. See
below for that book’s acknowledgements, but in particular I want
to highlight my coauthor, Dave “Lord of Types” Pereira-Gurnell,
without whom that book would not exist and hence neither would
this one. Thanks Dave!

Thanks also to Adam Rosien, who gave me low-key
encouragement and put up with my bullshit. Also my wife and
children, who put up with even more of my bullshit, and gave me
the space to finish this project. The members of ScalaBridge
London and attendees at various training courses acted as
experimental subjects for a lot of the material here. Thank you for
being willing test subjects; you greatly helped improve the
content. Thanks for the members of the PLT research group who
inspired me directly back in the day, and continue to provide
inspiration from afar. Finally, thanks to the following who
sponsored my work or contributed with corrections and
suggestions:

Aleksandr Andreev, Charles Adetiloye, Johanna Odersky, Lunfu
Zhong, Maciej Gorywoda , Mathieu Pichette, Murat Cetin , Olya
Mazhara, Pavel Syvak, Philip Schwarz, Seth Tisue, Tim Eccleston
(@combinatorist).

485

https://github.com/combinatorist

23.1. Acknowledgements from

Scala with Cats

We’d like to thank our colleagues at Inner Product and Underscore,
our friends at Typelevel, and everyone who helped contribute to
this book. Special thanks to Jenny Clements for her fantastic
artwork and Richard Dallaway for his proof reading expertise.
Here is an alphabetical list of contributors:

Alessandro Marrella, Cody Koeninger, Connie Chen, Conor
Fennell, Dani Rey, Daniela Sfregola, Danielle Ashley, David
Castillo, David Piggott, Denis Zjukow, Dennis Hunziker,
Deokhwan Kim, Edd Steel, Eduardo Obando Boschini, Eugene
Yushin, Evgeny Veretennikov, Francis Devereux, Ghislain Vaillant,
Gregor Ihmor, Hayato Iida, Henk-Jan Meijer, HigherKindedType,
Hyeonsoo Lee, Janne Pelkonen, Joao Azevedo, Jason Scott, Javier
Arrieta, Jenny Clements, Jérémie Jost, Joachim Hofer, Jonathon
Ferguson, Lance Paine, Leif Wickland, ltbs, Lunfu Zhong, Marc
Prud’hommeaux, Martin Carolan, mizuno, Mr-SD, Narayan Iyer,
Niccolo’ Paravanti, niqdev, Noor Nashid, Pablo Francisco Pérez
Hidalgo, Pawel Jurczenko, Phil Derome, Philip Schwarz, Riccardo
Sirigu, Richard Dallaway, Robert Stoll, Rodney Jacobsen, Rodrigo
B. de Oliveira, Rud Wangrungarun, Seoh Char, Sergio Magnacco,
Shohei Shimomura, Tim McIver, Toby Weston, Victor Osolovskiy,
and Yinka Erinle.

If you spot an error or potential improvement, please raise an issue
or submit a PR on the book’s [Github page][link-github].

23.1.1. Backers

We’d also like to extend very special thanks to our backers—fine
people who helped fund the development of the book by buying a

486

copy before we released it as open source. This book wouldn’t
exist without you:

A battle-hardened technologist, Aaron Pritzlaff, Abhishek
Srivastava, Aleksey “Daron” Terekhin, Algolia, Allen George
(@allenageorge), Andrew Johnson, Andrew Kerr, Andy
Dwelly, Anler, anthony@dribble.ai, Aravindh Sridaran, Araxis Ltd,
ArtemK, Arthur Kushka (@arhelmus), Artur Zhurat,
Arturas Smorgun, Attila Mravik, Axel Gschaider, Bamboo Le,
bamine, Barry Kern, Ben Darfler (@bdarfler), Ben Letton,
Benjamin Neil, Benoit Hericher, Bernt Andreas Langøien, Bill
Leck, Blaze K, Boniface Kabaso, Brian Wongchaowart, Bryan
Dragon, @cannedprimates, Ceschiatti (@6qat),
Chris Gojlo, Chris Phelps, @CliffRedmond, Cody
Koeninger, Constantin Gonciulea, Dadepo Aderemi, Damir Vandic,
Damon Rolfs, Dan Todor, Daniel Arndt, Daniela Sfregola, David
Greco, David Poltorak, Dennis Hunziker, Dennis Vriend, Derek
Morr, Dimitrios Liapis, Don McNamara, Doug Clinton, Doug
Lindholm (dlindhol), Edgar Mueller, Edward J Renauer Jr, Emiliano
Martinez, esthom, Etienne Peiniau, Fede Silva, Filipe Azevedo,
Franck Rasolo, Gary Coady, George Ball, Gerald Loeffler,
Integrational, Giles Taylor, Guilherme Dantas (@gamsd),
Harish Hurchurn, Hisham Ismail, Iurii Susuk, Ivan (SkyWriter)
Kasatenko, Ivano Pagano, Jacob Baumbach, James Morris, Jan
Vincent Liwanag, Javier Gonzalez, Jeff Gentry, Joel Chovanec, Jon
Bates, Jorge Aliss (@jaliss), Juan Macias
(@1macias1), Juan Ortega, Juan Pablo Romero Méndez,
Jungsun Kim, Kaushik Chakraborty (@kaychaks), Keith
Mannock, Ken Hoffman, Kevin Esler, Kevin Kyyro, kgillies, Klaus
Rehm, Kostas Skourtis, Lance Linder, Liang, Guang Hua, Loïc
Girault, Luke Tebbs, Makis A, Malcolm Robbins, Mansur Ashraf
(@mansur_ashraf), Marcel Lüthi, Marek Prochera
@hicolour, Marianudo (Mariano Navas), Mark Eibes, Mark
van Rensburg, Martijn Blankestijn, Martin Studer, Matthew
Edwards, Matthew Pflueger, mauropalsgraaf, mbarak, Mehitabel,

487

Michael Pigg, Mikael Moghadam, Mike Gehard
(@mikegehard), MonadicBind,
arjun.mukherjee@gmail.com, Stephen Arbogast, Narayan
Iyer, @natewave, Netanel Rabinowitz, Nick Peterson,
Nicolas Sitbon, Oier Blasco Linares, Oliver Daff, Oliver Schrenk,
Olly Shaw, P Villela, pandaforme, Patrick Garrity, Pawel Wlodarski
from JUG Lodz, @peel, Peter Perhac, Phil Glover, Philipp
Leser-Wolf, Rachel Bowyer, Radu Gancea (@radusw), Rajit
Singh, Ramin Alidousti, Raymond Tay, Riccardo Sirigu, Richard
(Yin-Wu) Chuo, Rob Vermazeren, Robert “Kemichal” Andersson,
Robin Taylor (@badgermind), Rongcui Dong, Rui Morais,
Rupert Bates, Rustem Suniev, Sanjiv Sahayam, Shane Delmore,
Stefan Plantikow, Sundy Wiliam Yaputra, Tal Pressman, Tamas
Neltz, theLXK, Tim Pigden, Tobias Lutz, Tom Duhourq,
@tomzalt, Utz Westermann, Vadym Shalts, Val Akkapeddi,
Vasanth Loka, Vladimir Bacvanski, Vladimir Bystrov aka udav_pit,
William Benton, Wojciech Langiewicz, Yann Ollivier
(@ya2o), Yoshiro Naito, zero323, and zeronone.

backmatter

488

Bibliography

1. Harold Abelson and Gerald Jay Sussman. 1996. Structure and

Interpretation of Computer Programs. The MIT Press,
Cambridge, MA.

2. Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. 2003. From Interpreter to Compiler and Virtual
Machine: A Functional Derivation. BRICS Report Series 10, 14.

3. Patrick Bahr and Graham Hutton. 2015. Calculating correct
compilers. Journal of Functional Programming 25: e14. https://
doi.org/10.1017/S0956796815000180

4. Kent Beck. 1999. Extreme Programming Explained: Embrace

Change. Addison-Wesley.

5. James R. Bell. 1973. Threaded Code. Communications of the

ACM 16, 6: 370–372. https://doi.org/10.1145/362248.362270

6. Joshua Bloch. 2017. Effective Java. Addison-Wesley
Professional.

7. Margaret A. Boden and Ernest A. Edmonds. 2009. What is
generative art?. Digital Creativity, 20: 21–46. https://doi.org/10.
1080/14626260902867915

8. Janusz A. Brzozowski. 1964. Derivatives of Regular
Expressions. Journal of the ACM (JACM) 11, 4: 481–494.
https://doi.org/10.1145/321239.321249

9. R. M. Burstall. 1969. Proving Properties of Programs by
Structural Induction. The Computer Journal 12, 1: 41–48.
https://doi.org/10.1093/comjnl/12.1.41

10. Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009.
Finally Tagless, Partially Evaluated: Tagless Staged
Interpreters for Simpler Typed Languages. Journal of

489

https://doi.org/10.1017/S0956796815000180
https://doi.org/10.1145/362248.362270
https://doi.org/10.1080/14626260902867915
https://doi.org/10.1080/14626260902867915
https://doi.org/10.1145/321239.321249
https://doi.org/10.1093/comjnl/12.1.41

Functional Programming 5: 509–543. Retrieved from https://
okmij.org/ftp/tagless-final/JFP.pdf

11. Kevin Casey, David Gregg, M. Anton Ertl, and Andrew Nisbet.
2003. Towards Superinstructions for Java Interpreters. In
Software and Compilers for Embedded Systems, 7th

International Workshop, SCOPES 2003, Vienna, Austria,

September 24-26, 2003, Proceedings (Lecture Notes in Computer
Science), 329–343. https://doi.org/10.1007/978-3-540-39920-
9_23

12. Giuseppe Castagna, Guillaume Duboc, and José Valim. 2023.
The Design Principles of the Elixir Type System. The Art,

Science, and Engineering of Programming 8, 2. https://doi.org/
10.22152/programming-journal.org/2024/8/4

13. James Cheney and Ralf Hinze. 2003. First-class Phantom Types.
Cornell University. Retrieved from https://ecommons.cornell.
edu/server/api/core/bitstreams/6cf38000-1bc3-4572-b71f-9ddb
06f3565c/content

14. Koen Claessen and John Hughes. 2000. QuickCheck: a
lightweight tool for random testing of Haskell programs. In
Proceedings of the Fifth ACM SIGPLAN International Conference

on Functional Programming (ICFP '00), 268–279. https://doi.
org/10.1145/351240.351266

15. David Conley. 2014. Learning Strategies as Metacognitive

Factors: A Critical Review. Educational Policy Improvement
Center, Eugene, OR.

16. William Cook. 1990. Object-Oriented Programming Versus
Abstract Data Types. In Proceedings of the REX Workshop/

School on the Foundations of Object-Oriented Languages (FOOL)
(LNCS), 151–178. Retrieved from https://www.cs.utexas.edu/~
wcook/papers/OOPvsADT/CookOOPvsADT90.pdf

17. Olivier Danvy and Lasse R. Nielsen. 2001. Defunctionalization
at Work. In Proceedings of the 3rd ACM SIGPLAN International

490

https://okmij.org/ftp/tagless-final/JFP.pdf
https://okmij.org/ftp/tagless-final/JFP.pdf
https://doi.org/10.1007/978-3-540-39920-9_23
https://doi.org/10.1007/978-3-540-39920-9_23
https://doi.org/10.22152/programming-journal.org/2024/8/4
https://ecommons.cornell.edu/server/api/core/bitstreams/6cf38000-1bc3-4572-b71f-9ddb06f3565c/content
https://ecommons.cornell.edu/server/api/core/bitstreams/6cf38000-1bc3-4572-b71f-9ddb06f3565c/content
https://ecommons.cornell.edu/server/api/core/bitstreams/6cf38000-1bc3-4572-b71f-9ddb06f3565c/content
https://doi.org/10.1145/351240.351266
https://www.cs.utexas.edu/~wcook/papers/OOPvsADT/CookOOPvsADT90.pdf
https://www.cs.utexas.edu/~wcook/papers/OOPvsADT/CookOOPvsADT90.pdf

Conference on Principles and Practice of Declarative

Programming (PPDP '01), 162–174. https://doi.org/10.1145/
773184.773202

18. Nina Dethlefs and Ken Hawick. 2017. DEFIne: A Fluent
Interface DSL for Deep Learning Applications. In Proceedings

of the 2nd International Workshop on Real World Domain

Specific Languages (RWDSL17). https://doi.org/10.1145/
3039895.3039898

19. Robert B. K. Dewar. 1975. Indirect Threaded Code.
Communications of the ACM 18, 6: 330–331. https://doi.org/10.
1145/360825.360849

20. Alan Dorin, Jonathan McCabe, Jon McCormack, Gordon
Monro, and Mitchell Whitelaw. 2012. A Framework for
Understanding Generative Art. Digital Creativity: 239–259.
https://doi.org/10.1080/14626268.2012.709940

21. Paul Downen and Zena M. Ariola. 2021. Classical
(Co)Recursion: Programming. CoRR. Retrieved from https://
arxiv.org/abs/2103.06913

22. Paul Downen, Zachary Sullivan, Zena M Ariola, and Simon
Peyton Jones. 2019. Codata in Action. In European Symposium

on Programming, 119–146. Retrieved from https://www.
microsoft.com/en-us/research/uploads/prod/2020/01/
CoDataInAction.pdf

23. Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat:
Functional Enumeration of Algebraic Types. ACM SIGPLAN

Notices 47, 12: 61–72. https://doi.org/10.1145/2430532.2364515

24. M. Anton Ertl and David Gregg. 2003. The Structure and
Performance of Efficient Interpreters. Journal of Instruction

Level Parallelism 5. Retrieved from http://www.jilp.org/vol5/v5
paper12.pdf

491

https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/3039895.3039898
https://doi.org/10.1145/3039895.3039898
https://doi.org/10.1145/360825.360849
https://doi.org/10.1145/360825.360849
https://doi.org/10.1080/14626268.2012.709940
https://arxiv.org/abs/2103.06913
https://arxiv.org/abs/2103.06913
https://www.microsoft.com/en-us/research/uploads/prod/2020/01/CoDataInAction.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/01/CoDataInAction.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/01/CoDataInAction.pdf
https://doi.org/10.1145/2430532.2364515
http://www.jilp.org/vol5/v5paper12.pdf
http://www.jilp.org/vol5/v5paper12.pdf

25. M. Anton Ertl. 1995. Stack Caching for Interpreters. In
Proceedings of the ACM SIGPLAN'95 Conference on

Programming Language Design and Implementation (PLDI), La

Jolla, California, USA, June 18-21, 1995, 315–327. https://doi.
org/10.1145/207110.207165

26. Martin Erwig and Steve Kollmansberger. 2006. Functional
Pearls: Probabilistic Functional Programming in Haskell.
Journal of Functional Programming 16, 1: 21–34. https://doi.
org/10.1017/S0956796805005721

27. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. 2018. How to Design Programs. The
MIT Press, Cambridge, MA. Retrieved from https://htdp.org/

28. Martin Fowler. 2005. Fluent Interface. Retrieved May 12, 2025
from https://www.martinfowler.com/bliki/FluentInterface.
html

29. Phil Freeman. 2015. Stack Safety for Free. Retrieved from
https://functorial.com/stack-safety-for-free/index.pdf

30. Steve Freeman and Nat Pryce. 2006. Evolving an Embedded
Domain-Specific Language in Java. In Companion to the 21st

ACM SIGPLAN Symposium on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA '06), 855–865.
https://doi.org/10.1145/1176617.1176735

31. Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. 1994. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley.

32. Jeremy Gibbons and Geraint Jones. 1998. The Under-
appreciated Unfold. In Proceedings of the Third ACM SIGPLAN

International Conference on Functional Programming (ICFP '98),
273–279. https://doi.org/10.1145/289423.289455

33. Jeremy Gibbons and Bruno César dos Santos Oliveira. 2009.
The Essence of the Iterator Pattern. Journal of Functional

492

https://doi.org/10.1145/207110.207165
https://doi.org/10.1017/S0956796805005721
https://htdp.org/
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://functorial.com/stack-safety-for-free/index.pdf
https://doi.org/10.1145/1176617.1176735
https://doi.org/10.1145/289423.289455

Programming 19, 3&4: 377–402. https://doi.org/10.1017/S
0956796809007291

34. Jeremy Gibbons and Nicolas Wu. 2014. Folding Domain-
Specific Languages: Deep and Shallow Embeddings
(Functional Pearl). SIGPLAN Not. 49, 9: 339–347. https://doi.
org/10.1145/2692915.2628138

35. Jeremy Gibbons. 2021. How to Design Co-Programs. Journal of

Functional Programming 31: e15. https://doi.org/10.1017/S
0956796821000113

36. Jeremy Gibbons. 2022. Continuation-Passing Style,
Defunctionalization, Accumulations, and Associativity. The

Art, Science, and Engineering of Programming 6, 7. https://doi.
org/https://doi.org/10.22152/programming-journal.org/2022/6/
7

37. Yossi Gil and Ori Roth. 2019. Fling - A Fluent API Generator.
In 33rd European Conference on Object-Oriented Programming

(ECOOP 2019) (Leibniz International Proceedings in
Informatics (LIPIcs), 13:1–13:25. https://doi.org/10.4230/LIPIcs.
ECOOP.2019.13

38. Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein,
Benjamin C. Pierce, and Andrew Head. 2024. Property-Based
Testing in Practice. In Proceedings of the IEEE/ACM 46th

International Conference on Software Engineering (ICSE '24).
https://doi.org/10.1145/3597503.3639581

39. Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and J. F. Bastien. 2017. Bringing the Web up to Speed
with WebAssembly. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and

Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,
185–200. https://doi.org/10.1145/3062341.3062363

493

https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1145/2692915.2628138
https://doi.org/10.1017/S0956796821000113
https://doi.org/10.1017/S0956796821000113
https://doi.org/https://doi.org/10.22152/programming-journal.org/2022/6/7
https://doi.org/https://doi.org/10.22152/programming-journal.org/2022/6/7
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3062341.3062363

40. Tatsuya Hagino. 1989. Codatatypes in ML. Journal of Symbolic

Computation 8, 6: 629–650. https://doi.org/https://doi.org/10.
1016/S0747-7171(89)80065-3

41. K. A. Hawick. 2013. Fluent Interfaces and Domain-Specific
Languages for Graph Generation and Network Analysis
Calculations. In Procceedings of the International Conference on

Software Engineering (SE’13), 752–759.

42. Stefan Kaes. 1988. Parametric Overloading in Polymorphic
Programming Languages. In ESOP '88, 131–144.

43. Eric Kidd. 2007. Build your own probability monads.
Retrieved from https://www.randomhacks.net/files/build-
your-own-probability-monads.pdf

44. Oleg Kiselyov. 2005. Beyond Church encoding: Boehm-
Berarducci isomorphism of algebraic data types and
polymorphic lambda-terms. Retrieved from https://okmij.org/
ftp/tagless-final/course/Boehm-Berarducci.html

45. Oleg Kiselyov. 2012. Typed Tagless Final Interpreters. In
Generic and Indexed Programming: International Spring School,

SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures,
Jeremy Gibbons (ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 130–174. https://doi.org/10.1007/978-3-642-32202-
0_3

46. Ansten Klev. 2019. A Comparison of Type Theory with Set
Theory. In Reflections on the Foundations of Mathematics:

Univalent Foundations, Set Theory and General Thoughts,
Stefania Centrone, Deborah Kant and Deniz Sarikaya (eds.).
Springer International Publishing, Cham, 271–292. https://doi.
org/10.1007/978-3-030-15655-8_12

47. Filip Křikava, Heather Miller, and Jan Vitek. 2019. Scala
Implicits Are Everywhere: A Large-Scale Study of the Use of
Scala Implicits in the Wild. Proceedings of the ACM on

494

https://doi.org/https://doi.org/10.1016/S0747-7171(89)80065-3
https://doi.org/https://doi.org/10.1016/S0747-7171(89)80065-3
https://www.randomhacks.net/files/build-your-own-probability-monads.pdf
https://www.randomhacks.net/files/build-your-own-probability-monads.pdf
https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
https://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-030-15655-8_12

Programming Languages 3, OOPSLA. https://doi.org/10.1145/
3360589

48. Daan Leijen and Erik Meijer. 2000. Domain Specific Embedded
Compilers. In Proceedings of the 2nd Conference on Domain-

Specific Languages (DSL '99), 109–122. https://doi.org/10.1145/
331960.331977

49. Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri,
and Siddhartha Sen. 2023. CodaMosa: Escaping Coverage
Plateaus in Test Generation with Pre-trained Large Language
Models. In 2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE), 919–931. https://doi.org/10.1109/
ICSE48619.2023.00085

50. Tomer Levy. 2016. A Fluent API for Automatic Generation of
Fluent APIs in Java. Technion.

51. Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B.
Shields. 2000. Implicit Parameters: Dynamic Scoping with
Static Types. In Proceedings of the 27th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL
'00), 108–118. https://doi.org/10.1145/325694.325708

52. Chuan-kai Lin and Tim Sheard. 2010. Pointwise generalized
algebraic data types. In Proceedings of the 5th ACM SIGPLAN

Workshop on Types in Language Design and Implementation
(TLDI '10), 51–62. https://doi.org/10.1145/1708016.1708024

53. Tadhg E. MacIntyre, Eric R. Igou, Mark J. Campbell, Aidan P.
Moran, and James Matthews. 2014. Metacognition and Action:
A New Pathway to Understanding Social and Cognitive
Aspects of Expertise in Sport. Frontiers in Psychology 5, 1155.
https://doi.org/10.3389/fpsyg.2014.01155

54. Conor Mcbride and Ross Paterson. 2008. Applicative
Programming with Effects. Journal of Functional Programming
18, 1: 1–13. https://doi.org/10.1017/S0956796807006326

495

https://doi.org/10.1145/3360589
https://doi.org/10.1145/3360589
https://doi.org/10.1145/331960.331977
https://doi.org/10.1145/331960.331977
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1145/325694.325708
https://doi.org/10.1145/1708016.1708024
https://doi.org/10.3389/fpsyg.2014.01155
https://doi.org/10.1017/S0956796807006326

55. Conor McBride. 2001. The Derivative of a Regular Type is its
Type of One-Hole Contexts. Retrieved from http://strictlyposi
tive.org/diff.pdf

56. Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991.
Functional Programming with Bananas, Lenses, Envelopes
and Barbed Wire. In Functional Programming Languages and

Computer Architecture, 124–144. Retrieved from https://ris.
utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.
pdf

57. Matthew Might, David Darais, and Daniel Spiewak. 2011.
Parsing with Derivatives: a Functional Pearl. In Proceeding of

the 16th ACM SIGPLAN international conference on Functional

Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011,
189–195. https://doi.org/10.1145/2034773.2034801

58. James H. Morris. 1973. Types Are Not Sets. In Proceedings of

the 1st Annual ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL '73), 120–124.
https://doi.org/10.1145/512927.512938

59. Dan Moseley, Mario Nishio, Jose Perez Rodriguez, Olli
Saarikivi, Stephen Toub, Margus Veanes, Tiki Wan, and Eric
Xu. 2023. Derivative Based Nonbacktracking Real-World
Regex Matching with Backtracking Semantics. Proceedings of

the ACM on Programming Languages 7, PLDI. https://doi.org/
10.1145/3591262

60. Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and
Shigeru Chiba. 2017. Silverchain: A Fluent API Generator.
SIGPLAN Not. 52, 12: 199–211. https://doi.org/10.1145/3170492.
3136041

61. Tomoki Nakamaru, Tomomasa Matsunaga, Tetsuro Yamazaki,
Soramichi Akiyama, and Shigeru Chiba. 2020. An Empirical
Study of Method Chaining in Java. In Proceedings of the 17th

496

http://strictlypositive.org/diff.pdf
http://strictlypositive.org/diff.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://ris.utwente.nl/ws/portalfiles/portal/6142049/meijer91functional.pdf
https://doi.org/10.1145/2034773.2034801
https://doi.org/10.1145/512927.512938
https://doi.org/10.1145/3591262
https://doi.org/10.1145/3170492.3136041
https://doi.org/10.1145/3170492.3136041

International Conference on Mining Software Repositories (MSR
'20), 93–102. https://doi.org/10.1145/3379597.3387441

62. Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos
Biboudis, Heather Miller, and Sandro Stucki. 2017. Simplicitly:
foundations and applications of implicit function types. Proc.

ACM Program. Lang. 2, POPL. https://doi.org/10.1145/3158130

63. Bruno C. d. S. Oliveira and William R. Cook. 2012.
Extensibility for the masses: practical extensibility with object
algebras. In Proceedings of the 26th European Conference on

Object-Oriented Programming (ECOOP'12), 2–27. https://doi.
org/10.1007/978-3-642-31057-7_2

64. Bruno C. D. S. Oliveira and Jeremy Gibbons. 2010. Scala for
Generic Programmers: Comparing Haskell and Scala Support
for Generic Programming. Journal of Functional Programming
20, 3–4: 303–352. https://doi.org/10.1017/S0956796810000171

65. Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky.
2010. Type Classes as Objects and Implicits. In Proceedings of

the ACM International Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA
'10), 341–360. https://doi.org/10.1145/1869459.1869489

66. Klaus Ostermann and Julian Jabs. 2018. Dualizing Generalized
Algebraic Data Types by Matrix Transposition. In
Programming Languages and Systems, 60–85.

67. Scott Owens, John Reppy, and Aaron Turon. 2009. Regular-
Expression Derivatives Re-Examined. Journal of Functional

Programming 19, 2: 173–190. https://doi.org/10.1017/S
0956796808007090

68. Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich,
and Geoffrey Washburn. 2006. Simple unification-based type
inference for GADTs. SIGPLAN Not. 41, 9: 50–61. https://doi.
org/10.1145/1160074.1159811

497

https://doi.org/10.1145/3379597.3387441
https://doi.org/10.1145/3158130
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1017/S0956796810000171
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1145/1160074.1159811

69. Benjamin C. Pierce. 2002. Types and Programming Languages.
The MIT Press, Cambridge, MA.

70. Paul R. Pintrich. 2002. The Role of Metacognitive Knowledge
in Learning, Teaching, and Assessing. Theory into Practice 41,
4.

71. Todd A. Proebsting. 1995. Optimizing an ANSI C Interpreter
with Superoperators. In Conference Record of POPL'95: 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, San Francisco, California, USA,

January 23-25, 1995, 322–332. https://doi.org/10.1145/199448.
199526

72. Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik
Sen. 2020. Quickly Generating Diverse Valid Test Inputs with
Reinforcement Learning. In 2020 IEEE/ACM 42nd International

Conference on Software Engineering (ICSE), 1410–1421.
Retrieved from https://ieeexplore.ieee.org/document/9284117

73. John C. Reynolds. 1972. Definitional Interpreters for Higher-
Order Programming Languages. In Proceedings of the ACM

Annual Conference - Volume 2 (ACM '72), 717–740. https://doi.
org/10.1145/800194.805852

74. Ori Roth and Yossi Gil. 2023. Fluent APIs in Functional
Languages. Proceedings of the ACM on Programming

Languages 7, OOPSLA1: 876–901. https://doi.org/10.1145/
3586057

75. Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008.
Smallcheck and lazy smallcheck: automatic exhaustive testing
for small values. In Proceedings of the First ACM SIGPLAN

Symposium on Haskell (Haskell '08), 37–48. https://doi.org/10.
1145/1411286.1411292

76. Adam Scibior, Zoubin Ghahramani, and Andrew D. Gordon.
2015. Practical Probabilistic Programming with Monads. In

498

https://doi.org/10.1145/199448.199526
https://doi.org/10.1145/199448.199526
https://ieeexplore.ieee.org/document/9284117
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/3586057
https://doi.org/10.1145/3586057
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/1411286.1411292

Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell
(Haskell '15), 165–176. https://doi.org/10.1145/2804302.2804317

77. Adam Scibior, Ohad Kammar, and Zoubin Ghahramani. 2018.
Functional Programming for Modular Bayesian Inference.
Proc. ACM Program. Lang. 2, ICFP. https://doi.org/10.1145/
3236778

78. Tim Sheard and Emir Pasalic. 2008. Meta-programming With
Built-in Type Equality. Electronic Notes in Theoretical

Computer Science 199: 49–65. https://doi.org/https://doi.org/10.
1016/j.entcs.2007.11.012

79. Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg.
2008. Virtual Machine Showdown: Stack versus Registers.
ACM Trans. Archit. Code Optim. 4, 4: 2:1–2:36. https://doi.org/
10.1145/1328195.1328197

80. Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel:
A Fluent Code Explorer for Data Wrangling. In The 34th

Annual ACM Symposium on User Interface Software and

Technology (UIST '21), 198–207. https://doi.org/10.1145/
3472749.3474744

81. Zachary Sullivan. 2019. Exploring Codata: The Relation to

Object-Orientation. University of Oregon, Computer,
Information Sciences Department. Retrieved from https://
www.cs.uoregon.edu/Reports/DRP-201905-Sullivan.pdf

82. Wouter Swierstra. 2008. Data types à la carte. Journal of

Functional Programming 18, 4: 423–436. https://doi.org/10.
1017/S0956796808006758

83. David Thibodeau, Andrew Cave, and Brigitte Pientka. 2016.
Indexed Codata Types. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming
(ICFP 2016), 351–363. https://doi.org/10.1145/2951913.2951929

499

https://doi.org/10.1145/2804302.2804317
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3236778
https://doi.org/https://doi.org/10.1016/j.entcs.2007.11.012
https://doi.org/https://doi.org/10.1016/j.entcs.2007.11.012
https://doi.org/10.1145/1328195.1328197
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744
https://www.cs.uoregon.edu/Reports/DRP-201905-Sullivan.pdf
https://www.cs.uoregon.edu/Reports/DRP-201905-Sullivan.pdf
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/2951913.2951929

84. Ben L. Titzer. 2022. A Fast In-Place Interpreter for
WebAssembly. Proceedings of the ACM on Programming

Languages 6, OOPSLA2: 646–672. https://doi.org/10.1145/
3563311

85. Phillip Merlin Uesbeck. 2019. On the Human Factors Impact of
Polyglot Programming on Programmer Productivity.
University of Nevada, Las Vegas. Retrieved from https://web.
cs.unlv.edu/stefika/documents/MerlinDissertation.pdf

86. Ian Erik Varatalu, Margus Veanes, and Juhan Ernits. 2025. RE#:
High Performance Derivative-Based Regex Matching with
Intersection, Complement, and Restricted Lookarounds.
Proceedings of the ACM on Programming Languages 9, POPL.
https://doi.org/10.1145/3704837

87. Milica Vuković, Vladimir Vujović, Zorana Štaka, and Snježana
Milinković. 2023. Domain-Specific Language for Modeling
Fluent API. In 2023 15th International Conference on Electronics,

Computers and Artificial Intelligence (ECAI), 1–6. https://doi.
org/10.1109/ECAI58194.2023.10194083

88. P. Wadler and S. Blott. 1989. How to make ad-hoc
polymorphism less ad hoc. In Proceedings of the 16th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL '89), 60–76. https://doi.org/10.1145/75277.
75283

89. Phil Wadler. 1998. The Expression Problem. Retrieved from
https://homepages.inf.ed.ac.uk/wadler/papers/expression/
expression.txt

90. Philiip Wadler, Walid Taha, and David MacQueen. 1998. How
to add laziness to a strict language without even being odd. In
SML'98, The SML workshop. Retrieved from https://www.diva-
portal.org/smash/get/diva2:413532/FULLTEXT01.pdf

91. Philip Wadler. 1989. Theorems for free!. In Proceedings of the

Fourth International Conference on Functional Programming

500

https://doi.org/10.1145/3563311
https://doi.org/10.1145/3563311
https://web.cs.unlv.edu/stefika/documents/MerlinDissertation.pdf
https://web.cs.unlv.edu/stefika/documents/MerlinDissertation.pdf
https://doi.org/10.1145/3704837
https://doi.org/10.1109/ECAI58194.2023.10194083
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://www.diva-portal.org/smash/get/diva2:413532/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:413532/FULLTEXT01.pdf

Languages and Computer Architecture (FPCA '89), 347–359.
https://doi.org/10.1145/99370.99404

92. Philip Wadler. 1992. The Essence of Functional Programming.
In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL '92), 1–14.
https://doi.org/10.1145/143165.143169

93. Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded
Recursive Datatype Constructors. In Proceedings of the 30th

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL '03), 224–235. https://doi.org/
10.1145/604131.604150

94. Weixin Zhang, Cristina David, and Meng Wang. 2022.
Decomposition Without Regret. Retrieved from https://arxiv.
org/abs/2204.10411

501

https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/604131.604150
https://arxiv.org/abs/2204.10411
https://arxiv.org/abs/2204.10411

	Preface
	Preface from Scala with Cats
	Versions
	Template Projects

	Conventions Used in This Book
	Typographical Conventions
	Source Code
	Callout Boxes

	License

	1. Functional Programming Strategies
	1.1. Three Levels for Thinking About Code
	1.2. Functional Programming
	1.2.1. What Functional Programming Is
	1.2.1.1. Types

	1.2.2. What Functional Programming Isn't
	1.2.3. Why It Matters
	1.2.4. The Evidence for Functional Programming
	1.2.5. Final Words

	2. Types as Constraints
	2.1. Sets and Constraints
	2.2. Building Constraints
	2.3. Opaque Types
	2.3.1. Best Practices
	2.3.2. Beyond Opaque Types

	2.4. Conclusions

	3. Algebraic Data Types
	3.1. Building Algebraic Data Types
	3.1.1. Sums and Products
	3.1.2. Closed Worlds

	3.2. Algebraic Data Types in Scala
	3.2.1. Algebraic Data Types in Scala 3
	3.2.2. Algebraic Data Types in Scala 2
	3.2.3. Examples
	3.2.3.1. Role and User
	3.2.3.2. Paths

	3.2.4. Representing ADTs in Scala 3

	3.3. Structural Recursion
	3.3.1. Pattern Matching
	3.3.2. The Recursion in Structural Recursion
	3.3.3. Exhaustivity Checking
	3.3.4. Dynamic Dispatch
	3.3.5. Folds as Structural Recursions

	3.4. Structural Corecursion
	3.4.1. Unfolds as Structural Corecursion

	3.5. The Algebra of Algebraic Data Types
	3.6. Conclusions

	4. Objects as Codata
	4.1. Data and Codata
	4.2. Codata in Scala
	4.3. Structural Recursion and Corecursion for Codata
	4.3.1. Efficiency and Effects

	4.4. Relating Data and Codata
	4.5. Data and Codata Extensibility
	4.6. Conclusions

	5. Contextual Abstraction
	5.1. The Mechanics of Contextual Abstraction
	5.1.1. Using Clauses
	5.1.2. Given Instances
	5.1.3. Given Scope and Imports
	5.1.3.1. Given Instance Priority

	5.2. Anatomy of a Type Class
	5.2.1. The Type Class
	5.2.2. Type Class Instances
	5.2.3. Type Class Use
	5.2.3.1. Interface Objects
	5.2.3.2. Interface Syntax
	5.2.3.3. The summon Method

	5.3. Type Class Composition
	5.3.1. Type Class Composition in Scala 2

	5.4. What Type Classes Are
	5.5. Exercise: Display Library
	5.5.1. Using the Library
	5.5.2. Better Syntax

	5.6. Type Classes and Variance
	5.6.1. Variance
	5.6.2. Covariance
	5.6.3. Contravariance
	5.6.4. Invariance
	5.6.5. Variance and Instance Selection

	5.7. Conclusions

	6. Reified Interpreters
	6.1. Regular Expressions
	6.2. Interpreters and Reification
	6.2.1. The Structure of Interpreters
	6.2.2. Implementing Interpreters with Reification

	6.3. Tail Recursive Interpreters
	6.3.1. The Problem of Stack Safety
	6.3.2. Tail Calls and Tail Position
	6.3.3. Continuation-Passing Style
	6.3.4. Trampolining
	6.3.5. When Tail Recursion is Easy

	6.4. Conclusions

	7. Using Cats
	7.1. Quick Start
	7.2. Using Cats
	7.2.1. Defining Custom Instances

	7.3. Example: Eq
	7.3.1. Equality, Liberty, and Fraternity
	7.3.2. Comparing Ints
	7.3.3. Comparing Options
	7.3.4. Comparing Custom Types

	7.4. Conclusions

	8. Monoids and Semigroups
	8.1. Definition of a Monoid
	8.2. Definition of a Semigroup
	8.2.0.1. Exercise: The Truth About Monoids
	8.2.0.2. Exercise: All Set for Monoids

	8.3. Monoids in Cats
	8.3.1. The Monoid Type Class
	8.3.2. Monoid Instances
	8.3.3. Monoid Syntax
	8.3.3.1. Exercise: Adding All The Things

	8.4. Applications of Monoids
	8.4.1. Big Data
	8.4.2. Distributed Systems
	8.4.3. Monoids in the Small

	8.5. Summary

	9. Functors
	9.1. Examples of Functors
	9.2. More Examples of Functors
	9.2.1. Futures
	9.2.2. Functions (?!)

	9.3. Definition of a Functor
	9.4. Higher Kinds and Type Constructors
	9.5. Functors in Cats
	9.5.1. The Functor Type Class and Instances
	9.5.2. Functor Syntax
	9.5.3. Instances for Custom Types

	9.6. Contravariant and Invariant Functors
	9.6.1. Contravariant Functors and the contramap Method
	9.6.2. Invariant functors and the imap method
	9.6.2.1. Transformative Thinking with imap

	9.7. Contravariant and Invariant in Cats
	9.7.1. Contravariant in Cats
	9.7.2. Invariant in Cats

	9.8. Aside: Partial Unification
	9.8.1. Limitations of Partial Unification

	9.9. Conclusions

	10. Monads
	10.1. What is a Monad?
	10.1.1. Options as Monads
	10.1.2. Lists as Monads
	10.1.3. Futures as Monads
	10.1.4. Definition of a Monad
	10.1.5. Exercise: Getting Func-y

	10.2. Monads in Cats
	10.2.1. The Monad Type Class
	10.2.2. Default Instances
	10.2.3. Monad Syntax

	10.3. The Identity Monad
	10.3.1. Exercise: Monadic Secret Identities

	10.4. Either
	10.4.1. Cats Utilities
	10.4.1.1. Creating Instances
	10.4.1.2. Transforming Eithers

	10.5. Aside: Error Handling and MonadError
	10.5.1. The MonadError Type Class
	10.5.2. Raising and Handling Errors
	10.5.3. Instances of MonadError
	10.5.4. Exercise: Abstracting

	10.6. The Eval Monad
	10.6.1. Eager, Lazy, Memoized, Oh My!
	10.6.2. Eval's Models of Evaluation
	10.6.3. Eval as a Monad
	10.6.4. Trampolining and Eval.defer

	10.7. The Writer Monad
	10.7.1. Creating and Unpacking Writers
	10.7.2. Composing and Transforming Writers

	10.8. The Reader Monad
	10.8.1. Creating and Unpacking Readers
	10.8.2. Composing Readers
	10.8.3. When to Use Readers?

	10.9. The State Monad
	10.9.1. Creating and Unpacking State
	10.9.2. Composing and Transforming State

	10.10. Defining Custom Monads
	10.11. Conclusions

	11. Monad Transformers
	11.1. Composing Monads
	11.2. A Transformative Example
	11.3. Monad Transformers in Cats
	11.3.1. The Monad Transformer Classes
	11.3.2. Building Monad Stacks
	11.3.3. Constructing and Unpacking Instances
	11.3.4. Default Instances
	11.3.5. Usage Patterns

	11.4. Conclusions

	12. Semigroupal and Applicative
	12.1. Semigroupal
	12.1.1. Joining Two Contexts
	12.1.2. Joining Three or More Contexts
	12.1.3. Semigroupal Laws

	12.2. Semigroupal Syntax
	12.2.1. Fancy Functors and Apply Syntax

	12.3. Semigroupal Applied to Different Types
	12.3.1. Semigroupal Applied to List
	12.3.2. Semigroupal Applied to Either
	12.3.3. Semigroupal Applied to Monads

	12.4. Parallel
	12.5. Apply and Applicative
	12.5.1. The Hierarchy of Sequencing Type Classes

	12.6. Summary

	13. Foldable and Traverse
	13.1. Foldable
	13.1.1. Folds and Folding
	13.1.2. Foldable in Cats
	13.1.2.1. Folding Right
	13.1.2.2. Folding with Monoids
	13.1.2.3. Syntax for Foldable

	13.2. Traverse
	13.2.1. Traversing with Futures
	13.2.2. Traversing with Applicatives
	13.2.3. Traverse in Cats

	13.3. Conclusions

	14. Indexed Types
	14.1. Phantom Types
	14.2. Indexed Codata
	14.2.0.1. Exercise: Torque {-}
	14.2.1. API Protocols
	14.2.1.1. Exercise: HTML API Design {-}

	14.2.2. Beyond Equality Constraints
	14.2.2.1. Exercise: Commutivitiy {-}

	14.3. Indexed Data
	14.3.1. The Probability Monad

	14.4. Conclusions

	15. Tagless Final Interpreters
	15.1. Codata Interpreters
	15.1.1. The Terminal
	15.1.2. Color Codes
	15.1.3. The Trouble with Escape Codes
	15.1.4. Programs and Interpreters
	15.1.5. Composition and Reasoning
	15.1.6. Codata and Extensibility

	15.2. Tagless Final Interpreters
	15.3. Algebraic User Interfaces
	15.4. A Better Encoding
	15.5. Conclusions

	16. Optimizing Interpreters and Compilers
	16.1. Algebraic Manipulation
	16.2. From Continuations to Stacks
	16.3. Compilers and Virtual Machines
	16.3.1. Virtual and Abstract Machines
	16.3.2. Compilation

	16.4. From Interpreter to Stack Machine
	16.4.1. Effectful Interpreters
	16.4.2. Further Optimization

	16.5. Conclusions

	17. Creating Usable Code
	18. Case Study: Testing Asynchronous Code
	18.1. Abstracting over Type Constructors
	18.2. Abstracting over Monads
	18.3. Summary

	19. Error Handling
	20. Case Study: Map-Reduce
	20.1. Parallelizing map and fold
	20.2. Implementing foldMap
	20.3. Parallelising foldMap
	20.3.1. Futures, Thread Pools, and ExecutionContexts
	20.3.2. Dividing Work
	20.3.3. Implementing parallelFoldMap
	20.3.4. parallelFoldMap with more Cats

	20.4. Summary

	21. Case Study: Data Validation
	21.1. Sketching the Library Structure
	21.2. The Check Datatype
	21.3. Basic Combinators
	21.4. Transforming Data
	21.4.1. Predicates
	21.4.2. Checks
	21.4.3. Recap

	21.5. Kleislis
	21.6. Summary

	22. Case Study: CRDTs
	22.1. Eventual Consistency
	22.2. The GCounter
	22.2.1. Simple Counters
	22.2.2. GCounters
	22.2.3. Exercise: GCounter Implementation

	22.3. Generalisation
	22.3.1. Implementation
	22.3.2. Exercise: BoundedSemiLattice Instances
	22.3.3. Exercise: Generic GCounter

	22.4. Abstracting GCounter to a Type Class
	22.5. Abstracting a Key Value Store
	22.6. Summary

	23. Acknowledgements
	23.1. Acknowledgements from Scala with Cats
	23.1.1. Backers

	Bibliography

