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Preface

Some twenty years ago I started my first job in the UK. This job involved a commute by train, giving me about an hour a day to read without distraction. Around about the same time I first heard about Structure and Interpretation of Computer Programs, referred to as the “wizard book” and spoken of in reverential terms. It sounded like the just the thing for a recent graduate looking to become a better developer. I purchased a copy and spent the journey reading it, doing most of the exercises in my head. Structure and Interpretation of Computer Programs was already an old book at this time, and it’s programming style was archaic. However it’s core concepts were timeless and it’s fair to say it absolutely blew my mind, putting me on a path I’m still on today.

Another notable stop on this path occured some ten years ago when Dave and I started writing Scala with Cats. In Scala with Cats we attempted to explain the core type classes found in the Cats library, and their use in building software. I’m proud of the book we wrote together, but time and experience showed that type classes are only a small piece of the puzzle of building software in a functional programming style. We needed a much wider scope if we were to show people how to effectively build software with all the tools that functional programming provides. Still, writing a book is a lot of work, and we were busy with other projects, so Scala with Cats remained largely untouched for many years.

Around 2020 I got the itch to return to Scala with Cats. My initial plan was simply to update the book for Scala 3. Dave was busy with other projects so I decided to go alone. As the writing got underway I realized I really wanted to cover the additional topics I thought were missing. If Scala with Cats was a good book, I wanted to aim to write a great book; one that would contain almost everything I had learned about building software. The title Scala with Cats no longer fit the content, and hence I adopted a new name for what is largely a new book. The result, Functional Programming Strategies in Scala with Cats, is what you are reading now. I hope you find it useful, and I hope that just maybe some young developer will find this book inspiring the same way I found Structure and Interpretation of Computer Programs inspiring all those years ago.


Preface from Scala with Cats

The aims of this book are two-fold: to introduce monads, functors, and other functional programming patterns as a way to structure program design, and to explain how these concepts are implemented in Cats.

Monads, and related concepts, are the functional programming equivalent of object-oriented design patterns—architectural building blocks that turn up over and over again in code. They differ from object-oriented patterns in two main ways:


	they are formally, and thus precisely, defined; and

	they are extremely (extremely) general.



This generality means they can be difficult to understand. Everyone finds abstraction difficult. However, it is generality that allows concepts like monads to be applied in such a wide variety of situations.

In this book we aim to show the concepts in a number of different ways, to help you build a mental model of how they work and where they are appropriate. We have extended case studies, a simple graphical notation, many smaller examples, and of course the mathematical definitions. Between them we hope you’ll find something that works for you.

Ok, let’s get started!



Versions

This book is written for Scala 3.3.1 and Cats 2.10.0. Here is a minimal build.sbt containing the relevant dependencies and settings
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1 Functional Programming Strategies

This is a book on strategies for creating code in a functional programming (FP) style, seen through a Scala lens. If you understand most of the mechanics of Scala, but feel there is something missing in your understanding of how to use the language effectively, this book is for you. If you don’t know so much Scala, but are prepared to learn it as part of learning about functional programming, this book is also for you. It covers the usual functional programming abstractions like monads and monoids, but more than that it tries to teach you how to think like a functional programmer. It’s a book as much about process as it is about the code that results from process, and in particular it focuses on what I can metacognitive programming strategies.

I would guess most programmers would struggle to describe the process they use to write code. Some might mention “test driven development” and perhaps “pair programming”, but I wouldn’t expect much more from the general programming population. Both the above techniques come from eXtreme Programming, which dates to the late 90s, and you would hope our field had added new knowledge in that time. But it’s not really the fault of the developers—most of them haven’t been taught any explicit process. Our industry certainly likes to talk about process, in the form of agile, kanban boards, and so on, and in recent times a tremendous effort has spent on expanding those who are taught programming. However the actual programming—the bit that produces the code that is the whole point of the endeavour—is still largely treated as magic. It doesn’t have to be that way.

Functional programmers love fancy words for simple ideas, so it’s no surprise I’m drawn to metacognitive programming strategies. Let’s unpack that phrase to see what it means. Metacognition means thinking about thinking. A lot of research has shown the benefits of metacognition in learning, and that it is an important part of developing expertise. Metacognition is not just one thing—it’s not sufficient to just tell someone to think about their thinking. Rather we should expect metacognition to be a collection of different strategies, some of which are general and some of which are domain specific. From this we get the idea of metacognitive programming strategies—explicitly naming and describing different thinking strategies that proficient programmers use.

I believe metacognitive programming strategies are useful for both beginners and experts. For beginners we can make programming a more systematic and repeatable process. Producing code no longer requires magic in the majority of cases, but rather the application of some well defined steps. For experts, the benefit is exactly the same. At least that is my experience (and I believe I’ve been programming long enough to call myself an expert.) By having an explicit process I can run it exactly the same way every day, which makes my code simpler to write and read, and saves my brain cycles for more important problems. In some ways this is an attempt to bring to programming the benefit that process and standardization has brought to manufacturing, particularly the “Toyota Way”. In Toyota’s process individuals are expected to think about how their work is done and how it can be improved. This is, in effect, metacognition for assembly lines. This is only possible if the actual work itself does not require their full attention. The dramatic improvements in productivity and quality in car manufacturing that Toyota pioneered speak to the effectiveness of this approach. Software development is more varied than car manufacturing but we should still expect some benefit, particularly given the primitive state of our current industry.

The question then becomes: what metacognitive strategies can programmers use? I believe that functional programming is particularly well suited to answer this question. A major theme in functional programming research is finding and naming useful code structures. Once we have discovered a useful abstraction we can get the programmer to ask themselves “would this abstraction solve this problem?” This is essentially what the design patterns community did, also back in the nineties, but there is an important difference. The academic FP community strongly values formal models, which means that the building blocks of FP have a precision that design patterns lack. However there is more to process than categorizing the output. There is also the actual process of how the code comes to be. Code doesn’t usually spring fully formed from our keyboard, and in the iterative refinement of code we also find structure. Here the academic FP community has less to say, but there is a strong folklore of techniques such as “type driven development”

Over the last ten or so years of programming and teaching programming I’ve collected a wide range of strategies. Some come from others (for example, How to Design Programs and its many offshoots remain very influential for me) and some I’ve found myself. Ultimately I don’t think anything here is new; rather my contribution is in collecting and presenting these strategies as one coherent whole.


1.1 Three Levels for Thinking About Code

Let’s start thinking about thinking about programming, with a model that describes three different levels that we can use to think about code. The levels, from highest to lowest, are paradigm, theory, and craft. Each level provides guidance for the ones below.

The paradigm level refers to the programming paradigm, such as object-oriented or functional programming. You’re probably familiar with these terms, but what exactly is a programming paradigm? To me, the core of a programming paradigm is a set of principles that define, usually somewhat loosely, the properties of good code. A paradigm is also, implicitly, a claim that code that follows these principles will be better than code that does not. For functional programming I believe these principles are composition and reasoning. I’ll explain these shortly. Object-oriented programmers might point to, say, the SOLID principles as guiding their coding decisions.

The importance of the paradigm is that it provides criteria for choosing between different implementation strategies. There are many possible solutions for any programming problem, and we can use the principles in the paradigm to decide which approach to take. For example, if we’re a functional programmer we can consider how easily we can reason about a particular implementation, or how composable it is. Without the paradigm we have no basis for making a choice.

The theory level translates the broad principles of the paradigm to specific well defined techniques that apply to many languages within the paradigm. We are still, however, at a level above the code. Design patterns are an example in the object-oriented world. Algebraic data types are an example in functional programming. Most languages that are in the functional programming paradigm, such as Haskell and O’Caml, support algebraic data types, as do many languages that straddle multiple paradigms, such as Rust, Scala, and Swift.

The theory level is where we find most of our programming strategies.

At the craft level we get to actual code, and the language specific nuance that goes into it. An example in Scala is the implementation of algebraic data types in terms of sealed trait and final case class in Scala 2, or enum in Scala 3. There are many concerns at this level that are important for writing idiomatic code, such as placing constructors on companion objects in Scala, that are not relevant at the higher levels.

In the next section I’ll describe the functional programming paradigm. The remainder of this book is primarily concerned with theory and craft. The theory is language agnostic but the craft is firmly in the world of Scala. Before we move onto the functional programming paradigm are two points I want to emphasize:


	Paradigms are social constructs. They change over time. Object-oriented programming as practiced todays differs from the style originally used in Simula and Smalltalk, and functional programming todays is very different from the original LISP code.


	The three level organization is just a tool for thought. In real world is more complicated.






1.2 Functional Programming

This is a book about the techniques and practices of functional programming (FP). This naturally leads to the question: what is FP and what does it mean to write code in a functional style? It’s common to view functional programming as a collection of language features, such as first class functions, or to define it as a programming style using immutable data and pure functions. (Pure functions always return the same output given the same input.) This was my view when I started down the FP route, but I now believe the true goals of FP are enabling local reasoning and composition. Language features and programming style are in service of these goals. Let me attempt to explain the meaning and value of local reasoning and composition.


1.2.1 What Functional Programming Is

I believe that functional programming is a hypothesis about software quality: that it is easier to write and maintain software that can be understood before it is run, and is built of small reusable components. The first property is known as local reasoning, and the second as composition. Let’s address each in turn.

Local reasoning means we can understand pieces of code in isolation. When we see the expression 1 + 1 we know what it means regardless of the weather, the database, or the current status of our Kubernetes cluster. None of these external events can change it. This is a trivial and slightly silly example, but it illustrates the point. A goal of functional programming is to extend this ability across our code base.

It can help to understand local reasoning by looking at what it is not. Shared mutable state is out because relying on shared state means that other code can change what our code does without our knowledge. It means no global mutable configuration, as found in many web frameworks and graphics libraries for example, as any random code can change that configuration. Metaprogramming has to be carefully controlled. No monkey patching, for example, as again it allows other code to change our code in non-obvious ways. As we can see, adapting code to enable local reasoning can mean quite some sweeping changes. However if we work in a language that embraces functional programming this style of programming is the default.

Composition means building big things out of smaller things. Numbers are compositional. We can take any number and add one, giving us a new number. Lego is also compositional. We compose Lego by sticking it together. In the particular sense we’re using composition we also require the original elements we combine don’t change in any way when they are composed. When we create by 2 by adding 1 and 1 we get a new result that doesn’t change what 1 means.

We can find compositional ways to model common programming tasks once we start looking for them. React components are one example familiar to many front-end developers: a component can consist of many components. HTTP routes can be modelled in a compositional way. A route is a function from an HTTP request to either a handler function or a value indicating the route did not match. We can combine routes as a logical or: try this route or, if it doesn’t match, try this other route. Processing pipelines are another example that often use sequential composition: perform this pipeline stage and then this other pipeline stage.


1.2.1.1 Types

Types are not strictly part of functional programming but statically typed FP is the most popular form of FP and sufficiently important to warrant a mention. Types help compilers generate efficient code but types in FP are as much for the programmer as they are the compiler. Types express properties of programs, and the type checker automatically ensures that these properties hold. They can tell us, for example, what a function accepts and what it returns, or that a value is optional. We can also use types to express our beliefs about a program and the type checker will tell us if those beliefs are correct. For example, we can use types to tell the compiler we do not expect an error at a particular point in our code and the type checker will let us know if this is the case. In this way types are another tool for reasoning about code.

Type systems push programs towards particular designs, as to work effectively with the type checker requires designing code in a way the type checker can understand. As modern type systems come to more languages they naturally tend to shift programmers in those languages towards a FP style of coding.




1.2.2 What Functional Programming Isn’t

In my view functional programming is not about immutability, or keeping to “the substitution model of evaluation”, and so on. These are tools in service of the goals of enabling local reasoning and composition, but they are not the goals themselves. Code that is immutable always allows local reasoning, for example, but it is not necessary to avoid mutation to still have local reasoning. Here is an example of summing a collection of numbers.

def sum(numbers: List[Int]): Int = {
  var total = 0
  numbers.foreach(x => total = total + x)
  total
}


In the implementation we mutate total. This is ok though! We cannot tell from the outside that this is done, and therefore all users of sum can still use local reasoning. Inside sum we have to be careful when we reason about total but this block of code is small enough that it shouldn’t cause any problems.

In this case we can reason about our code despite the mutation, but the Scala compiler can determine that this is ok. Scala allows mutation but it’s up to us to use it appropriately. A more expressive type system, perhaps with features like Rust’s, would be able to tell that sum doesn’t allow mutation to be observed by other parts of the system
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2 Algebraic Data Types

This chapter has our first example of a programming strategy: algebraic data types. Any data we can describe using logical ands and logical ors is an algebraic data type. Once we recognize an algebraic data type we get three things for free:


	the Scala representation of the data;

	a structural recursion skeleton to transform the algebraic data type into any other type; and

	a structural corecursion skeleton to construct the algebraic data type from any other type.



The key point is this: from an implementation independent representation of data we can automatically derive most of the interesting implementation specific parts of working with that data.

We’ll start with some examples of data, from which we’ll extract the common structure that motivates algebraic data types. We will then look at their representation in Scala 2 and Scala 3. Next we’ll turn to structural recursion for transforming algebraic data types, followed by structural corecursion for constructing them. We’ll finish by looking at the algebra of algebraic data types, which is interesting but not essential.


2.1 Building Algebraic Data Types

Let’s start with some examples of data from a few different domains. These are simplified description but they are all representative of real applications.

A user in a discussion forum will typically have a screen name, an email address, and a password. Users also typically have a specific role: normal user, moderator, or administrator, for example. From this we get the following data:


	a user is a screen name, an email address, a password, and a role; and

	a role is normal, moderator, or administrator.



A product in an e-commerce store might have a stock keeping unit (a unique identifier for each variant of a product), a name, a description, a price, and a discount.

In two-dimensional vector graphics it’s typical to represent shapes as a path, which is a sequence of actions of a virtual pen. The possible actions are usually straight lines, Bezier curves, or movement that doesn’t result in visible output. A straight line has an end point (the starting point is implicit), a Bezier curve has two control points and an end point, and a move has an end point.

What is common between all the examples above is that the individual elements—the atoms, if you like—are connected by either a logical and or a logical or. For example, a user is a screen name and an email address and a password and a role. A 2D action is a straight line or a Bezier curve or a move. This is the core of algebraic data types: an algebraic data type is data that is combined using logical ands or logical ors. Conversely, whenever we can describe data in terms of logical ands and logical ors we have an algebraic data type.


2.1.1 Sums and Products

Being functional programmers we can’t let a simple concept go without attaching some fancy jargon:


	a product type means a logical and; and

	a sum type means a logical or.



So algebraic data types consist of sum and product types.



2.1.2 Closed Worlds

Algebraic data types are closed worlds, which means they cannot be extended after they have been defined. In practical terms this means we have to modify the source code where we define the algebraic data type if we want to add or remove elements.

The closed world property is important because it gives us guarantees we would not otherwise have. In particular, it allows the compiler to check that we handle all possible cases when we use an algebraic data type. This is known as exhaustivity checking. This is an example of how functional programming prioritizes reasoning about code—in this case automated reasoning by the compiler—over other properties such as extensibility. We’ll learn more about exhaustivity checking soon.




2.2 Algebraic Data Types in Scala

Now we know what algebraic data types are, we will turn to their representation in Scala. The important point here is that the translation to Scala is entirely determined by the structure of the data; no thinking is required! This means the work is in finding the structure of the data that best represents the problem at hand. Work out the structure of the data and the code directly follows from it.

As algebraic data types are defined in terms of logical ands and logical ors, to represent algebraic data types in Scala we must know how to represent these two concepts. Scala 3 simplifies the representation of algebraic data types compared to Scala 2, so we’ll look at each language version separately.

I’m assuming that you’re familiar with the language features we use to represent algebraic data types in Scala, so I won’t be going over them.


2.2.1 Algebraic Data Types in Scala 3

In Scala 3 a logical and (a product type) is represented by a final case class. If we define a product type A is B and C, the representation in Scala 3 is

final case class A(b: B, c: C)


Not everyone makes their case classes final, but they should. A non-final case class can still be extended by a class, which breaks the closed world criteria for algebraic data types.

A logical or (a sum type) is represented by an enum. For the sum type A is B or C, the Scala 3 representation is

enum A {
  case B
  case C
}


There are a few wrinkles to be aware of.

If we have a sum of products, such as:


	A is B or C; and

	B is D and E; and

	C is F and G



the representation is

enum A {
  case B(d: D, e: E)
  case C(f: F, g: G)
}


In other words we don’t write final case class inside an enum. You also can’t nest enum inside enum. Nested logical ors can be rewritten into a single logical or containing only logical ands (known as disjunctive normal form) so this is not a limitation in practice. However the Scala 2 representation is still available in Scala 3 should you want more expressivity.



2.2.2 Algebraic Data Types in Scala 2

A logical and (product type) has the same representation in Scala 2 as in Scala 3. If we define a product type A is B and C, the representation in Scala 2 is

final case class A(b: B, c: C)


A logical or (a sum type) is represented by a sealed abstract class. For the sum type A is a B or C the Scala 2 representation is

sealed abstract class A
final case class B() extends A
final case class C() extends A


Scala 2 has several little tricks to defining algebraic data types.

Firstly, instead of using a sealed abstract class you can use a sealed trait. There isn’t much practical difference between the two. When teaching beginners I’ll often use sealed trait to avoid having to introduce abstract class. I believe sealed abstract class has slightly better performance and Java interoperability, but I haven’t tested this. I also think sealed abstract class is closer, semantically, to the meaning of a sum type.

For extra style points we can extend Product with Serializable from sealed abstract class. Compare the reported types below with and without this little addition.

Let’s first see the code without extending Product and Serializable.

sealed abstract class A
final case class B() extends A
final case class C() extends A


val list = List(B(), C())
// list: List[A extends Product with Serializable] = List(B(), C())


Notice how the type of list includes Product and Serializable.

Now we have extending Product and Serializable.

sealed abstract class A extends Product with Serializable
final case class B() extends A
final case class C() extends A


val list = List(B(), C())
// list: List[A] = List(B(), C())


Much easier to read!

You’ll only see this in Scala 2. Scala 3 has the concept of transparent traits, which aren’t reported in inferred types, so you’ll see the same output in Scala 3 no matter whether you add Product and Serializable or not.

Finally, if a logical and holds no data we can use a case object instead of a case class. For example, if we’re defining some type A that holds no data we can just write

case object A


There is no need to mark the case object as final, as objects cannot be extended.



2.2.3 Examples

Let’s make the discussion above more concrete with some examples.


2.2.3.1 Role and User

In the discussion forum example, we said a role is normal, moderator, or administrator. This is a logical or, so we can directly translate it to Scala using the appropriate pattern. In Scala 3 we write

enum Role {
  case Normal
  case Moderator
  case Administrator
}


In Scala 2 we write

sealed abstract class Role extends Product with Serializable
case object Normal extends Role
case object Moderator extends Role
case object Administrator extends Role


The cases within a role don’t hold any data, so we used a case object in the Scala 2 code.

We defined a user as a screen name, an email address, a password, and a role. In both Scala 3 and Scala 2 this becomes

final case class User(
  screenName: String,
  emailAddress: String,
  password: String,
  role: Role
)


I’ve used String to represent most of the data within a User, but in real code we might want to define distinct types for each field.



2.2.3.2 Paths

We defined a path as a sequence of actions of a virtual pen. The possible actions are straight lines, Bezier curves, or movement that doesn’t result in visible output. A straight line has an end point (the starting point is implicit), a Bezier curve has two control points and an end point, and a move has an end point.

This has a straightforward translation to Scala. We can represent paths as the following in both Scala 3 and Scala 2.

final case class Path(actions: Seq[Action])


An action is a logical or, so we have different representations in Scala 3 and Scala 2. In Scala 3 we’d write

enum Action {
  case Line(end: Point)
  case Curve(cp1: Point, cp2: Point, end: Point)
  case Move(end: Point)
}


where Point is a suitable representation of a two-dimensional point.

In Scala 2 we have to go with the more verbose

sealed abstract class Action extends Product with Serializable 
final case class Line(end: Point) extends Action
final case class Curve(cp1: Point, cp2: Point, end: Point)
  extends Action
final case class Move(end: Point) extends Action





2.2.4 Representing ADTs in Scala 3

We’ve seen that the Scala 3 representation of algebraic data types, using enum, is more compact than the Scala 2 representation. However the Scala 2 representation is still available. Should you ever use the Scala 2 representation in Scala 3? There are a few cases where you may want to:


	Scala 3’s doesn’t currently support nested enums (enums within enums). This may change in the future, but right now it can be more convenient to use the Scala 2 representation to express this without having to convert to disjunctive normal form.


	Scala 2’s representation can express things that are almost, but not quite, algebraic data types. For example, if you define a method on an enum you must be able to define it for all the members of the enum. Sometimes you want a case of an enum to have methods that are only defined for that case. To implement this you’ll need to use the Scala 2 representation instead.





Exercise: Tree

To gain a bit of practice defining algebraic data types, code the following description in Scala (your choice of version, or do both.)

A Tree with elements of type A is:


	a Leaf with a value of type A; or

	a Node with a left and right child, which are both Trees with elements of type A.



See the solution





2.3 Structural Recursion

Structural recursion is our second programming strategy. Algebraic data types tell us how to create data given a certain structure. Structural recursion tells us how to transform an algebraic data types into any other type. Given an algebraic data type, the transformation can be implemented using structural recursion.

As with algebraic data types, there is distinction between the concept of structural recursion and the implementation in Scala. This is more obvious because there are two ways to implement structural recursion in Scala: via pattern matching or via dynamic dispatch. We’ll look at each in turn.


2.3.1 Pattern Matching

I’m assuming you’re familiar with pattern matching in Scala, so I’ll only talk about how to implement structural recursion using pattern matching. Remember there are two kinds of algebraic data types: sum types (logical ors) and product types (logical ands). We have corresponding rules for structural recursion implemented using pattern matching:


	For each branch in a sum type we have a distinct case in the pattern match; and

	Each case corresponds to a product type with the pattern written in the usual way.



Let’s see this in code, using an example ADT that includes both sum and product types:


	A is B or C; and

	B is D and E; and

	C is F and G



which we represent (in Scala 3) as

enum A {
  case B(d: D, e: E)
  case C(f: F, g: G)
}


Following the rules above means a structural recursion would look like

anA match {
  case B(d, e) => ???
  case C(f, g) => ???
}


The ??? bits are problem specific, and we cannot give a general solution for them. However we’ll soon see strategies to help create them.



2.3.2 The Recursion in Structural Recursion

At this point you might be wondering where the recursion in structural recursion comes from. This is an additional rule for recursion: whenever the data is recursive the method is recursive in the same place.

Let’s see this in action for a real data type.

We can define a list with elements of type A as:


	the empty list; or

	a pair containing an A and a tail, which is a list of A.



This is exactly the definition of List in the standard library. Notice it’s an algebraic data type as it consists of sums and products. It is also recursive: in the pair case the tail is itself a list.

We can directly translate this to code, using the strategy for algebraic data types we saw previously. In Scala 3 we write

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
}


Let’s implement map for MyList. We start with the method skeleton specifying just the name and types.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    ???
}


Our first step is to recognize that map can be written using a structural recursion. MyList is an algebraic data type, map is transforming this algebraic data type, and therefore structural recursion is applicable. We now apply the structural recursion strategy, giving us

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    this match {
      case Empty() => ???
      case Pair(head, tail) => ???
    }
}


I forgot the recursion rule! The data is recursive in the tail of Pair, so map is recursive there as well.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    this match {
      case Empty() => ???
      case Pair(head, tail) => ??? tail.map(f)
    }
}


I left the ??? to indicate that we haven’t finished with that case.

Now we can move on to the problem specific parts. Here we have three strategies to help us:


	reasoning independently by case;

	assuming recursion the is correct; and

	following the types



The first two are specific to structural recursion, while the final one is a general strategy we can use in many situations. Let’s briefly discuss each and then see how they apply to our example.

The first strategy is relatively simple: when we consider the problem specific code on the right hand side of a pattern matching case, we can ignore the code in any other pattern match cases. So, for example, when considering the case for Empty above we don’t need to worry about the case for Pair, and vice versa.

The next strategy is a little bit more complicated, and has to do with recursion. Remember that the structural recursion strategy tells us where to place any recursive calls. This means we don’t have to think through the recursion. Instead we assume the recursive call will correctly compute what it claims, and only consider how to further process the result of the recursion. The result is guaranteed to be correct so long as we get the non-recursive parts correct.

In the example above we have the recursion tail.map(f). We can assume this correctly computes map on the tail of the list, and we only need to think about what we should do with the remaining data: the head and the result of the recursive call.

It’s this property that allows us to consider cases independently. Recursive calls are the only thing that connect the different cases, and they are given to us by the structural recursion strategy.

Our final strategy is following the types. It can be used in many situations, not just structural recursion, so I consider it a separate strategy. The core idea is to use the information in the types to restrict the possible implementations. We can look at the types of inputs and outputs to help us.

Now let’s use these strategies to finish the implementation of map. We start with

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    this match {
      case Empty() => ???
      case Pair(head, tail) => ??? tail.map(f)
    }
}


Our first strategy is to consider the cases independently. Let’s start with the Empty case. There is no recursive call here, so reasoning about recursion doesn’t come into play. Let’s instead use the types. There is no input here other than the Empty case we have already matched, so we cannot use the input types to further restrict the code. Let’s instead consider the output type. We’re trying to create a MyList[B]. There are only two ways to create a MyList[B]: an Empty or a Pair. To create a Pair we need a head of type B, which we don’t have. So we can only use Empty. This is the only possible code we can write. The types are sufficiently restrictive that we cannot write incorrect code for this case.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    this match {
      case Empty() => Empty()
      case Pair(head, tail) => ??? tail.map(f)
    }
}


Now let’s move to the Pair case. We can apply both the structural recursion reasoning strategy and following the types. Let’s use each in turn.

The case for Pair is

case Pair(head, tail) => ??? tail.map(f)


Remember we can consider this independently of the other case. We assume the recursion is correct. This means we only need to think about what we should do with the head, and how we should combine this result with tail.map(f). Let’s now follow the types to finish the code. Our goal is to produce a MyList[B]. We already the following available:


	tail.map(f), which has type MyList[B];

	head, with type A;

	f, with type A => B; and

	the constructors Empty and Pair.



We could return just Empty, matching the case we’ve already written. This has the correct type but we might expect it is not the correct answer because it does not use the result of the recursion, head, or f in any way.

We could return just tail.map(f). This has the correct type but we might expect it is not correct because we don’t use head or f in any way.

We can call f on head, producing a value of type B, and then combine this value and the result of the recursive call using Pair to produce a MyList[B]. This is the correct solution.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    this match {
      case Empty() => Empty()
      case Pair(head, tail) => Pair(f(head), tail.map(f))
    }
}


If you’ve followed this example you’ve hopefully see how we can use the three strategies to systematically find the correct implementation. Notice how we interleaved the recursion strategy and following the types to guide us to a solution for the Pair case. Also note how following the types alone gave us three possible implementations for the Pair case. In this code, and as is usually the case, the solution was the implementation that used all of the available inputs.



2.3.3 Exhaustivity Checking

Remember that algebraic data types are a closed world: they cannot be extended once defined. The Scala compiler can use this to check that we handle all possible cases in a pattern match, so long as we write the pattern match in a way the compiler can work with. This is known as exhaustivity checking.

Here’s a simple example. We start by defining a straight-forward algebraic data type.

// Some of the possible units for lengths in CSS
enum CssLength {
  case Em(value: Double)
  case Rem(value: Double)
  case Pt(value: Double)
}


If we write a pattern match using the structural recursion strategy, the compiler will complain if we’re missing a case.

import CssLength.*

CssLength.Em(2.0) match {
  case Em(value) => value
  case Rem(value) => value
}
// -- [E029] Pattern Match Exhaustivity Warning: ----------------------------------
// 1 |CssLength.Em(2.0) match {
//   |^^^^^^^^^^^^^^^^^
//   |match may not be exhaustive.
//   |
//   |It would fail on pattern case: CssLength.Pt(_)
//   |
//   | longer explanation available when compiling with `-explain`


Exhaustivity checking is incredibly useful. For example, if we add or remove a case from an algebraic data type, the compiler will tell us all the pattern matches that need to be updated.



2.3.4 Dynamic Dispatch

Using dynamic dispatch to implement structural recursion is an implementation technique that may feel more natural to people with a background in object-oriented programming.

The dynamic dispatch approach consists of:


	defining an abstract method at the root of the algebraic data types; and

	implementing that abstract method at every leaf of the algebraic data type.



This implementation technique is only available if we use the Scala 2 encoding of algebraic data types.

Let’s see it in the MyList example we just looked at. Our first step is to rewrite the definition of MyList to the Scala 2 style.

sealed abstract class MyList[A] extends Product with Serializable
final case class Empty[A]() extends MyList[A]
final case class Pair[A](head: A, tail: MyList[A]) extends MyList[A]


Next we define an abstract method for map on MyList.

sealed abstract class MyList[A] extends Product with Serializable {
  def map[B](f: A => B): MyList[B]
}
final case class Empty[A]() extends MyList[A]
final case class Pair[A](head: A, tail: MyList[A]) extends MyList[A]


Then we implement map on the concrete subtypes Empty and Pair.

sealed abstract class MyList[A] extends Product with Serializable {
  def map[B](f: A => B): MyList[B]
}
final case class Empty[A]() extends MyList[A] {
  def map[B](f: A => B): MyList[B] = 
    Empty()
}
final case class Pair[A](head: A, tail: MyList[A]) extends MyList[A] {
  def map[B](f: A => B): MyList[B] =
    Pair(f(head), tail.map(f))
}


We can use exactly the same strategies we used in the pattern matching case to create this code. The implementation technique is different but the underlying concept is the same.

Given we have two implementation strategies, which should we use? If we’re using enum in Scala 3 we don’t have a choice; we must use pattern matching. In other situations we can choose between the two. I prefer to use pattern matching when I can, as it puts the entire method definition in one place. However, Scala 2 in particular has problems inferring types in some pattern matches. In these situations we can use dynamic dispatch instead. We’ll learn more about this when we look at generalized algebraic data types.


Exercise: Methods for Tree

In a previous exercise we created a Tree algebraic data type:

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
}


Or, in the Scala 2 encoding:

sealed abstract class Tree[A] extends Product with Serializable
final case class Leaf[A](value: A) extends Tree[A]
final case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A]


Let’s get some practice with structural recursion and write some methods for Tree. Implement


	size, which returns the number of values (Leafs) stored in the Tree;

	contains, which returns true if the Tree contains a given element of type A, and false otherwise; and

	map, which creates a Tree[B] given a function A => B



Use whichever you prefer of pattern matching or dynamic dispatch to implement the methods.

See the solution




2.3.5 Folds as Structural Recursions

Let’s finish by looking at the fold method as an abstraction over structural recursion. If you did the Tree exercise above, you will have noticed that we wrote the same kind of code again and again. Here are the methods we wrote. Notice the left-hand sides of the pattern matches are all the same, and the right-hand sides are very similar.

def size: Int = 
  this match { 
    case Leaf(value)       => 1
    case Node(left, right) => left.size + right.size
  }

def contains(element: A): Boolean =
  this match { 
    case Leaf(value)       => element == value
    case Node(left, right) => left.contains(element) || right.contains(element)
  }
  
def map[B](f: A => B): Tree[B] =
  this match { 
    case Leaf(value)       => Leaf(f(value))
    case Node(left, right) => Node(left.map(f), right.map(f))
  }


This is the point of structural recursion: to recognize and formalize this similarity. However, as programmers we might want to abstract over this repetition. Can we write a method that captures everything that doesn’t change in a structural recursion, and allows the caller to pass arguments for everything that does change? It turns out we can. For any algebraic data type we can define at least one method, called a fold, that captures all the parts of structural recursion that don’t change and allows the caller to specify all the problem specific parts.

Let’s see how this is done using the example of MyList. Recall the definition of MyList is

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
}


We know the structural recursion skeleton for MyList is

def doSomething[A](list: MyList[A]) =
  list match {
    case Empty()          => ???
    case Pair(head, tail) => ??? doSomething(tail)
  } 


Implementing fold for MyList means defining a method

def fold[A, B](list: MyList[A]): B =
  list match {
    case Empty() => ???
    case Pair(head, tail) => ??? fold(tail)
  }


where B is the type the caller wants to create.

To complete fold we add method parameters for the problem specific (???) parts. In the case for Empty, we need a value of type B (notice that I’m following the types here).

def fold[A, B](list: MyList[A], empty: B): B =
  list match {
    case Empty() => empty
    case Pair(head, tail) => ??? fold(tail, empty)
  }


For the Pair case, we have the head of type A and the recursion producing a value of type B. This means we need a function to combine these two values.

def foldRight[A, B](list: MyList[A], empty: B, f: (A, B) => B): B =
  list match {
    case Empty() => empty
    case Pair(head, tail) => f(head, foldRight(tail, empty, f))
  }


This is foldRight (and I’ve renamed the method to indicate this). You might have noticed there is another valid solution. Both empty and the recursion produce values of type B. If we follow the types we can come up with

def foldLeft[A,B](list: MyList[A], empty: B, f: (A, B) => B): B =
  list match {
    case Empty() => empty
    case Pair(head, tail) => foldLeft(tail, f(head, empty), f)
  }


which is foldLeft, the tail-recursive variant of fold for a list. (We’ll talk about tail-recursion in a later chapter.)

We can follow the same process for any algebraic data type to create its folds. The rules are:


	a fold is a function from the algebraic data type and additional parameters to some generic type that I’ll call B below for simplicity;

	the fold has one additional parameter for each case in a logical or;

	each parameter is a function, with result of type B and parameters that have the same type as the corresponding constructor arguments except recursive values are replaced with B; and

	if the constructor has no arguments (for example, Empty) we can use a value of type B instead of a function with no arguments.



Returning to MyList, it has:


	two cases, and hence two parameters to fold (other than the parameter that is the list itself);

	Empty is a constructor with no arguments and hence we use a parameter of type B; and

	Pair is a constructor with one parameter of type A and one recursive parameter, and hence the corresponding function has type (A, B) => B.




Exercise: Tree Fold

Implement a fold for Tree defined earlier. There are several different ways to traverse a tree (pre-order, post-order, and in-order). Just choose whichever seems easiest.

See the solution



Exercise: Using Fold

Prove to yourself that you can replace structural recursion with calls to fold, by redefining size, contains, and map for Tree using only fold.

See the solution





2.4 Structural Corecursion

Structural corecursion is the opposite—more correctly, the dual—of structural recursion. Whereas structural recursion tells us how to take apart an algebraic data type, structural corecursion tells us how to build up, or construct, an algebraic data type. Whereas we can use structural recursion whenever the input of a method or function is an algebraic data type, we can use structural corecursion whenever the output of a method or function is an algebraic data type.


2.4.0.1 Duality in Functional Programming

Two concepts or structures are duals if one can be translated in a one-to-one fashion to the other. Duality is one of the main themes of this book. By relating concepts as duals we can transfer knowledge from one domain to another.

Duality is often indicated by attaching the co- prefix to one of the structures or concepts. For example, corecursion is the dual of recursion, and sum types, also known as coproducts, are the dual of product types.


Structural recursion works by considering all the possible inputs (which we usually represent as patterns), and then working out what we do with each input case. Structural corecursion works by considering all the possible outputs, which are the constructors of the algebraic data type, and then working out the conditions under which we’d call each constructor.

Let’s return to the list with elements of type A, defined as:


	the empty list; or

	a pair containing an A and a tail, which is a list of A.



In Scala 3 we write

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
}


We can use structural corecursion if we’re writing a method that produces a MyList. A good example is map:

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    ???
}


The output of this method is a MyList, which is an algebraic data type. Since we need to construct a MyList we can use structural corecursion. The structural corecursion strategy says we write down all the constructors and then consider the conditions that will cause us to call each constructor. So our starting point is to just write down the two constructors, and put in dummy conditions.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    if ??? then Empty()
    else Pair(???, ???)
}


We can also apply the recursion rule: where the data is recursive so is the method.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    if ??? then Empty()
    else Pair(???, ???.map(f))
}


To complete the left-hand side we can use the strategies we’ve already seen:


	we can use structural recursion to tell us there are two possible conditions; and

	we can follow the types to align these conditions with the code we have already written.



In short order we arrive at the correct solution

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
  
  def map[B](f: A => B): MyList[B] = 
    this match {
      case Empty() => Empty()
      case Pair(head, tail) => Pair(f(head), tail.map(f))
    }
}


There are a few interesting points here. Firstly, we should acknowledge that map is both a structural recursion and a structural corecursion. This is not always the case. For example, foldLeft and foldRight are not structural corecursions because they are not constrained to only produce an algebraic data type. Secondly, note that when we walked through the process of creating map as a structural recursion we implicitly used the structural corecursion pattern, as part of following the types. We recognised that we were producing a List, that there were two possibilities for producing a List, and then worked out the correct conditions for each case. Formalizing structural corecursion as a separate strategy allows us to be more conscious of where we apply it. Finally, notice how I switched from an if expression to a pattern match expression as we progressed through defining map. This is perfectly fine. Both kinds of expression achieve the same effect. Pattern matching is a little bit safer due to exhaustivity checking. If we wanted to continue using an if we’d have to define a method (for example, isEmpty) that allows us to distinguish an Empty element from a Pair. This method would have to use pattern matching in its implementation, so avoiding pattern matching directly is just pushing it elsewhere.


2.4.1 Unfolds as Structural Corecursion

Just as we could abstract structural recursion as a fold, for any given algebraic data type we can abstract structural corecursion as an unfold. Unfolds are much less commonly used than folds, but they are still a nice tool to have.

Let’s work through the process of deriving unfold, using MyList as our example again.

enum MyList[A] {
  case Empty()
  case Pair(head: A, tail: MyList[A])
}


The corecursion skeleton is

if ??? then MyList.Empty()
else MyList.Pair(???, recursion(???))


Our starting point is writing the skeleton for unfold. It’s a little bit unusual in that I’ve added a parameter seed. This is the information we use to create an element. We’ll need this, but we cannot derive it from our strategies, so I’ve added it in here as a starting assumption.

def unfold[A, B](seed: A): MyList[B] =
  ???


Now we start start using our strategies to fill in the missing pieces. I’m using the corecursion skeleton and I’ve applied the recursion rule immediately in the code below, to save a bit of time in the derivation.

def unfold[A, B](seed: A): MyList[B] =
  if ??? then MyList.Empty()
  else MyList.Pair(???, unfold(seed))


We can abstract the condition using a function from A => Boolean.

def unfold[A, B](seed: A, stop: A => Boolean): MyList[B] =
  if stop(seed) then MyList.Empty()
  else MyList.Pair(???, unfold(seed, stop))


Now we need to handle the case for Pair. We have a value of type A (seed), so to create the head element of Pair we can ask for a function A => B

def unfold[A, B](seed: A, stop: A => Boolean, f: A => B): MyList[B] =
  if stop(seed) then MyList.Empty()
  else MyList.Pair(f(seed), unfold(???, stop, f))


Finally we need to update the current value of seed to the next value. That’s a function A => A.

def unfold[A, B](seed: A, stop: A => Boolean, f: A => B, next: A => A): MyList[B] =
  if stop(seed) then MyList.Empty()
  else MyList.Pair(f(seed), unfold(next(seed), stop, f, next))


At this point we’re done. Let’s see that unfold is useful by declaring some other methods in terms of it. We’re going to declare map, which we’ve already seen is a structural corecursion, using unfold. We will also define fill and iterate, which are methods that construct lists and correspond to the methods with the same names on List in the Scala standard library.

To make this easier to work with I’m going to declare unfold as a method on the MyList companion object. I have made a slight tweak to the definition to make type inference work a bit better. In Scala, types inferred for one method parameter cannot be used for other method parameters in the same parameter list. However, types inferred for one method parameter list can be used in subsequent lists. Separating the function parameters from the seed parameter means that the value inferred for A from seed can be used for inference of the function parameters’ input parameters.

I have also declared some destructor methods, which are methods that take apart an algebraic data type. For MyList these are head, tail, and the predicate isEmpty. We’ll talk more about these a bit later.

Here’s our starting point.

enum MyList[A] {
  case Empty()
  case Pair(_head: A, _tail: MyList[A])

  def isEmpty: Boolean =
    this match {
      case Empty() => true
      case _       => false
    }
    
  def head: A =
    this match {
      case Pair(head, _) => head
    }
    
  def tail: MyList[A] =
    this match {
      case Pair(_, tail) => tail
    }
}
object MyList {
  def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A => A): MyList[B] =
    if stop(seed) then MyList.Empty()
    else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))
}


Now let’s define the constructors fill and iterate, and map, in terms of unfold. I think the constructors are a bit simpler, so I’ll do those first.

object MyList {
  def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A => A): MyList[B] =
    if stop(seed) then MyList.Empty()
    else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))
    
  def fill[A](n: Int)(elem: => A): MyList[A] =
    ???
    
  def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =
    ???
}


Here I’ve just added the method skeletons, which are taken straight from the List documentation. To implement these methods we can use one of two strategies:


	reasoning about loops in the way we might in an imperative language; or

	reasoning about structural recursion over the natural numbers.



Let’s talk about each in turn.

You might have noticed that the parameters to unfold are almost exactly those you need to create a for-loop in a language like Java. A classic for-loop, of the for(i = 0; i < n; i++) kind, has four components:


	the initial value of the loop counter;

	the stopping condition of the loop;

	the statement that advances the counter; and

	the body of the loop that uses the counter.



These correspond to the seed, stop, next, and f parameters of unfold respectively.

Loop variants and invariants are the standard way of reasoning about imperative loops. I’m not going to describe them here, as you have probably already learned how to reason about loops (though perhaps not using these terms). Instead I’m going to discuss the second reasoning strategy, which relates writing unfold to something we’ve already discussed: structural recursion.

Our first step is to note that natural numbers (the integers 0 and larger) are conceptually algebraic data types even though the implementation in Scala—using Int—is not. A natural number is either:


	zero; or

	1 + a natural number.



It’s the simplest possible algebraic data type that is both a sum and a product type.

Once we see this, we can use the reasoning tools for structural recursion for creating the parameters to unfold. Let’s show how this works with fill. The n parameter tells us how many elements there are in the List we’re creating. The elem parameter creates those elements, and is called once for each element. So our starting point is to consider this as a structural recursion over the natural numbers. We can take n as seed, and stop as the function x => x == 0. These are the standard conditions for a structural recursion over the natural numbers. What about next? Well, the definition of natural numbers tells us we should subtract one in the recursive case, so next becomes x => x - 1. We only need f, and that comes from the definition of how fill is supposed to work. We create the value from elem, so f is just _ => elem

object MyList {
  def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A => A): MyList[B] =
    if stop(seed) then MyList.Empty()
    else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))
    
  def fill[A](n: Int)(elem: => A): MyList[A] =
    unfold(n)(_ == 0, _ => elem, _ - 1)
    
  def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =
    ???
}


We should check that our implementation works as intended. We can do this by comparing it to List.fill.

List.fill(5)(1)
// res6: List[Int] = List(1, 1, 1, 1, 1)
MyList.fill(5)(1)
// res7: MyList[Int] = MyList(1, 1, 1, 1, 1)


Here’s a slightly more complex example, using a stateful method to create a list of ascending numbers. First we define the state and method that uses it.

var counter = 0
def getAndInc(): Int = {
  val temp = counter
  counter = counter + 1
  temp 
}


Now we can create it to create lists.

List.fill(5)(getAndInc())
// res8: List[Int] = List(0, 1, 2, 3, 4)
counter = 0
MyList.fill(5)(getAndInc())
// res10: MyList[Int] = MyList(0, 1, 2, 3, 4)



Exercise: Iterate

Implement iterate using the same reasoning as we did for fill. This is slightly more complex than fill as we need to keep two bits of information: the value of the counter and the value of type A.

See the solution



Exercise: Map

Once you’ve completed iterate, try to implement map in terms of unfold. You’ll need to use the destructors to implement it.

See the solution

Now a quick discussion on destructors. The destructors do two things:


	distinguish the different cases within a sum type; and

	extract elements from each product type.



So for MyList the minimal set of destructors is isEmpty, which distinguishes Empty from Pair, and head and tail. The extractors are partial functions in the conceptual, not Scala, sense; they are only defined for a particular product type and throw an exception if used on a different case. You may have also noticed that the functions we passed to fill are exactly the destructors for natural numbers.

The destructors are another part of the duality between structural recursion and corecursion. Structural recursion is:


	defined by pattern matching on the constructors; and

	takes apart an algebraic data type into smaller pieces.



Structural corecursion instead is:


	defined by conditions on the input, which may use destructors; and

	build up an algebraic data type from smaller pieces.



One last thing before we leave unfold. If we look at the usual definition of unfold we’ll probably find the following definition.

def unfold[A, B](in: A)(f: A => Option[(A, B)]): List[B]


This is equivalent to the definition we used, but a bit more compact in terms of the interface it presents. We used a more explicit definition that makes the structure of the method clearer.





2.5 The Algebra of Algebraic Data Types

A question that sometimes comes up is where the “algebra” in algebraic data types comes from. I want to talk about this a little bit and show some of the algebraic manipulations that can be done on algebraic data types.

The term algebra is used in the sense of abstract algebra, an area of mathematics. Abstract algebra deals with algebraic structures. An algebraic structure consists of a set of values, operations on that set, and properties that those operations must maintain. An example is the set of integers, the operations addition and multiplication, and the familiar properties of these operations such as associativity, which says that a + (b+c) = (a+b) + c. The abstract in abstract algebra means that it doesn’t deal with concrete values like integers—that would be far too easy to understand—and instead with abstractions with wacky names like semigroup, monoid, and ring. The example of integers above is an instance of a ring. We’ll see a lot more of these soon enough!

Algebraic data types also correspond to the algebraic structure called a ring. A ring has two operations, which are conventionally written + and ×. You’ll perhaps guess that these correspond to sum and product types respectively, and you’d be absolutely correct. What about the properties of these operations? We’ll they are similar to what we know from basic algebra:


	+ and × are associative, so a + (b+c) = (a+b) + c and likewise for ×;

	a + b = b + a, known as commutivitiy;

	there is an identity 0 such that a + 0 = a;

	there is an identity 1 such that a × 1 = a;

	there is distribution, so that a × (b+c) = (a×b) + (a×c)



So far, so abstract. Let’s make it concrete by looking at actual examples in Scala.

Remember the algebraic data types work with types, so the operations + and × take types as parameters. So Int × String is equivalent to

final case class IntAndString(int: Int, string: String)


We can use tuples to avoid creating lots of names.

type IntAndString = (Int, String)


We can do the same thing for +. Int + String is

enum IntOrString {
  case IsInt(int: Int)
  case IsString(string: String)
}


or just

type IntOrString = Either[Int, String]



Exercise: Identities

Can you work out which Scala type corresponds to the identity 1 for product types?

See the solution

What about the Scala type corresponding to the identity 0 for sum types?

See the solution

What about the distribution law? This allows us to manipulate algebraic data types to form equivalent, but perhaps more useful, representations. Consider this example of a user data type.

final case class Person(name: String, permissions: Permissions)
enum Permissions {
  case User
  case Moderator
}


Written in mathematical notation, this is

Person = String × Permissions Permissions = User + Moderator

Performing substitution gets us

Person = String × (User+Moderator)

Applying distribution results in

Person = (String×User) + (String×Moderator)

which in Scala we can represent as

enum Person {
  case User(name: String)
  case Moderator(name: String)
}


Is this representation more useful? I can’t say without the context of where the data is being used. However I can say that knowing this manipulation is possible, and correct, is useful.

There is a lot more that could be said about algebraic data types, but at this point I feel we’re really getting into the weeds. I’ll finish up with a few pointers to other interesting facts:


	Exponential types exist. They are functions! A function A => B is equivalent to ba.

	Quotient types also exist, but they are a bit weird. Read up about them if you’re interested.

	Another interesting algebraic manipulation is taking the derivative of an algebraic data type. This gives us a kind of iterator, known as a zipper, for that type.






2.6 Conclusions

We have covered a lot of material in this chapter. Let’s recap the key points.

Algebraic data types allow us to express data types by combining existing data types with logical and and logical or. A logical and constructs a product type while a logical or constructs a sum type. Algebraic data types are the main way to represent data in Scala.

Structural recursion gives us a skeleton for transforming any given algebraic data type into any other type. Structural recursion can be abstracted into a fold method.

We use several reasoning principles to help us complete the problem specific parts of a structural recursion:


	reasoning independently by case;

	assuming recursion is correct; and

	following the types.



Following the types is a very general strategy that is can be used in many other situations.

Structural corecursion gives us a skeleton for creating any given algebraic data type from any other type. Structural corecursion can be abstracted into an unfold method. When reasoning about structural corecursion we can reason as we would for an imperative loop, or, if the input is an algebraic data type, use the principles for reasoning about structural recursion.

Notice that the two main themes of functional programming—composition and reasoning—are both already apparent. Algebraic data types are compositional: we compose algebraic data types using sum and product. We’ve seen many reasoning principles in this chapter.

I haven’t covered everything there is to know about algebraic data types; I think doing so would be a book in its own right. Below are some references that you might find useful if you want to dig in further, as well as some biographical remarks.

Algebraic data types are standard in introductory material on functional programming. Structural recursion is certainly extremely common in functional programming, but strangely seems to rarely be explicitly defined as I’ve done here. I learned about both from How to Design Programs.

I’m not aware of any approachable yet thorough treatment of either algebraic data types or structural recursion. Both seem to have become assumed background of any researcher in the field of programming languages, and relatively recent work is caked in layers of mathematics and obtuse notation that I find difficult reading. The infamous Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire is an example of such work. I suspect the core ideas of both date back to at least the emergence of computability theory in the 1930s, well before any digital computers existed.

The earliest reference I’ve found to structural recursion is Proving Properties of Programs by Structural Induction, which dates to 1969. Algebraic data types don’t seem to have been fully developed, along with pattern matching, until NPL in 1977. NPL was quickly followed by the more influential language Hope, which spread the concept to other programming languages.

Corecursion is a bit better documented in the contemporary literature. How to Design Co-Programs covers the main idea we have looked at here. The Under-Appreciated Unfold discusses uses of unfold.

The Derivative of a Regular Type is its Type of One-Hole Contexts describes the derivative of algebraic data types.
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3 Objects as Codata

In this chapter we will look at codata, the dual of algebraic data types. Algebraic data types focus on how things are constructed. Codata, in contrast, focuses on how things are used. We define codata by specifying the operations that can be performed on the type. This is very similar to the use of interfaces in object-oriented programming, and this is the first reason that we are interested in codata: codata puts object-oriented programming into a coherent conceptual framework with the other strategies we are discussing.

We’re not only interested in codata as a lens to view object-oriented programming. Codata also has properties that algebraic data does not. Codata allows us to create structures with an infinite number of elements, such as a list that never ends or a server loop that runs indefinitely. Codata has a different form of extensibility to algebraic data. Whereas we can easily write new functions that transform algebraic data, we cannot add new cases to the definition of an algebraic data type without changing the existing code. The reverse is true for codata. We can easily create new implementations of codata, but functions that transform codata are limited by the interface the codata defines.

In the previous chapter we saw structural recursion and structural corecursion as strategies to guide us in writing programs using algebraic data types. The same holds for codata. We can use codata forms of structural recursion and corecursion to guide us in writing programs that consume and produce codata respectively.

We’ll begin our exploration of codata by more precisely defining it and seeing some examples. We’ll then talk about representing codata in Scala, and the relationship to object-oriented programming. Once we can create codata, we’ll see how to work with it using structural recursion and corecursion, using an example of an infinite structure. Next we will look at transforming algebraic data to codata, and vice versa. We will finish by examining differences in extensibility.

A quick note about terminology before we proceed. We might expect to use the term algebraic codata for the dual of algebraic data, but conventionally just codata is used. I assume this is because data is usually understood to have a wider meaning than just algebraic data, but codata is not used outside of programming language theory. For simplicity and symmetry, within this chapter I’ll just use the term data to refer to algebraic data types.


3.1 Data and Codata

Data describes what things are, while codata describes what things can do.

We have seen that data is defined in terms of constructors producing elements of the data type. Let’s take a very simple example: a Bool is either True or False. We know we can represent this in Scala as

enum Bool {
  case True
  case False
}


The definition tells us there are two ways to construct an element of type Bool. Furthermore, if we have such an element we can tell exactly which case it is, by using a pattern match for example. Similarly, if the instances themselves hold data, as in List for example, we can always extract all the data within them. Again, we can use pattern matching to achieve this.

Codata, in contrast, is defined in terms of operations we can perform on the elements of the type. These operations are sometimes called destructors (which we’ve already encountered), observations, or eliminators. A common example of codata is a data structures such as a set. We might define the operations on a Set with elements of type A as:


	contains which takes a Set[A] and an element A and returns a Boolean indicating if the set contains the element;

	insert which takes a Set[A] and an element A and returns a Set[A] containing all the elements from the original set and the new element; and

	union which takes a Set[A] and a set Set[A] and returns a Set[A] containing all the elements of both sets.



In Scala we could implement this definition as

trait Set[A] {
  
  /** True if this set contains the given element */
  def contains(elt: A): Boolean
  
  /** Construct a new set containing all elements in this set and the given element */
  def insert(elt: A): Set[A]
  
  /** Construct the union of this and that set */
  def union(that: Set[A]): Set[A]
}


This definition does not tell us anything about the internal representation of the elements in the set. It could use a hash table, a tree, or something more exotic. It does, however, tell us what we can do with the set. We know we can take the union but not the intersection, for example.

If you come from the object-oriented world you might recognize the description of codata above as programming to an interface. In some ways codata is just taking concepts from the object-oriented world and presenting them in a way that is consistent with the rest of the functional programming paradigm. However, this does not mean adopting all the features of object-oriented programming. We won’t use state, which is difficult to reason about. We also won’t use implementation inheritance either, for the same reason. In our subset of object-oriented programming we’ll either be defining interfaces (which may have default implementations of some methods) or final classes that implement those interfaces. Interestingly, this subset of object-oriented programming is often recommended by advocates of object-oriented programming.

Let’s now be a little more precise in our definition of codata, which will make the duality between data and codata clearer. Remember the definition of data: it is defined in terms of sums (logical ors) and products (logical ands). We can transform any data into a sum of products. Each product in the sum is a constructor, and the product itself is the parameters that the constructor accepts. Finally, we can think of constructors as functions which take some arbitrary input and produce an element of data. Our end point is a sum of functions from arbitrary input to data.

More abstractly, if we are constructing an element of some data type A we call one of the constructors


	A1: (B, C, ...) => A; or

	A2: (D, E, ...) => A; or

	A3: (F, G, ...) => A; and so on.



Now we’ll turn to codata. Codata is defined as a product of functions, these functions being the destructors. The input to a destructor is always an element of the codata type and possibly some other parameters. The output is usually something that is not of the codata type. Thus constructing an element of some codata type A means defining


	A1: (A, B, ...) => C; and

	A2: (A, D, ...) => E; and

	A3: (A, F, ...) => G; and so on.



This hopefully makes the duality between the two clearer.

Now we understand what codata is, we will turn to representing codata in Scala.



3.2 Codata in Scala

We have already seen an example of codata, which I have repeated below.

trait Set[A] {
  
  def contains(elt: A): Boolean
  
  def insert(elt: A): Set[A]
  
  def union(that: Set[A]): Set[A]
}


The abstract definition of this, which is a product of functions, defines a Set with elements of type A as:


	a function contains taking a Set[A] and an element A and returning a Boolean,

	a function insert taking a Set[A] and an element A and returning a Set[A], and

	a function union taking a Set[A] and a set Set[A] and returning a Set[A].



Notice that the first parameter of each function is the type we are defining, Set[A].

The translation to Scala is:


	the overall type becomes a trait; and

	each function becomes a method on that trait. The first parameter is the hidden this parameter, and other parameters become normal parameters to the method.



This gives us the Scala representation we started with.

This is only half the story for codata. We also need to actually implement the interface we’ve just defined. There are three approaches we can use:


	a final subclass, in the case where we want to name the implementation;

	an anonymous subclass; or

	more rarely, an object.



Neither final nor anonymous subclasses can be further extended, meaning we cannot create deep inheritance hierarchies. This in turn avoids the difficulties that come from reasoning about deep hierarchies. Using a class rather than a case class means we don’t expose implementation details like constructor arguments.

Some examples are in order. Here’s a simple example of Set, which uses a List to hold the elements in the set.

final class ListSet[A](elements: List[A]) extends Set[A] {

  def contains(elt: A): Boolean =
    elements.contains(elt)

  def insert(elt: A): Set[A] =
    ListSet(elt :: elements)

  def union(that: Set[A]): Set[A] =
    elements.foldLeft(that) { (set, elt) => set.insert(elt) }
}
object ListSet {
  def empty[A]: Set[A] = ListSet(List.empty)
}


This uses the first implementation approach, a final subclass. Where would we use an anonymous subclass? They are most useful when implementing methods that return our codata type. Let’s take union as an example. It returns our codata type, Set, and we could implement it as shown below.

trait Set[A] {
  
  def contains(elt: A): Boolean
  
  def insert(elt: A): Set[A]
  
  def union(that: Set[A]): Set[A] = {
    val self = this
    new Set[A] {
      def contains(elt: A): Boolean =
        self.contains(elt) || that.contains(elt)
        
      def insert(elt: A): Set[A] =
        // Arbitrary choice to insert into self
        self.insert(elt).union(that)
    }
  }
}


This uses an anonymous subclass to implement union on the Set trait, and hence defines the method for all subclasses. I haven’t made the method final so that subclasses can override it with a more efficient implementation. This does open up the danger of implementation inheritance. This is an example of where theory and craft diverge. In theory we never want implementation inheritance, but in practice it can be useful as an optimization.

It can also be useful to implement utility methods defined purely in terms of the destructors. Let’s say we wanted to implement a method containsAll that checks if a Set contains all the elements in an Iterable collection.

def containsAll(elements: Iterable[A]): Boolean


We can implement this purely in terms of contains on Set and forall on Iterable.

trait Set[A] {
  
  def contains(elt: A): Boolean
  
  def insert(elt: A): Set[A]
  
  def union(that: Set[A]): Set[A]
  
  def containsAll(elements: Iterable[A]): Boolean =
    elements.forall(elt => this.contains(elt))
}


Once again we could make this a final method. In this case it’s probably more justified as it’s difficult to imagine a more efficient implementation.

Data and codata are both realized in Scala as variations of the same language features of classes and objects. This means we can define types that have properties of both data and codata. We have actually already done this. When we define data we must define names for the fields within the data, thus defining destructors. This is the same in most languages, which don’t make a hard distinction between data and codata.

Part of the appeal, I think, of classes and objects is that they can express so many conceptually different abstractions with the same language constructs. This gives them a surface appearance of simplicity; it seems we need to learn only one abstraction to solve a huge of number of coding problems. However this apparent simplicity hides real complexity, as this variety of uses forces us to reverse engineer the conceptual intention from the code.



3.3 Structural Recursion and Corecursion for Codata

In this section we’ll build a library for streams, also known as lazy lists. These are the codata equivalent of lists. Whereas a list must have a finite length, streams have an infinite length. We’ll use this example to explore structural recursion and structural corecursion as applied to codata.

Let’s start by reviewing structural recursion and corecursion. The key idea is to use the input or output type, respectively, to drive the process of writing the method. We’ve already seen how this works with data, where we emphasized structural recursion. With codata it’s more often the case that structural corecursion is used. The steps for using structural corecursion are:


	recognize the output of the method or function is codata;

	write down the skeleton to construct an instance of the codata type, usually using an anonymous subclass; and

	fill in the methods, using strategies such as structural recursion or following the types to help.



It’s important that any computation takes places within the methods, and so only runs when the methods are called. Once we start creating streams the importance of this will become clear.

For structural recursion the steps are:


	recognize the input of the method or function is codata;

	note the codata’s destructors as possible sources of values in writing the method; and

	complete the method, using strategies such as following the types or structural corecursion and the methods identified above.



Our first step is to define our stream type. As this is codata, it is defined in terms of its destructors. The destructors that define a Stream of elements of type A are:


	a head of type A; and

	a tail of type Stream[A].



Note these are almost the destructors of List. We haven’t defined isEmpty as a destructor because our streams never end and thus this method would always return false. (A lot of real implementations, such as the LazyList in the Scala standard library, do define such a method which allows them to represent finite and infinite lists in the same structure. We’re not doing this for simplicity and because we want to work with codata in its purest form.)

We can translate this to Scala, as we’ve previously seen, giving us

trait Stream[A] {
  def head: A
  def tail: Stream[A]
}


Now we can create an instance of Stream. Let’s create a never-ending stream of ones. We will start with the skeleton below and apply strategies to complete the code.

val ones: Stream[Int] = ???


The first strategy is structural corecursion. We’re returning an instance of codata, so we can insert the skeleton to construct a Stream.

val ones: Stream[Int] =
  new Stream[Int] {
    def head: Int = ???
    def tail: Stream[Int] = ???
  }


Here I’ve used the anonymous subclass approach, so I can just write all the code in one place.

The next step is to fill in the method bodies. The first method, head, is trivial. The answer is 1 by definition.

val ones: Stream[Int] =
  new Stream[Int] {
    def head: Int = 1
    def tail: Stream[Int] = ???
  }


It’s not so obvious what to do with tail. We want to return a Stream[Int] so we could apply structural corecursion again.

val ones: Stream[Int] =
  new Stream[Int] {
    def head: Int = 1
    def tail: Stream[Int] =
      new Stream[Int] {
        def head: Int = 1
        def tail: Stream[Int] = ???
      }
  }


This approach doesn’t seem like it’s going to work. We’ll have to write this out an infinite number of times to correctly implement the method, which might be a problem.

Instead we can follow the types. We need to return a Stream[Int]. We have one in scope: ones. This is exactly the Stream we need to return: the infinite stream of ones!

val ones: Stream[Int] =
  new Stream[Int] {
    def head: Int = 1
    def tail: Stream[Int] = ones
  }


You might be alarmed to see the circular reference to ones in tail. This works because it is within a method, and so is only evaluated when that method is called. This delaying of evaluation is what allows us to represent an infinite number of elements, as we only ever evaluate a finite portion of them. This is a core difference from data, which is fully evaluated when it is constructed.

Let’s check that our definition of ones does indeed work. We can’t extract all the elements from an infinite Stream (at least, not in finite time) so in general we’ll have to resort to checking a finite sequence of elements.

ones.head
// res0: Int = 1
ones.tail.head
// res1: Int = 1
ones.tail.tail.head
// res2: Int = 1


This all looks correct. We’ll often want to check our implementation in this way, so let’s implement a method, take, to make this easier.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
  
  def take(count: Int): List[A] =
    count match {
      case 0 => Nil
      case n => head :: tail.take(n - 1)
    }
}


We can use either the structural recursion or structural corecursion strategies for data to implement take. Since we’ve already covered these in detail I won’t go through them here. The important point is that take only uses the destructors when interacting with the Stream.

Now we can more easily check our implementations are correct.

ones.take(5)
// res4: List[Int] = List(1, 1, 1, 1, 1)


For our next task we’ll implement map. Implementing a method on Stream allows us to see both structural recursion and corecursion for codata in action. As usual we begin by writing out the method skeleton.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
  
  def map[B](f: A => B): Stream[B] = 
    ???
}


Now we have a choice of strategy to use. Since we haven’t used structural recursion yet, let’s start with that. The input is codata, a Stream, and the structural recursion strategy tells us we should consider using the destructors. Let’s write them down to remind us of them.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
  
  def map[B](f: A => B): Stream[B] = {
    this.head ???
    this.tail ???
  }
}


To make progress we can follow the types or use structural corecursion. Let’s choose corecursion to see another example of it in use.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
  
  def map[B](f: A => B): Stream[B] = {
    this.head ???
    this.tail ???
    
    new Stream[B] {
      def head: B = ???
      def tail: Stream[B] = ???
    }
  }
}


Now we’ve used structural recursion and structural corecursion, a bit of following the types is in order. This quickly arrives at the correct solution.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
  
  def map[B](f: A => B): Stream[B] = {
    val self = this 
    new Stream[B] {
      def head: B = f(self.head)
      def tail: Stream[B] = self.tail.map(f)
    }
  }
}


There are two important points. Firstly, notice how I gave the name self to this. This is so I can access the value inside the new Stream we are creating, where this would be bound to this new Stream. Next, notice that we access self.head and self.tail inside the methods on the new Stream. This maintains the correct semantics of only performing computation when it has been asked for. If we performed the computation outside of the methods that we would do it too early, which is some cases can lead to an infinite loop.

As our final example, let’s return to constructing Stream, and implement the universal constructor unfold. We start with the skeleton for unfold, remembering the seed parameter.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
}
object Stream {
  def unfold[A, B](seed: A): Stream[B] =
    ???
}


It’s natural to apply structural corecursion to make progress.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
}
object Stream {
  def unfold[A, B](seed: A): Stream[B] =
    new Stream[B]{
      def head: B = ???
      def tail: Stream[B] = ???
    }
}


Now we can follow the types, adding parameters as we need them. This gives us the complete method shown below.

trait Stream[A] {
  def head: A
  def tail: Stream[A]
}
object Stream {
  def unfold[A, B](seed: A, f: A => B, next: A => A): Stream[B] =
    new Stream[B]{
      def head: B = 
        f(seed)
      def tail: Stream[B] = 
        unfold(next(seed), f, next)
    }
}


We can use this to implement some interesting streams. Here’s a stream that alternates between 1 and -1.

val alternating = Stream.unfold(
  true, 
  x => if x then 1 else -1, 
  x => !x
)


We can check it works.

alternating.take(5)
// res11: List[Int] = List(1, -1, 1, -1, 1)



Exercise: Stream Combinators

It’s time for you to get some practice with structural recursion and structural corecursion using codata. Implement filter, zip, and scanLeft on Stream. They have the same semantics as the same methods on List, and the signatures shown below.

trait Stream[A] {
  def head: A
  def tail: Stream[A]

  def filter(pred: A => Boolean): Stream[A]
  def zip[B](that: Stream[B]): Stream[(A, B)]
  def scanLeft[B](zero: B)(f: (B, A) => B): Stream[B]
}


See the solution

We can do some neat things with the methods defined above. For example, here is the stream of natural numbers.

val naturals = Stream.ones.scanLeft(0)((b, a) => b + a)


As usual, we should check it works.

naturals.take(5)
// res15: List[Int] = List(1, 2, 3, 4, 5)


We could also define naturals using unfold. More interesting is defining it in terms of itself.

val naturals: Stream[Int] =
  new Stream {
    def head = 1
    def tail = naturals.map(_ + 1)
  }


This might be confusing. If so, spend a bit of time thinking about it. It really does work!

naturals.take(5)
// res17: List[Int] = List(1, 2, 3, 4, 5)




3.3.1 Efficiency and Effects

You may have noticed that our implement recomputes values, possibly many times. A good example is the implementation of filter. This recalculates the head and tail on each call, which could be a very expensive operation.

def filter(pred: A => Boolean): Stream[A] = {
  val self = this
  new Stream[A] {
    def head: A = {
      def loop(stream: Stream[A]): A =
        if pred(stream.head) then stream.head
        else loop(stream.tail)
        
      loop(self)
    }
    
    def tail: Stream[A] = {
      def loop(stream: Stream[A]): Stream[A] =
        if pred(stream.head) then stream.tail
        else loop(stream.tail)
        
      loop(self)
    }
  }
}


We know that delaying the computation until the method is called is important, because that is how we can handle infinite and self-referential data. However we don’t need to redo this computation on succesive calls. We can instead cache the result from the first call and use that next time. Scala makes this easy with lazy val, which is a val that is not computed until its first call. Additionally, Scala’s use of the uniform access principle means we can implement a method with no parameters using a lazy val. Here’s a quick example demonstrating it in use.

def always[A](elt: => A): Stream[A] =
  new Stream[A] {
    lazy val head: A = elt
    lazy val tail: Stream[A] = always(head)
  }
  
val twos = always(2)


As usual we should check our work.

twos.take(5)
// res18: List[Int] = List(2, 2, 2, 2, 2)


We get the same result whether we use a method or a lazy val, because we are assuming that we are only dealing with pure computations that have no dependency on state that might change. In this case a lazy val simply consumes additional space to save on time.

Recomputing a result every time it is needed is known as call by name, while caching the result the first time it is computed is known as call by need. These two different evaluation strategies can be applied to individual values, as we’ve done here, or across an entire programming. Haskell, for example, uses call by need. All values in Haskell are only computed the first time they are need. This is approach is sometimes known as lazy evaluation. Another alternative, called call by value, computes results when they are defined instead of waiting until they are needed. This is the default in Scala.

We can illustrate the difference between call by name and call by need if we use an impure computation. For example, we can define a stream of random numbers. Random number generators depend on some internal state.

Here’s the call by name implementation, using the methods we have already defined.

import scala.util.Random

val randoms: Stream[Double] = 
  Stream.unfold(Random, r => r.nextDouble(), r => r)


Notice that we get different results each time we take a section of the Stream. We would expect these results to be the same.

randoms.take(5)
// res19: List[Double] = List(
//   0.3945266434297171,
//   0.9648150348285476,
//   0.45309796381730205,
//   0.9127734403431025,
//   0.47066607755751133
// )
randoms.take(5)
// res20: List[Double] = List(
//   0.2168058271830986,
//   0.26376409623530395,
//   0.5915818308925733,
//   0.37587602214963756,
//   0.175068145056132
// )


Now let’s define the same stream in a call by need style, using lazy val.

val randomsByNeed: Stream[Double] =
  new Stream[Double] {
    lazy val head: Double = Random.nextDouble()
    lazy val tail: Stream[Double] = randomsByNeed
  }


This time we get the same result when we take a section, and each number is the same.

randomsByNeed.take(5)
// res21: List[Double] = List(
//   0.2694757073851426,
//   0.2694757073851426,
//   0.2694757073851426,
//   0.2694757073851426,
//   0.2694757073851426
// )
randomsByNeed.take(5)
// res22: List[Double] = List(
//   0.2694757073851426,
//   0.2694757073851426,
//   0.2694757073851426,
//   0.2694757073851426,
//   0.2694757073851426
// )


If we wanted a stream that had a different random number for each element but those numbers were constant, we could redefine unfold to use call by need.

def unfoldByNeed[A, B](seed: A, f: A => B, next: A => A): Stream[B] =
  new Stream[B]{
    lazy val head: B = 
      f(seed)
    lazy val tail: Stream[B] = 
      unfoldByNeed(next(seed), f, next)
  }


Now redefining randomsByNeed using unfoldByNeed gives us the result we are after. First, redefine it.

val randomsByNeed2 =
  unfoldByNeed(Random, r => r.nextDouble(), r => r)


Then check it works.

randomsByNeed2.take(5)
// res23: List[Double] = List(
//   0.5522780464573721,
//   0.8432560559427953,
//   0.7552931407239886,
//   0.8083110026970087,
//   0.2158642894921533
// )
randomsByNeed2.take(5)
// res24: List[Double] = List(
//   0.5522780464573721,
//   0.8432560559427953,
//   0.7552931407239886,
//   0.8083110026970087,
//   0.2158642894921533
// )


These subtleties are one of the reasons that functional programmers try to avoid using state as far as possible.




3.4 Relating Data and Codata

In this section we’ll explore the relationship between data and codata, and in paritcular converting one to the other. We’ll look at it in two ways: firstly a very surface-level relationship between the two, and then a deep connection via fold.

Remember that data is a sum of products, where the products are constructors and we can view constructors as functions. So we can view data as a sum of functions. Meanwhile, codata is a product of functions. We can easily make a direct correspondence between the functions-as-constructors and the functions in codata. What about the difference between the sum and the product that remains. Well, when we have a product of functions we only call one at any point in our code. So the logical or is in the choice of function to call.

Let’s see how this works with a familiar example of data, List. As an algebraic data type we can define

enum List[A] {
  case Pair(head: A, tail: List[A])
  case Empty()
}


The codata equivalent is

trait List[A] {
  def pair(head: A, tail: List[A]): List[A]
  def empty: List[A]
}


In the codata implementation we are explicitly representing the constructors as methods, and pushing the choice of constructor to the caller. In a few chapters we’ll see a use for this relationship, but for now we’ll leave it and move on.

The other way to view the relationship is a connection via fold. We’ve already learned how to derive the fold for any algebraic data type. For Bool, defined as

enum Bool {
  case True
  case False
}


the fold method is

enum Bool {
  case True
  case False
  
  def fold[A](t: A)(f: A): A =
    this match {
      case True => t
      case False => f
    }
}


We know that fold is universal: we can write any other method in terms of it. It therefore provides a universal destructor and is the key to treating data as codata. In this case the fold is something we use all the time, except we usually call it if.

Here’s the codata version of Bool, with fold renamed to if. (Note that Scala allows us to define methods with the same name as key words, in this case if, but we have to surround them in backticks to use them.)

trait Bool {
  def `if`[A](t: A)(f: A): A
}


Now we can define the two instances of Bool purely as codata.

val True = new Bool {
  def `if`[A](t: A)(f: A): A = t
}

val False = new Bool {
  def `if`[A](t: A)(f: A): A = f
}


Let’s see this in use by defining and in terms of if, and then creating some examples. First the definition of and.

def and(l: Bool, r: Bool): Bool =
  new Bool {
    def `if`[A](t: A)(f: A): A =
      l.`if`(r)(False).`if`(t)(f)
  }


Now the examples. This is simple enough that we can try the entire truth table.

and(True, True).`if`("yes")("no")
// res1: String = "yes"
and(True, False).`if`("yes")("no")
// res2: String = "no"
and(False, True).`if`("yes")("no")
// res3: String = "no"
and(False, False).`if`("yes")("no")
// res4: String = "no"



Exercise: Or and Not

Test your understanding of Bool by implementing or and not in the same way we implemented and above.

See the solution

Notice that, once again, computation only happens on demand. In this case, nothing happens until if is actually called. Until that point we’re just building up a representation of what we want to happen. This again points to how codata can handle infinite data, by only computing the finite amount required by the actual computation.

The rules here for converting from data to codata are:


	On the interface (trait) defining the codata, define a method with the same signature as fold.

	Define an implementation of the interface for each product case in the data. The data’s constructor arguments become constructor arguments on the codata classes. If there are no constructor arguments, as in Bool, we can define values instead of classes.

	Each implementation implements the case of fold that it corresponds to.



Let’s apply this to a slightly more complex example: List. We’ll start by defining it as data and implementing fold. I’ve chosen to implement foldRight but foldLeft would be just as good.

enum List[A] {
  case Pair(head: A, tail: List[A])
  case Empty()
  
  def foldRight[B](empty: B)(f: (A, B) => B): B =
    this match { 
      case Pair(head, tail) => f(head, tail.foldRight(empty)(f))
      case Empty() => empty
    }
}


Now let’s implement it as codata. We start by defining the interface with the fold method. In this case I’m calling it foldRight as it’s going to exactly mirror the foldRight we just defined.

trait List[A] {
  def foldRight[B](empty: B)(f: (A, B) => B): B
}


Now we define the implementations. There is one for Pair and one for Empty, which are the two cases in data definition of List. Notice that in this case the classes have constructor arguments, which correspond to the constructor arguments on the correspnding product types.

final class Pair[A](head: A, tail: List[A]) extends List[A] {
  def foldRight[B](empty: B)(f: (A, B) => B): B =
    ???
}

final class Empty[A]() extends List[A] {
  def foldRight[B](empty: B)(f: (A, B) => B): B =
    ???
}


I didn’t implement the bodies offoldRight so I could show this as a separate step. The implementation here directly mirrors foldRight on the data implementation, and we can use the same strategies to implement the codata equivalents. That is to say, we can use the recursion rule, reasoning by case, and following the types. I’m going to skip these details as we’ve already gone through them in depth. The final code is shown below.

final class Pair[A](head: A, tail: List[A]) extends List[A] {
  def foldRight[B](empty: B)(f: (A, B) => B): B =
    f(head, tail.foldRight(empty)(f))
}

final class Empty[A]() extends List[A] {
  def foldRight[B](empty: B)(f: (A, B) => B): B =
    empty
}


This code is almost the same as the dynamic dispatch implementation, which again shows the relationship between codata and object-oriented code.

The transformation from data to codata goes under several names: refunctionalization, Church encoding, and Böhm-Berarducci encoding. The latter two terms specifically refer to transformations into the untyped and typed lambda calculus respectively. The lambda calculus is a simple model programming language that contains only functions. We’re going to take a quick detour to show that we can, indeed, encode lists using just functions. This demonstrates that objects and functions have equivalent power.

The starting point is creating a type alias List, which defines a list as a fold. This uses a polymorphic function type, which is new in Scala 3. Inspect the type signature and you’ll see it is the same as foldRight above.

type List[A, B] = (B, (A, B) => B) => B


Now we can define Pair and Empty as functions. The first parameter list is the constructor arguments, and the second parameter list is the parameters for foldRight.

val Empty: [A, B] => () => List[A, B] = 
  [A, B] => () => (empty, f) => empty

val Pair: [A, B] => (A, List[A, B]) => List[A, B] =
  [A, B] => (head: A, tail: List[A, B]) => (empty, f) => 
    f(head, tail(empty, f))


Finally, let’s see an example to show it working. We will first define the list containing 1, 2, 3. Due to a restriction in polymorphic function types, I have to add the useless empty parameter.

val list: [B] => () => List[Int, B] = 
  [B] => () => Pair(1, Pair(2, Pair(3, Empty())))


Now we can compute the sum and product of the elements in this list.

val sum = list()(0, (a, b) => a + b)
// sum: Int = 6
val product = list()(1, (a, b) => a * b)
// product: Int = 6


It works!

The purpose of this little demonstration is to show that functions are just objects (in the codata sense) with a single method. Scala this makes apparent, as functions are objects with an apply method.

We’ve seen that data can be translated to codata. The reverse is also possible: we simply tabulate the results of each possible method call. In other words, the data representation is memoisation, a lookup table, or a cache.

Although we can convert data to codata and vice versa, there are good reasons to choose one over the other. We’ve already seen one reason: with codata we can represent infinite structures. In this next section we’ll see another difference: the extensibility that data and codata permit.




3.5 Data and Codata Extensibility

We have seen that codata can represent types with an infinite number of elements, such as Stream. This is one expressive difference from data, which must always be finite. We’ll now look at another, which is the type of extensibility we get from data and from codata. Together these gives use guidelines to choose between the two.

Firstly, let’s define extensibility. It means the ability to add new features without modifying existing code. (If we allow modification of existing code then any extension becomes trivial.) In particular there are two dimension along which we can extend code: adding new functions or adding new elements. We will see that data and codata have orthogonal extensibility: it’s easy to add new functions to data but adding new elements is impossible without modifying existing code, while adding new elements to codata is straight-forward but adding new functions is not.

Let’s start with a concrete example of both data and codata. For data we’ll use the familiar List type.

enum List[A] {
  case Empty()
  case Pair(head: A, tail: List[A])
}


For codata, we’ll use Set as our exemplar.

trait Set[A] {
  def contains(elt: A): Boolean
  def insert(elt: A): Set[A]
  def union(that: Set[A]): Set[A]
}


We know there are lots of methods we can define on List. The standard library is full of them! We also know that any method we care to write can be written using structural recursion. Finally, we can write these methods without modifying existing code.

Imagine filter was not defined on List. We can easily implement it as

import List.*

def filter[A](list: List[A], pred: A => Boolean): List[A] = 
  list match {
    case Empty() => Empty()
    case Pair(head, tail) => 
      if pred(head) then Pair(head, filter(tail, pred))
      else filter(tail, pred)
  }


We could even use an extension method to make it appear as a normal method.

extension [A](list: List[A]) {
  def filter(pred: A => Boolean): List[A] = 
    list match {
      case Empty() => Empty()
      case Pair(head, tail) => 
        if pred(head) then Pair(head, tail.filter(pred))
        else tail.filter(pred)
    }
}


This shows we can add new functions to data without issue.

What about adding new elements to data? Perhaps we want to add a special case to optimize single-element lists. This is impossible without changing existing code. By definition, we cannot add a new element to an enum without changing the enum. Adding such a new element would break all existing pattern matches, and so require they all change. So in summary we can add new functions to data, but not new elements.

Now let’s look at codata. This has the opposite extensibility; duality strikes again! In the codata case we can easily add new elements. We simply implement the trait that defines the codata interface. We saw this when we defined, for example, ListSet.

final class ListSet[A](elements: List[A]) extends Set[A] {

  def contains(elt: A): Boolean =
    elements.contains(elt)

  def insert(elt: A): Set[A] =
    ListSet(elt :: elements)

  def union(that: Set[A]): Set[A] =
    elements.foldLeft(that) { (set, elt) => set.insert(elt) }
}
object ListSet {
  def empty[A]: Set[A] = ListSet(List.empty)
}


What about adding new functionality? If the functionality can be defined in terms of existing functionality then we’re ok. We can easily define this functionality, and we can use the extension method trick to make it appear like a built-in. However, if we want to define a function that cannot be expressed in terms of existing functions we are out of luck. Let’s saw we want to define some kind of iterator over the elements of a Set. We might use a LazyList, the standard library’s equivalent of Stream we defined earlier, because we know some sets have an infinite number of elements. Well, we can’t do this without changing the definition of Set, which in turn breaks all existing implementations. We cannot define it in a different way because we don’t know all the possible implementations of Set.

So in summary we can add new elements to codata, but not new functions.

If we tabulate this we clearly see that data and codata have orthogonal extensibility.









	Extension
	Data
	Codata





	Add elements
	No
	Yes



	Add functions
	Yes
	No





This difference in extensibility gives us another rule for choosing between data and codata as an implementation strategy, in addition to the finite vs infinite distinction we saw earlier. If we want extensibilty of functions but not elements we should use data. If we have a fixed interface but an unknown number of possible implementations we should use codata.

You might wonder if we can have both forms of extensibility. Achieving this is called the expression problem. There are various ways to solve the expression problem, and we’ll see one that works particularly well in Scala in a later chapter.



3.6 Exercise: Sets

In this extended exercise we’ll explore the Set interface we have already used in several examples, reproduced below.

trait Set[A] {
  
  /** True if this set contains the given element */
  def contains(elt: A): Boolean
  
  /** Construct a new set containing the given element */
  def insert(elt: A): Set[A]
  
  /** Construct the union of this and that set */
  def union(that: Set[A]): Set[A]
}


We also saw a simple implementation, storing the elements in the set in a List.

final class ListSet[A](elements: List[A]) extends Set[A] {

  def contains(elt: A): Boolean =
    elements.contains(elt)

  def insert(elt: A): Set[A] =
    ListSet(elt :: elements)

  def union(that: Set[A]): Set[A] =
    elements.foldLeft(that) { (set, elt) => set.insert(elt) }
}
object ListSet {
  def empty[A]: Set[A] = ListSet(List.empty)
}


The implementation for union is a bit unsatisfactory; it’s doesn’t use any of our strategies for writing code. We can implement both union and insert in a generic way that works for all sets (in other words, is implemented on the Set trait) and uses the strategies we’ve seen in this chapter. Go ahead and do this.

See the solution

Your next challenge is to implement Evens, the set of all even integers, which we’ll represent as a Set[Int]. This is an infinite set; we cannot directly enumerate all the elements in this set. (We actually could enumerate all the even elements that are 32-bit Ints, but we don’t want to as this would use excessive amounts of space.)

See the solution

We can generalize this idea to defining sets in terms of indicator functions, which is a function of type A => Boolean, returning returns true if the input belows to the set. Implement IndicatorSet, which is constructed with a single indicator function parameter.

See the solution



3.7 Conclusions

In this chapter we’ve explored codata, the dual of data. Codata is defined by its interface—what we can do with it—as opposed to data, which is defined by what it is. More formally, codata is a product of destructors, where destructors are functions from the codata type (and, optionally, some other inputs) to some type. By avoiding the elements of object-oriented programming that make it hard to reason about—state and implementation inheritance—codata brings elements of object-oriented programming that accord with the other functional programming strategies. In Scala we define codata as a trait, and implement it as a final class, anonymous subclass, or an object.

We have two strategies for implementing methods using codata: structural corecursion, which we can use when the result is codata, and structural recursion, which we can use when an input is codata. Structural corecursion is usually the more useful of the two, as it gives more structure (pun intended) to the method we are implementing. The reverse is true for data.

We saw that data is connected to codata via fold: any data can instead be implemented as codata with a single destructor that is the fold for that data. The reverse is also: we can enumerate all potential pairs of inputs and outputs of destructors to represent codata as data. However this does not mean that data and codata are equivalent. We have seen many examples of codata representing infinite structures, such as sets of all even numbers and streams of all natural numbers. We have also seen that data and codata offer different forms of extensibility: data makes it easy to add new functions, but adding new elements requires changing existing code, while it is easy to add new elements to codata but we change existing code if we add new functions.

The earliest reference I could find to codata in programming languages is Codatatypes in ML, which dates from 1989. This is much more recent than algebraic data, which I think explains why codata is relatively unknown. There are some excellent recent papers that deal with codata. I highly recommend Codata in Action, which inspired large portions of this chaper. Exploring Codata: The Relation to Object-Orientation is also worthwhile. [How to Add Laziness to a Strict Language Without Even Being Odd] (http://hh.diva-portal.org/smash/record.jsf?pid=diva2%3A413532&dswid=-2514) is an older paper that discusses the implementation of streams, and in particular the difference between a not-quite-lazy-enough implementation they label odd and the version we saw, which they call even. These correspond to Stream and LazyList in the Scala standard library respectively. Classical (Co)Recursion: Programming is an interesting survey of corecursion in different languages, and covers many of the same examples that I used here. Finally, if you really want to get into the weeds of the relationship between data and codata, Beyond Church encoding: Boehm-Berarducci isomorphism of algebraic data types and polymorphic lambda-terms is for you.
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4 Contextual Abstraction

Cats contains a wide variety of functional programming tools and allows developers to pick and choose the ones we want to use. The majority of these tools are delivered in the form of type classes that we can apply to existing Scala types.

Type classes are a programming pattern originating in Haskell

  
  
  
  ch006.xhtml
  
  




5 Reified Interpreters

The interpreter strategy is perhaps the most important in all of functional programming. The central idea is to separate description from action. When we use the interpreter strategy our program consists of two parts: the description, instructions, or program that describes what we want to do, and the interpreter that carries the actions in the description. In this chapter we’ll start exploring the design and implementation of interpreters, focusing on implementations using algebraic data types.

Interpreters arise whenever there is this distinction between description and action. You may think an interpreter is a complex piece requiring a lot of development effort, but I hope to show you this is not the case. You probably already use lots of interpreters in your daily coding without realizing it. For example, consider the code below which is taken from a web framework called Krop

val route =
  Route(
    Request.get(Path.root / "user" / Param.int),
    Response.ok(Entity.text)
  ).handle(userId => s"You asked for the user ${userId.toString}")


This defines a route, which matches GET requests for the path "/user/<int>", and responds with an Ok containing text. This kind of routing library is ubiquitous in web frameworks, is simple to write, and yet contains everything we need for the interpreter strategy.

Interpreters are so important because they are the key to enabling compositionality and reasoning, particularly while allowing effects. For example, imagine implementing a graphics library using the interpreter strategy. A program simply describes what we want to draw on the screen, but critically it does not draw anything. The interpreter takes this description and creates the drawing described by it. We can freely compose descriptions only because they do not carry out any effects. For example, if we have a description that describes a circle, and one for a square, we can compose them by saying we should draw the circle next to the square thereby creating a new description. If we immediately drew pictures there would be nothing to compose with. Similarly, it’s easier to reason about pictures in this system because a program describes exactly what will appear on the screen, and there is no state from prior drawing that we need to worry about.

Throughout this chapter we will explore the interpreter strategy by building a series of interpreters for regular expressions. We’ve chosen to use regular expressions because they are already familiar to many and they are simple to work with. This means we can focus on the details of the interpreter strategy without getting caught up in problem specific details, but we still end up with a realistic and useful result.

We’ll start with a basic implementation strategy that uses algebraic data types and structural recursion. We’ll then look at transformations to turn our interpreter into a version that avoids using the stack and hence avoids the possibility of stack overflow.


5.1 Regular Expressions

We’ll start this case study by briefly describing the usual task for regular expressions—matching text—and then take a more theoretical view. We’ll then move on to implementation.

We most commonly use regular expressions to determine if a string matches a particular pattern. The simplest regular expression is one that matches only one string. In Scala we can create a regular expression by calling the r method on String. Here’s a regular expression that matches exactly the string "Scala".

val regexp = "Scala".r


We can see that it matches only "Scala" and fails if we give it a shorter or longer input.

regexp.matches("Scala")
// res0: Boolean = true
regexp.matches("Sca")
// res1: Boolean = false
regexp.matches("Scalaland")
// res2: Boolean = false


Notice we already have a separation between description and action. The description is the regular expression itself, created by calling the r method, and the action is calling the matches method on the regular expression.

There are some characters that have a special meaning within the String describing a regular expression. For example, the character * matches the preceding character zero or more times.

val regexp = "Scala*".r


regexp.matches("Scal")
// res4: Boolean = true
regexp.matches("Scala")
// res5: Boolean = true
regexp.matches("Scalaaaa")
// res6: Boolean = true


We can also use parentheses to group sequences of characters. For example, if we wanted to match all the strings like "Scala", "Scalala", "Scalalala" and so on, we could use the following regular expression.

val regexp = "Scala(la)*".r


Let’s check it matches what we’re looking for.

regexp.matches("Scala")
// res8: Boolean = true
regexp.matches("Scalalalala")
// res9: Boolean = true


We should also check it fails to match as expected.

regexp.matches("Sca")
// res10: Boolean = false
regexp.matches("Scalal")
// res11: Boolean = false
regexp.matches("Scalaland")
// res12: Boolean = false


That’s all I’m going to say about Scala’s built-in regular expressions. If you’d like to learn more there are many resources online. The JDK documentation is one example, which describes all the features available in the JVM implementation of regular expressions.

Let’s turn to the theoretical description, such as we might find in a textbook. A regular expression is:


	the empty regular expression that matches nothing;

	a string, which matches exactly that string (including the empty string);

	the concatenation of two regular expressions, which matches the first regular expression and then the second;

	the union of two regular expressions, which matches if either expression matches; and

	the repetition of a regular expression (often known as the Kleene star), which matches zero or more repetitions of the underlying expression.



This kind of description may seem very abstract if you’re not used to it. It is very useful for our purposes because it defines a minimal API that we can easily implement. Let’s walk through the description and see how each part relates to code.

The empty regular expression is defining a constructor with type () => Regexp, which we can simplify to a value of type Regexp. In Scala we put constructors on the companion object, so this tells us we need

object Regexp {
  val empty: Regexp =
    ???
}


The second part tells us we need another constructor, this one with type String => Regexp.

object Regexp {
  val empty: Regexp =
    ???

  def apply(string: String): Regexp =
    ???
}


The other three components all take a regular expression and produce a regular expression. In Scala these will become methods on the Regexp type. Let’s model this as a trait for now, and define these methods.

The first method, the concatenation of two regular expressions, is conventionally called ++ in Scala.

trait Regexp {
  def ++(that: Regexp): Regexp
}


Union is conventionally called orElse.

trait Regexp {
  def ++(that: Regexp): Regexp
  def orElse(that: Regexp): Regexp
}


Repetition we’ll call repeat, and define an alias * that matches how this operation is written in conventional regular expressions.

trait Regexp {
  def ++(that: Regexp): Regexp
  def orElse(that: Regexp): Regexp
  def repeat: Regexp
  def `*`: Regexp = this.repeat
}


We’re missing one thing: a method to actually match our regular expression against some input. Let’s call this method matches.

trait Regexp {
  def ++(that: Regexp): Regexp
  def orElse(that: Regexp): Regexp
  def repeat: Regexp
  def `*`: Regexp = this.repeat
  
  def matches(input: String): Boolean
}


This completes our API. Now we can turn to implementation. We’re going to represent Regexp as an algebraic data type, and each method that returns a Regexp will return an instance of this algebraic data type. What should be the elements that make up the algebraic data type? There will be one element for each method, and the constructor arguments will be exactly the parameters passed to the method including the hidden this parameter for methods on the trait.

Here’s the resulting code.

enum Regexp {
  def ++(that: Regexp): Regexp =
    Append(this, that)

  def orElse(that: Regexp): Regexp =
    OrElse(this, that)

  def repeat: Regexp =
    Repeat(this)

  def `*`: Regexp = this.repeat
  
  def matches(input: String): Boolean =
    ???
  
  case Append(left: Regexp, right: Regexp)
  case OrElse(first: Regexp, second: Regexp)
  case Repeat(source: Regexp)
  case Apply(string: String)
  case Empty
}
object Regexp {
  val empty: Regexp = Empty
  
  def apply(string: String): Regexp =
    Apply(string)
}


A quick note about this. We can think of every method on an object as accepting a hidden parameter that is the object itself. This is this. (If you have used Python, it makes this explicit as the self parameter.) As we consider this to be a parameter to a method call, and our implementation strategy is to capture all the method parameters in a data structure, we must make sure we capture this when it is available. The only case where we don’t capture this is when we are defining a constructor on a companion object.

Notice that we haven’t implemented matches. It doesn’t return a Regexp so we cannot return an element of our algebraic data type. What should we do here? Regexp is an algebraic data type and matches transforms an algebraic data type into a Boolean. Therefore we can use structural recursion! Let’s write out the skeleton, including the recursion rule.

def matches(input: String): Boolean =
  this match {
    case Append(left, right)   => left.matches(???) ??? right.matches(???)
    case OrElse(first, second) => first.matches(???) ??? second.matches(???)
    case Repeat(source)        => source.matches(???) ???
    case Apply(string)         => ???
    case Empty                 => ???
  }


Now we can apply the usual strategies to complete the implementation. Let’s reason independently by case, starting with the case for Empty. This case is trivial as it always fails to match, so we just return false.

def matches(input: String): Boolean =
  this match {
    case Append(left, right)   => left.matches(???) ??? right.matches(???)
    case OrElse(first, second) => first.matches(???) ??? second.matches(???)
    case Repeat(source)        => source.matches(???) ???
    case Apply(string)         => ???
    case Empty                 => false
  }


Let’s move on to the Append case. This should match if the left regular expression matches the start of the input, and the right regular expression matches starting where the left regular expression stopped. This has uncovered a hidden requirement: we need to keep an index into the input that tells us where we should start matching from. Using a nested method is the easiest way to keep around additional information that we need. Here I’ve created a nested method that returns an Option[Int]. The Int is the new index to use, and we return an Option to indicate if the regular expression matched or not.

def matches(input: String): Boolean = {
  def loop(regexp: Regexp, idx: Int): Option[Int] =
    regexp match {
      case Append(left, right) =>
        loop(left, idx).flatMap(idx => loop(right, idx))
      case OrElse(first, second) => 
        loop(first, idx) ??? loop(second, ???)
      case Repeat(source) => 
        loop(source, idx) ???
      case Apply(string) => 
        ???
      case Empty =>
        None
    }

  // Check we matched the entire input
  loop(this, 0).map(idx => idx == input.size).getOrElse(false)
}


Now we can go ahead and complete the implementation.

def matches(input: String): Boolean = {
  def loop(regexp: Regexp, idx: Int): Option[Int] =
    regexp match {
      case Append(left, right) =>
        loop(left, idx).flatMap(i => loop(right, i))
      case OrElse(first, second) => 
        loop(first, idx).orElse(loop(second, idx))
      case Repeat(source) =>
        loop(source, idx)
          .flatMap(i => loop(regexp, i))
          .orElse(Some(idx))
      case Apply(string) =>
        Option.when(input.startsWith(string, idx))(idx + string.size)
    }

  // Check we matched the entire input
  loop(this, 0).map(idx => idx == input.size).getOrElse(false)
}


The implementation for Repeat is a little tricky, so I’ll walk through the code.

case Repeat(source) =>
  loop(source, idx)
    .flatMap(i => loop(regexp, i))
    .orElse(Some(idx))


The first line (loop(source, index)) is seeing if the source regular expression matches. If it does we loop again, but on regexp (which is Repeat(source)), not source. This is because we want to repeat an indefinite number of times. If we looped on source we would only try twice. Remember that failing to match is still a success; repeat matches zero or more times. This condition is handled by the orElse clause.

We should test that our implementation works.

Here’s the example regular expression we started the chapter with.

val regexp = Regexp("Sca") ++ Regexp("la") ++ Regexp("la").repeat


Here are cases that should succeed.

regexp.matches("Scala")
// res14: Boolean = true
regexp.matches("Scalalalala")
// res15: Boolean = true


Here are cases that should fail.

regexp.matches("Sca")
// res16: Boolean = false
regexp.matches("Scalal")
// res17: Boolean = false
regexp.matches("Scalaland")
// res18: Boolean = false


Success! At this point we could add many extensions to our library. For example, regular expressions usually have a method (by convention denoted +) that matches one or more times, and one that matches zero or once (usually denoted ?). These are both conveniences we can build on our existing API. However, our goal at the moment is to fully understand interpreters and the implementation technique we’ve used here. So in the next section we’ll discuss these in detail.


Regular Expression Semantics

Our regular expression implementation handles union differently to Scala’s built-in regular expressions. Look at the following example comparing the two.

val r1 = "(z|zxy)ab".r
val r2 = Regexp("z").orElse(Regexp("zxy")) ++ Regexp("ab")


r1.matches("zxyab")
// res19: Boolean = true
r2.matches("zxyab")
// res20: Boolean = false


The reason for this difference is that our implementation commits to the first branch in a union that successfully matches some of the input, regardless of how that affects later matching. We should instead try both branches, but doing so makes the implementation more complex. The semantics of regular expressions are not essential to what we’re trying to do here; we’re just using them as an example to motivate the programming strategies we’re learning. I decided the extra complexity of implementing union in the usual way outweighed the benefits, and so kept the simpler implementation. Don’t worry, we’ll see how to do it properly in the next chapter!




5.2 Interpreters and Reification

There are two different programming strategies at play in the regular expression code we’ve just written:


	the interpreter strategy; and

	the interpreter’s implementation strategy of reification.



Remember the essence of the interpreter strategy is to separate description and action. Therefore, whenever we use the interpreter strategy we need at least two things: a description and an interpreter. Descriptions are programs; things that we want to happen. The interpreter runs the programs, carrying out the actions described within them.

In the regular expression example, a Regexp value is a program. It is a description of a pattern we are looking for within a String. The matches method is an interpreter. It carries out the instructions in the description, checking the pattern matches the entire input. We could have other interpreters, such as one that matches if at least some part of the input matches the pattern.


5.2.1 The Structure of Interpreters

All uses of the interpreter strategy have a particular structure to their methods. There are three different types of methods:


	constructors, or introduction forms, with type A => Program. Here A is any type that isn’t a program, and Program is the type of programs. Constructors conventionally live on the Program companion object in Scala. We see that apply is a constructor of Regexp. It has type String => Regexp, which matches the pattern A => Program for a constructor. The other constructor, empty, is just a value of type Regexp. This is equivalent to a method with type () => Regexp and so it also matches the pattern for a constructor.


	combinators have at least one program input and a program output. The type is similar to Program => Program but there are often additional parameters. All of ++, orElse, and repeat are combinators in our regular expression example. They all have a Regexp input (the this parameter) and produce a Regexp. Some of them have additional parameters, such as ++ or orElse. For both these methods the single additional parameter is a Regexp, but it is not the case that additional parameters to a combinator must be of the program type. Conventionally these methods live on the Program type.


	destructors, interpreters, or elimination forms, have type Program => A. In our regular expression example we have a single interpreter, matches, but we could easily add more. For example, we often want to extract elements from the input or find a match at any location in the input.




This structure is often called an algebra or combinator library in the functional programming world. When we talk about constructors and destructors in an algebra we’re talking at a more abstract level then when we talk about constructors and destructors on algebraic data types. A constructor of an algebra is an abstract concept, at the theory level in my taxonomy, that we can choose to concretely implement at the craft level with the constructor of an algebraic data type. There are other possible implementations. We’ll see one later.



5.2.2 Implementing Interpreters with Reification

Now that we understand the components of an interpreter we can talk more clearly about the implementation strategy we used. We used a strategy called reification, defunctionalization, deep embedding, or an initial algebra.

Reification, in an abstract sense, means to make concrete what is abstract. Concretely, reification in the programming sense means to turn methods or functions into data. When using reification in the interpreter strategy we reify all the components that produce the Program type. This means reifying constructors and combinators.

Here are the rules for reification:


	We define some type, which we’ll call Program, to represent programs.

	We implement Program as an algebraic data type.

	All constructors and combinators become product types within the Program algebraic data type.

	Each product type holds exactly the parameters to the constructor or combinator, including the this parameter for combinators.



Once we’ve defined the Program algebraic data type, the interpreter becomes a structural recursion on Program.


Exercise: Arithmetic

Now it’s your turn to practice using reification. Your task is to implement an interpreter for arithmetic expressions. An expression is:


	a literal number, which takes a Double and produces an Expression;

	an addition of two expressions;

	a substraction of two expressions;

	a multiplication of two expressions; or

	a division of two expressions;



Reify this description as a type Expression.

See the solution

Now implement an interpreter eval that produces a Double. This interpreter should interpret the expression using the usual rules of arithmetic.

See the solution

Add methods +, - and so on that make your system a bit nicer to use. Then write some expressions and show that it works as expected.

See the solution





5.3 Tail Recursive Interpreters

Structural recursion, as we have written it, uses the stack. This is not often a problem, but particularly deep recursions can lead to the stack running out of space. A solution is to write a tail recursive program. A tail recursive program does not need to use any stack space, and so is sometimes known as stack safe. Any program can be turned into a tail recursive version, which does not use the stack and therefore cannot run out of stack space.


The Call Stack

Method and function calls are usually implemented using an area of memory known as the call stack, or just the stack for short. Every method or function call uses a small amount of memory on the stack, called a stack frame. When the method or function returns, this memory is freed and becomes available for future calls to use.

A large number of method calls, without corresponding returns, can require more stack frames than the stack can accommodate. When there is no more memory available on the stack we say we have overflowed the stack. In Scala a StackOverflowError is raised when this happens.


In this section we will discuss tail recursion, converting programs to tail recursive form, and limitations and workarounds for the Scala’s runtimes.


5.3.1 The Problem of Stack Safety

Let’s start by seeing the problem. In Scala we can create a repeated String using the * method.

"a" * 4
// res0: String = "aaaa"


We can match such a String with a regular expression and repeat.

Regexp("a").repeat.matches("a" * 4)
// res1: Boolean = true


However, if we make the input very long the interpreter will fail with a stack overflow exception.

Regexp("a").repeat.matches("a" * 20000)
// java.lang.StackOverflowError


This is because the interpreter calls loop for each instance of a repeat, without returning. However, all is not lost. We can rewrite the interpreter in a way that consumes a fixed amount of stack space, and therefore match input that is as large as we like.



5.3.2 Tail Calls and Tail Position

Our starting point is tail calls. A tail call is a method call that does not take any additional stack space. Only method calls that are in tail position are candidates to be turned into tail calls. Even then, runtime limitations mean that not all calls in tail position will be converted to tail calls.

A method call in tail position is a call that immediately returns the value returned by the call. Let’s see an example. Below are two versions of a method to calculate the sum of the integers from 0 to count.

def isntTailRecursive(count: Int): Int =
  count match {
    case 0 => 0
    case n => n + isntTailRecursive(n - 1)
  }

def isTailRecursive(count: Int): Int = {
  def loop(count: Int, accum: Int): Int =
    count match {
      case 0 => accum
      case n => loop(n - 1, accum + n)
    }
    
  loop(count, 0)
}


The method call to isntTailRecursive in

case n => n + isntTailRecursive(n - 1)


is not in tail position, because the value returned by the call is then used in the addition. However, the call to loop in

case n => loop(n - 1, accum + n)


is in tail position because the value returned by the call to loop is itself immediately returned. Similarly, the call to loop in

loop(count, 0)


is also in tail position.

A method call in tail position is a candidate to be turned into a tail call. Limitations of Scala’s runtimes mean that not all calls in tail position can be made tail calls. Currently, only calls from a method to itself that are also in tail position will be converted to tail calls. This means

case n => loop(n - 1, accum + n)


is converted to a tail call, because loop is calling itself. However, the call

loop(count, 0)


is not converted to a tail call, because the call is from isTailRecursive to loop. This will not cause issues with stack consumption, however, because this call only happens once.


Runtimes and Tail Calls

Scala supports three different platforms: the JVM, Javascript via Scala.js, and native code via Scala Native. Each platform provides what is known as a runtime, which is code that supports our Scala code when it is running. The garbage collector, for example, is part of the runtime.

At the time of writing none of Scala’s runtimes support full tail calls. However, there is reason to think this may change in the future. Project Loom should eventually add support for tail calls to the JVM. Scala Native is likely to support tail calls soon, as part of other work to implement continuations. Tail calls have been part of the Javascript specification for a long time, but remain unimplemented by the majority of Javascript runtimes. However, WebAssembly does support tail calls and will probably replace compiling Scala to Javascript in the medium term.


We can ask the Scala compiler to check that all self calls are in tail position by adding the @tailrec annotation to a method. The code will fail to compile if any calls from the method to itself are not in tail position.

import scala.annotation.tailrec

@tailrec
def isntTailRecursive(count: Int): Int =
  count match {
    case 0 => 0
    case n => n + isntTailRecursive(n - 1)
  }
// error: 
// Cannot rewrite recursive call: it is not in tail position


We can check the tail recursive version is truly tail recursive by passing it a very large input. The non-tail recursive version crashes.

isntTailRecursive(100000)
// java.lang.StackOverflowError


The tail recursive version runs just fine.

isTailRecursive(100000)
// res4: Int = 705082704




5.3.3 Continuation-Passing Style

Now that we know about tail calls, how do we convert the regular expression interpreter to use them? Any program can be converted to an equivalent program with all calls in tail position. This conversion is known as continuation-passing style or CPS for short. Our first step to understanding CPS is to understand continuations.

A continuation is an encapsulation of “what happens next”. Let’s return to our Regexp example. Here’s the full code for reference.

enum Regexp {
  def ++(that: Regexp): Regexp =
    Append(this, that)

  def orElse(that: Regexp): Regexp =
    OrElse(this, that)

  def repeat: Regexp =
    Repeat(this)

  def `*` : Regexp = this.repeat

  def matches(input: String): Boolean = {
    def loop(regexp: Regexp, idx: Int): Option[Int] =
      regexp match {
        case Append(left, right) =>
          loop(left, idx).flatMap(i => loop(right, i))
        case OrElse(first, second) =>
          loop(first, idx).orElse(loop(second, idx))
        case Repeat(source) =>
          loop(source, idx)
            .flatMap(i => loop(regexp, i))
            .orElse(Some(idx))
        case Apply(string) =>
          Option.when(input.startsWith(string, idx))(idx + string.size)
        case Empty =>
          None
      }

    // Check we matched the entire input
    loop(this, 0).map(idx => idx == input.size).getOrElse(false)
  }

  case Append(left: Regexp, right: Regexp)
  case OrElse(first: Regexp, second: Regexp)
  case Repeat(source: Regexp)
  case Apply(string: String)
  case Empty
}
object Regexp {
  val empty: Regexp = Empty

  def apply(string: String): Regexp =
    Apply(string)
}


Let’s consider the case for Append in matches.

case Append(left, right) =>
  loop(left, idx).flatMap(i => loop(right, i))


What happens next when we call loop(left, idx)? Let’s give the name result to the value returned by the call to loop. The answer is we run result.flatMap(i => loop(right, i)). We can represent this as a function, to which we pass result:

(result: Option[Int]) => result.flatMap(i => loop(right, i))


This is exactly the continuation, reified as a value.

As is often the case, there is a distinction between the concept and the representation. The concept of continuations always exists in code. A continuation means “what happens next”. In other words, it is the program’s control flow. There is always some concept of control flow, even if it is just “the program halts”. We can represent continuations as functions in code. This transforms the abstract concept of continuations into concrete values in our program, and hence reifies them.

Now that we know about continuations, and their reification as functions, we can move on to continuation-passing style. In CPS we, as the name suggests, pass around continuations. Specifically, each function or method takes an extra parameter that is a continuation. Instead of returning a value it calls that continuation with the value. This is another example of duality, in this case between returning a value and calling a continuation.

Let’s see how this works. We’ll start with a simple example written in the normal style, also known as direct style.

(1 + 2) * 3
// res5: Int = 9


To rewrite this in CPS style we need to create replacements for + and * with the extra continuation parameter.

type Continuation = Int => Int

def add(x: Int, y: Int, k: Continuation) = k(x + y)
def mul(x: Int, y: Int, k: Continuation) = k(x * y)


Now we can rewrite our example in CPS. (1 + 2) becomes add(1, 2, k), but what is k, the continuation? What we do next is multiply the result by 3. Thus the continuation is a => mul(a, 3, k2). What is the next continuation, k2? Here the program finishes, so we just return the value with the identity continuation b => b. Put it all together and we get

add(1, 2, a => mul(a, 3, b => b))
// res6: Int = 9


Notice that every continuation call is in tail position in the CPS code. This means that code written in CPS can potentially consume no stack space.

Now we can return to the interpreter loop for Regexp. We are going to CPS it, so we need to add an extra parameter for the continuation. In this case the contination accepts and returns the result type of loop: Option[Int].

def matches(input: String): Boolean = {
  // Define a type alias so we can easily write continuations
  type Continuation = Option[Int] => Option[Int]

  def loop(regexp: Regexp, idx: Int, cont: Continuation): Option[Int] =
  // etc...
}


Now we go through each case and convert it to CPS. Each continuation we construct must call cont as its final step. This is tedious and a bit error-prone, so good tests are helpful.

def matches(input: String): Boolean = {
  // Define a type alias so we can easily write continuations
  type Continuation = Option[Int] => Option[Int]

  def loop(
      regexp: Regexp,
      idx: Int,
      cont: Continuation
  ): Option[Int] =
    regexp match {
      case Append(left, right) =>
        val k: Continuation = _ match {
          case None    => cont(None)
          case Some(i) => loop(right, i, cont)
        }
        loop(left, idx, k)

      case OrElse(first, second) =>
        val k: Continuation = _ match {
          case None => loop(second, idx, cont)
          case some => cont(some)
        }
        loop(first, idx, k)

      case Repeat(source) =>
        val k: Continuation =
          _ match {
            case None    => cont(Some(idx))
            case Some(i) => loop(regexp, i, cont)
          }
        loop(source, idx, k)

      case Apply(string) =>
        cont(Option.when(input.startsWith(string, idx))(idx + string.size))
        
      case Empty =>
        cont(None)
    }

  // Check we matched the entire input
  loop(this, 0, identity).map(idx => idx == input.size).getOrElse(false)
}


Every call in this interpreter loop is in tail position. However Scala cannot convert these to tail calls because the calls go from loop to a continuation and vice versa. To make the interpreter fully stack safe we need to add trampolining.


Exercise: CPS Arithmetic

In a previous exercise we wrote an interpreter for arithmetic expressions. Your task now is to CPS this interpreter. For reference, the definition of an arithmetic expression is:


	a literal number, which takes a Double and produces an Expression;

	an addition of two expressions;

	a substraction of two expressions;

	a multiplication of two expressions; or

	a division of two expressions;



See the solution




5.3.4 Trampolining

Earlier we said that CPS utilizes the duality between function calls and returns: instead of returning a value we call a function with a value. This allows us to transform our code so it only has calls in tail positions. However, we still have a problem with stack safety. Scala’s runtimes don’t support full tail calls, so calls from a continuation to loop or from loop to a continuation will use a stack frame. We can use this same duality to avoid using the stack by, instead of making a call, returning a value that reifies the call we want to make. This idea is the core of trampolining. Let’s see it in action, which will help clear up what exactly this all means.

Our first step is to reify all the method calls made by the interpreter loop and the continuations. There are three cases: calls to loop, calls to a continuation, and, to avoid an infinite loop, the case when we’re done.

type Continuation = Option[Int] => Call

enum Call {
  case Loop(regexp: Regexp, index: Int, continuation: Continuation)
  case Continue(index: Option[Int], continuation: Continuation)
  case Done(index: Option[Int])
}


Now we update loop to return instances of Call instead of making the calls directly.

def loop(regexp: Regexp, idx: Int, cont: Continuation): Call =
  regexp match {
    case Append(left, right) =>
      val k: Continuation = _ match {
        case None    => Call.Continue(None, cont)
        case Some(i) => Call.Loop(right, i, cont)
      }
      Call.Loop(left, idx, k)

    case OrElse(first, second) =>
      val k: Continuation = _ match {
        case None => Call.Loop(second, idx, cont)
        case some => Call.Continue(some, cont)
      }
      Call.Loop(first, idx, k)

    case Repeat(source) =>
      val k: Continuation =
        _ match {
          case None    => Call.Continue(Some(idx), cont)
          case Some(i) => Call.Loop(regexp, i, cont)
        }
      Call.Loop(source, idx, k)

    case Apply(string) =>
      Call.Continue(
        Option.when(input.startsWith(string, idx))(idx + string.size),
        cont
      )

    case Empty =>
      Call.Continue(None, cont)
  }


This gives us an interpreter loop that returns values instead of making calls, and so does not consume stack space. However, we need to actually make these calls at some point, and doing this is the job of the trampoline. The trampoline is simply a tail recursive loop that makes calls until it reaches Done.

def trampoline(next: Call): Option[Int] =
  next match {
    case Call.Loop(regexp, index, continuation) =>
      trampoline(loop(regexp, index, continuation))
    case Call.Continue(index, continuation) =>
      trampoline(continuation(index))
    case Call.Done(index) => index
  }


Now every call has a corresponding return, so the stack usage is limited. Our interpreter can handle input of any size, up to the limits of available memory.

Here’s the complete code for reference.

// Define a type alias so we can easily write continuations
type Continuation = Option[Int] => Call

enum Call {
  case Loop(regexp: Regexp, index: Int, continuation: Continuation)
  case Continue(index: Option[Int], continuation: Continuation)
  case Done(index: Option[Int])
}

enum Regexp {
  def ++(that: Regexp): Regexp =
    Append(this, that)

  def orElse(that: Regexp): Regexp =
    OrElse(this, that)

  def repeat: Regexp =
    Repeat(this)

  def `*` : Regexp = this.repeat

  def matches(input: String): Boolean = {
    def loop(regexp: Regexp, idx: Int, cont: Continuation): Call =
      regexp match {
        case Append(left, right) =>
          val k: Continuation = _ match {
            case None    => Call.Continue(None, cont)
            case Some(i) => Call.Loop(right, i, cont)
          }
          Call.Loop(left, idx, k)

        case OrElse(first, second) =>
          val k: Continuation = _ match {
            case None => Call.Loop(second, idx, cont)
            case some => Call.Continue(some, cont)
          }
          Call.Loop(first, idx, k)

        case Repeat(source) =>
          val k: Continuation =
            _ match {
              case None    => Call.Continue(Some(idx), cont)
              case Some(i) => Call.Loop(regexp, i, cont)
            }
          Call.Loop(source, idx, k)

        case Apply(string) =>
          Call.Continue(
            Option.when(input.startsWith(string, idx))(idx + string.size),
            cont
          )

        case Empty =>
          Call.Continue(None, cont)
      }

    def trampoline(next: Call): Option[Int] =
      next match {
        case Call.Loop(regexp, index, continuation) =>
          trampoline(loop(regexp, index, continuation))
        case Call.Continue(index, continuation) =>
          trampoline(continuation(index))
        case Call.Done(index) => index
      }

    // Check we matched the entire input
    trampoline(loop(this, 0, opt => Call.Done(opt)))
      .map(idx => idx == input.size)
      .getOrElse(false)
  }

  case Append(left: Regexp, right: Regexp)
  case OrElse(first: Regexp, second: Regexp)
  case Repeat(source: Regexp)
  case Apply(string: String)
  case Empty
}
object Regexp {
  val empty: Regexp = Empty

  def apply(string: String): Regexp =
    Apply(string)
}



Exericse: Trampolined Arithmetic

Convert the CPSed arithmetic interpreter we wrote earlier to a trampolined version.

See the solution




5.3.5 When Tail Recursion is Easy

Doing a full CPS conversion and trampoline can be quite involved. Some methods can made tail recursive without so large a change. Remember these examples we looked at earlier?

def isntTailRecursive(count: Int): Int =
  count match {
    case 0 => 0
    case n => n + isntTailRecursive(n - 1)
  }

def isTailRecursive(count: Int): Int = {
  def loop(count: Int, accum: Int): Int =
    count match {
      case 0 => accum
      case n => loop(n - 1, accum + n)
    }
    
  loop(count, 0)
}


The tail recursive version doesn’t seem to involve the complexity of CPS. How can we relate this to what we’ve just learned, and when can we avoid the work of CPS and trampolining?

Let’s use substitution to show how the stack is used by each method, for a small value of count.

isntTailRecursive(2)
// expands to
(2 match {
  case 0 => 0
  case n => n + isntTailRecursive(n - 1)
})
// expands to
(2 + isntTailRecursive(1))
// expands to
(2 + (1 match {
        case 0 => 0
        case n => n + isntTailRecursive(n - 1)
      }))
// expands to
(2 + (1 + isntTailRecursive(n - 1)))
// expands to
(2 + (1 + (0 match {
             case 0 => 0
             case n => n + isntTailRecursive(n - 1)
           })))
// expands to
(2 + (1 + (0)))
// expands to
3


Here each set of brackets indicates a new method call and hence a stack frame allocation.

Now let’s do the same for isTailRecursive.

isTailRecursive(2)
// expands to
(loop(2, 0))
// expands to
(2 match {
   case 0 => 0
   case n => loop(n - 1, 0 + n)
 })
// expands to
(loop(1, 2))
// call to loop is a tail call, so no stack frame is allocated 
// expands to
(1 match {
   case 0 => 2
   case n => loop(n - 1, 2 + n)
 })
// expands to
(loop(0, 3))
// call to loop is a tail call, so no stack frame is allocated 
// expands to
(0 match {
   case 0 => 3
   case n => loop(n - 1, 3 + n)
 })
// expands to
(3)
// expands to
3


The non-tail recursive function computes the result (2 + (1 + (0))) If we look closely, we’ll see that the tail recursive version computes (((2) + 1) + 0), which simply accumulates the result in the reverse order. This works because addition is associative, meaning (a + b) + c == a + (b + c). This is our first criteria for using the “easy” method for converting to a tail recursive form: the operation that accumulates results must be associative.

This doesn’t explain, though, how we come to realize that addition is the correct operation to use. The second criteria is that we don’t need any memory beyond the partial result calculated from the data we’ve already seen. Some implications of this are that we can stop at any time and have a usable result, and that we are only applying a single operation to the data. This is not the case in the regular expression example. For example, we have the following code in the Append case:

case Append(left, right) =>
  loop(left, idx).flatMap(i => loop(right, i))


To compute the result for the Append we need to compute and combine results from both left and right. So when we have computed the result for right we need to remember both the result from left and that we’re combining the two results using the rule for Append rather than, say, OrElse. It’s remembering this that is exactly what the continuation does, and what stops us from using the easy method we saw when summing the elements of a list.

So, in summary, if we are applying only a single associative operation to data we can use the simple method for writing a tail recursive method:


	define an structurally recursive loop with an additional parameter that is the partial result or accumulator;

	in the base cases return the accumulator; and

	in the recursive cases update the accumulator and call the loop in tail position.



You might be wondering how we handle tree-shaped data with this technique. One consequence of an associative operation is that we can transform any sequence of operations into a list-shaped sequence. If, for example, we have an expression tree that suggests we should call operations in the order (1 + 2) + (3 + 4) (where I’m using + to indicate the operation) we can rewrite that to (((1 + 2) + 3) + 4) via associativity. So we can transform our tree into a list and then apply the recipe above.




5.4 Conclusions

In this chapter we’ve discussed why we might want to build interpreters, and seen techniques for building them. To recap, the core of the interpreter strategy is a separation between description and action. The description is the program, and the interpreter is the action that carries out the program. This separation is allows for composition of programs, and managing effects by delaying them till the time the program is run. We sometimes call this structure an algebra, with constructs and combinators defining programs and destructors defining interpreters. Although the name of the strategy focuses on the interpreter, the design of the program is just as important as it is the user interface through which the programmer interacts with the system.

Our starting implementation strategy is reification of the algebra’s constructors and compositional methods as an algebraic data type. The interpreter is then a structural recursion over this ADT. We saw that the straightforward implementation is not stack-safe, and which caused us to introduction the idea of tail recursion and continuations. We reified continuations as functions, and saw that we can convert any program into continuation-passing style which has every method call in tail position. Due to Scala runtime limitations not all calls in tail position can be converted to tail calls, so we reified calls and returns into data structures used by a recursive loop called a trampoline. Underlying all these strategies in the concept of duality. We have seen a duality between functions and data, which we utilize in reification, and a duality between calling functions and returning data, which we use in continuations and trampolines.

Stack-safe interpreters are important in many situations, but the code is harder to read than the basic structural recursion. In some contexts a basic interpreter may be just fine. It’s unlikely to run out of stack space when evaluating a straightforward expression tree, as in the arithmetic example. The depth of such a tree grows logarithmically with the number of elements, so only extremely large trees will have sufficient depth that stack safety becomes relevant. However, in the regular expression example the stack consumption is determined not by the depth of the regular expression tree, but by the length of the input being matched. In this situation stack safety is more important. There may still be other constraints that allow a simpler implementation. For example, if we know the library will only used in situations where inputs were guaranteed to be small. As always, only use coding techniques where they make sense.

These ideas are classics in programming language theory. Definitional Interpreters for Higher-Order Programming Languages, which was first published in 1972 though I link to the re-typeset version from 1998, details defunctionalization, a limited form of reification, and continuation passing style. These ideas are expanded on in Defunctionalization at Work. Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity is a very readable and elegant paper that highlights the importance of associativity in these transformations.
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6 Monoids and Semigroups

In this section we explore our first type classes, monoid and semigroup. These allow us to add or combine values. There are instances for Ints, Strings, Lists, Options, and many more. Let’s start by looking at a few simple types and operations to see what common principles we can extract.

Integer addition

Addition of Ints is a binary operation that is closed, meaning that adding two Ints always produces another Int:

2 + 1
// res0: Int = 3


There is also the identity element 0 with the property that a + 0 == 0 + a == a for any Int a:

2 + 0
// res1: Int = 2

0 + 2
// res2: Int = 2


There are also other properties of addition. For instance, it doesn’t matter in what order we add elements because we always get the same result. This is a property known as associativity:

(1 + 2) + 3
// res3: Int = 6

1 + (2 + 3)
// res4: Int = 6


Integer multiplication

The same properties for addition also apply for multiplication, provided we use 1 as the identity instead of 0:

1 * 3
// res5: Int = 3

3 * 1
// res6: Int = 3


Multiplication, like addition, is associative:

(1 * 2) * 3
// res7: Int = 6

1 * (2 * 3)
// res8: Int = 6


String and sequence concatenation

We can also add Strings, using string concatenation as our binary operator:

"One" ++ "two"
// res9: String = "Onetwo"


and the empty string as the identity:

"" ++ "Hello"
// res10: String = "Hello"

"Hello" ++ ""
// res11: String = "Hello"


Once again, concatenation is associative:

("One" ++ "Two") ++ "Three"
// res12: String = "OneTwoThree"

"One" ++ ("Two" ++ "Three")
// res13: String = "OneTwoThree"


Note that we used ++ above instead of the more usual + to suggest a parallel with sequences. We can do the same with other types of sequence, using concatenation as the binary operator and the empty sequence as our identity.


6.1 Definition of a Monoid

We’ve seen a number of “addition” scenarios above each with an associative binary addition and an identity element. It will be no surprise to learn that this is a monoid. Formally, a monoid for a type A is:


	an operation combine with type (A, A) => A

	an element empty of type A



This definition translates nicely into Scala code. Here is a simplified version of the definition from Cats:

trait Monoid[A] {
  def combine(x: A, y: A): A
  def empty: A
}


In addition to providing the combine and empty operations, monoids must formally obey several laws. For all values x, y, and z, in A, combine must be associative and empty must be an identity element:

def associativeLaw[A](x: A, y: A, z: A)
      (implicit m: Monoid[A]): Boolean = {
  m.combine(x, m.combine(y, z)) ==
    m.combine(m.combine(x, y), z)
}

def identityLaw[A](x: A)
      (implicit m: Monoid[A]): Boolean = {
  (m.combine(x, m.empty) == x) &&
    (m.combine(m.empty, x) == x)
}


Integer subtraction, for example, is not a monoid because subtraction is not associative:

(1 - 2) - 3
// res14: Int = -4

1 - (2 - 3)
// res15: Int = 2


In practice we only need to think about laws when we are writing our own Monoid instances. Unlawful instances are dangerous because they can yield unpredictable results when used with the rest of Cats’ machinery. Most of the time we can rely on the instances provided by Cats and assume the library authors know what they’re doing.



6.2 Definition of a Semigroup

A semigroup is just the combine part of a monoid, without the empty part. While many semigroups are also monoids, there are some data types for which we cannot define an empty element. For example, we have just seen that sequence concatenation and integer addition are monoids. However, if we restrict ourselves to non-empty sequences and positive integers, we are no longer able to define a sensible empty element. Cats has a NonEmptyList data type that has an implementation of Semigroup but no implementation of Monoid.

A more accurate (though still simplified) definition of Cats’ Monoid is:

trait Semigroup[A] {
  def combine(x: A, y: A): A
}

trait Monoid[A] extends Semigroup[A] {
  def empty: A
}


We’ll see this kind of inheritance often when discussing type classes. It provides modularity and allows us to re-use behaviour. If we define a Monoid for a type A, we get a Semigroup for free. Similarly, if a method requires a parameter of type Semigroup[B], we can pass a Monoid[B] instead.



6.3 Exercise: The Truth About Monoids

We’ve seen a few examples of monoids but there are plenty more to be found. Consider Boolean. How many monoids can you define for this type? For each monoid, define the combine and empty operations and convince yourself that the monoid laws hold. Use the following definitions as a starting point:

trait Semigroup[A] {
  def combine(x: A, y: A): A
}

trait Monoid[A] extends Semigroup[A] {
  def empty: A
}

object Monoid {
  def apply[A](implicit monoid: Monoid[A]) =
    monoid
}


See the solution



6.4 Exercise: All Set for Monoids

What monoids and semigroups are there for sets?

See the solution



6.5 Monoids in Cats

Now we’ve seen what monoids are, let’s look at their implementation in Cats. Once again we’ll look at the three main aspects of the implementation: the type class, the instances, and the interface.


6.5.1 The Monoid Type Class

The monoid type class is cats.kernel.Monoid, which is aliased as cats.Monoid. Monoid extends cats.kernel.Semigroup, which is aliased as cats.Semigroup. When using Cats we normally import type classes from the cats package:

import cats.Monoid
import cats.Semigroup



Cats Kernel?

Cats Kernel is a subproject of Cats providing a small set of typeclasses for libraries that don’t require the full Cats toolbox. While these core type classes are technically defined in the cats.kernel package, they are all aliased to the cats package so we rarely need to be aware of the distinction.

The Cats Kernel type classes covered in this book are Eq, Semigroup, and Monoid. All the other type classes we cover are part of the main Cats project and are defined directly in the cats package.





6.5.2 Monoid Instances

Monoid follows the standard Cats pattern for the user interface: the companion object has an apply method that returns the type class instance for a particular type. For example, if we want the monoid instance for String, and we have the correct implicits in scope, we can write the following:

import cats.Monoid
import cats.instances.string._ // for Monoid


Monoid[String].combine("Hi ", "there")
// res0: String = "Hi there"
Monoid[String].empty
// res1: String = ""


which is equivalent to:

Monoid.apply[String].combine("Hi ", "there")
// res2: String = "Hi there"
Monoid.apply[String].empty
// res3: String = ""


As we know, Monoid extends Semigroup. If we don’t need empty we can equivalently write:

import cats.Semigroup


Semigroup[String].combine("Hi ", "there")
// res4: String = "Hi there"


The type class instances for Monoid are organised under cats.instances in the standard way described in Chapter 4.4.2. For example, if we want to pull in instances for Int we import from cats.instances.int:

import cats.Monoid
import cats.instances.int._ // for Monoid


Monoid[Int].combine(32, 10)
// res5: Int = 42


Similarly, we can assemble a Monoid[Option[Int]] using instances from cats.instances.int and cats.instances.option:

import cats.Monoid
import cats.instances.int._    // for Monoid
import cats.instances.option._ // for Monoid


val a = Option(22)
// a: Option[Int] = Some(value = 22)
val b = Option(20)
// b: Option[Int] = Some(value = 20)

Monoid[Option[Int]].combine(a, b)
// res6: Option[Int] = Some(value = 42)


Refer back to Chapter 4.4.2 for a more comprehensive list of imports.

As always, unless we have a good reason to import individual instances, we can just import everything.

import cats._
import cats.implicits._




6.5.3 Monoid Syntax

Cats provides syntax for the combine method in the form of the |+| operator. Because combine technically comes from Semigroup, we access the syntax by importing from cats.syntax.semigroup:

import cats.instances.string._ // for Monoid
import cats.syntax.semigroup._ // for |+|


val stringResult = "Hi " |+| "there" |+| Monoid[String].empty
// stringResult: String = "Hi there"


import cats.instances.int._ // for Monoid


val intResult = 1 |+| 2 |+| Monoid[Int].empty
// intResult: Int = 3




6.5.4 Exercise: Adding All The Things

The cutting edge SuperAdder v3.5a-32 is the world’s first choice for adding together numbers. The main function in the program has signature def add(items: List[Int]): Int. In a tragic accident this code is deleted! Rewrite the method and save the day!

See the solution

Well done! SuperAdder’s market share continues to grow, and now there is demand for additional functionality. People now want to add List[Option[Int]]. Change add so this is possible. The SuperAdder code base is of the highest quality, so make sure there is no code duplication!

See the solution

SuperAdder is entering the POS (point-of-sale, not the other POS) market. Now we want to add up Orders:

case class Order(totalCost: Double, quantity: Double)


We need to release this code really soon so we can’t make any modifications to add. Make it so!

See the solution




6.6 Applications of Monoids

We now know what a monoid is—an abstraction of the concept of adding or combining—but where is it useful? Here are a few big ideas where monoids play a major role. These are explored in more detail in case studies later in the book.


6.6.1 Big Data

In big data applications like Spark and Hadoop we distribute data analysis over many machines, giving fault tolerance and scalability. This means each machine will return results over a portion of the data, and we must then combine these results to get our final result. In the vast majority of cases this can be viewed as a monoid.

If we want to calculate how many total visitors a web site has received, that means calculating an Int on each portion of the data. We know the monoid instance of Int is addition, which is the right way to combine partial results.

If we want to find out how many unique visitors a website has received, that’s equivalent to building a Set[User] on each portion of the data. We know the monoid instance for Set is the set union, which is the right way to combine partial results.

If we want to calculate 99% and 95% response times from our server logs, we can use a data structure called a QTree for which there is a monoid.

Hopefully you get the idea. Almost every analysis that we might want to do over a large data set is a monoid, and therefore we can build an expressive and powerful analytics system around this idea. This is exactly what Twitter’s Algebird and Summingbird projects have done. We explore this idea further in the map-reduce case study in Section 14.



6.6.2 Distributed Systems

In a distributed system, different machines may end up with different views of data. For example, one machine may receive an update that other machines did not receive. We would like to reconcile these different views, so every machine has the same data if no more updates arrive. This is called eventual consistency.

A particular class of data types support this reconciliation. These data types are called commutative replicated data types (CRDTs). The key operation is the ability to merge two data instances, with a result that captures all the information in both instances. This operation relies on having a monoid instance. We explore this idea further in the CRDT case study.



6.6.3 Monoids in the Small

The two examples above are cases where monoids inform the entire system architecture. There are also many cases where having a monoid around makes it easier to write a small code fragment. We’ll see lots of examples in the case studies in this book.




6.7 Summary

We hit a big milestone in this chapter—we covered our first type classes with fancy functional programming names:


	a Semigroup represents an addition or combination operation;

	a Monoid extends a Semigroup by adding an identity or “zero” element.



We can use Semigroups and Monoids by importing three things: the type classes themselves, the instances for the types we care about, and the semigroup syntax to give us the |+| operator:

import cats.Monoid
import cats.instances.string._ // for Monoid
import cats.syntax.semigroup._ // for |+|


"Scala" |+| " with " |+| "Cats"
// res0: String = "Scala with Cats"


With the correct instances in scope, we can set about adding anything we want:

import cats.instances.int._    // for Monoid
import cats.instances.option._ // for Monoid


Option(1) |+| Option(2)
// res1: Option[Int] = Some(value = 3)


import cats.instances.map._ // for Monoid

val map1 = Map("a" -> 1, "b" -> 2)
val map2 = Map("b" -> 3, "d" -> 4)


map1 |+| map2
// res2: Map[String, Int] = Map("b" -> 5, "d" -> 4, "a" -> 1)


import cats.instances.tuple._  // for Monoid


val tuple1 = ("hello", 123)
val tuple2 = ("world", 321)


tuple1 |+| tuple2
// res3: Tuple2[String, Int] = ("helloworld", 444)


We can also write generic code that works with any type for which we have an instance of Monoid:

def addAll[A](values: List[A])
      (implicit monoid: Monoid[A]): A =
  values.foldRight(monoid.empty)(_ |+| _)


addAll(List(1, 2, 3))
// res4: Int = 6
addAll(List(None, Some(1), Some(2)))
// res5: Option[Int] = Some(value = 3)


Monoids are a great gateway to Cats. They’re easy to understand and simple to use. However, they’re just the tip of the iceberg in terms of the abstractions Cats enables us to make. In the next chapter we’ll look at functors, the type class personification of the beloved map method. That’s where the fun really begins!
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7 Functors

In this chapter we will investigate functors, an abstraction that allows us to represent sequences of operations within a context such as a List, an Option, or any one of a thousand other possibilities. Functors on their own aren’t so useful, but special cases of functors, such as monads and applicative functors, are some of the most commonly used abstractions in Cats.


7.1 Examples of Functors

Informally, a functor is anything with a map method. You probably know lots of types that have this: Option, List, and Either, to name a few.

We typically first encounter map when iterating over Lists. However, to understand functors we need to think of the method in another way. Rather than traversing the list, we should think of it as transforming all of the values inside in one go. We specify the function to apply, and map ensures it is applied to every item. The values change but the structure of the list (the number of elements and their order) remains the same:

List(1, 2, 3).map(n => n + 1)
// res0: List[Int] = List(2, 3, 4)


Similarly, when we map over an Option, we transform the contents but leave the Some or None context unchanged. The same principle applies to Either with its Left and Right contexts. This general notion of transformation, along with the common pattern of type signatures shown in Figure 1, is what connects the behaviour of map across different data types.


[image: Type chart: mapping over List, Option, and Either]
Figure 1: Type chart: mapping over List, Option, and Either

Because map leaves the structure of the context unchanged, we can call it repeatedly to sequence multiple computations on the contents of an initial data structure:

List(1, 2, 3).
  map(n => n + 1).
  map(n => n * 2).
  map(n => s"${n}!")
// res1: List[String] = List("4!", "6!", "8!")


We should think of map not as an iteration pattern, but as a way of sequencing computations on values ignoring some complication dictated by the relevant data type:


	Option—the value may or may not be present;

	Either—there may be a value or an error;

	List—there may be zero or more values.





7.2 More Examples of Functors

The map methods of List, Option, and Either apply functions eagerly. However, the idea of sequencing computations is more general than this. Let’s investigate the behaviour of some other functors that apply the pattern in different ways.

Futures

Future is a functor that sequences asynchronous computations by queueing them and applying them as their predecessors complete. The type signature of its map method, shown in Figure 2, has the same shape as the signatures above. However, the behaviour is very different.


[image: Type chart: mapping over a Future]
Figure 2: Type chart: mapping over a Future

When we work with a Future we have no guarantees about its internal state. The wrapped computation may be ongoing, complete, or rejected. If the Future is complete, our mapping function can be called immediately. If not, some underlying thread pool queues the function call and comes back to it later. We don’t know when our functions will be called, but we do know what order they will be called in. In this way, Future provides the same sequencing behaviour seen in List, Option, and Either:

import scala.concurrent.{Future, Await}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._

val future: Future[String] =
  Future(123).
    map(n => n + 1).
    map(n => n * 2).
    map(n => s"${n}!")


Await.result(future, 1.second)
// res2: String = "248!"



Futures and Referential Transparency

Note that Scala’s Futures aren’t a great example of pure functional programming because they aren’t referentially transparent. Future always computes and caches a result and there’s no way for us to tweak this behaviour. This means we can get unpredictable results when we use Future to wrap side-effecting computations. For example:

import scala.util.Random

val future1 = {
  // Initialize Random with a fixed seed:
  val r = new Random(0L)

  // nextInt has the side-effect of moving to
  // the next random number in the sequence:
  val x = Future(r.nextInt())

  for {
    a <- x
    b <- x
  } yield (a, b)
}

val future2 = {
  val r = new Random(0L)

  for {
    a <- Future(r.nextInt())
    b <- Future(r.nextInt())
  } yield (a, b)
}


val result1 = Await.result(future1, 1.second)
// result1: Tuple2[Int, Int] = (-1155484576, -1155484576)
val result2 = Await.result(future2, 1.second)
// result2: Tuple2[Int, Int] = (-1155484576, -723955400)


Ideally we would like result1 and result2 to contain the same value. However, the computation for future1 calls nextInt once and the computation for future2 calls it twice. Because nextInt returns a different result every time we get a different result in each case.

This kind of discrepancy makes it hard to reason about programs involving Futures and side-effects. There also are other problematic aspects of Future's behaviour, such as the way it always starts computations immediately rather than allowing the user to dictate when the program should run. For more information see this excellent Reddit answer by Rob Norris.

When we look at Cats Effect we’ll see that the IO type solves these problems.



If Future isn’t referentially transparent, perhaps we should look at another similar data-type that is. You should recognise this one…

Functions (?!)

It turns out that single argument functions are also functors. To see this we have to tweak the types a little. A function A => B has two type parameters: the parameter type A and the result type B. To coerce them to the correct shape we can fix the parameter type and let the result type vary:


	start with X => A;

	supply a function A => B;

	get back X => B.



If we alias X => A as MyFunc[A], we see the same pattern of types we saw with the other examples in this chapter. We also see this in Figure 3:


	start with MyFunc[A];

	supply a function A => B;

	get back MyFunc[B].




[image: Type chart: mapping over a Function1]
Figure 3: Type chart: mapping over a Function1

In other words, “mapping” over a Function1 is function composition:

import cats.instances.function._ // for Functor
import cats.syntax.functor._     // for map


val func1: Int => Double =
  (x: Int) => x.toDouble

val func2: Double => Double =
  (y: Double) => y * 2


(func1 map func2)(1)     // composition using map
// res3: Double = 2.0     // composition using map
(func1 andThen func2)(1) // composition using andThen
// res4: Double = 2.0 // composition using andThen
func2(func1(1))          // composition written out by hand
// res5: Double = 2.0


How does this relate to our general pattern of sequencing operations? If we think about it, function composition is sequencing. We start with a function that performs a single operation and every time we use map we append another operation to the chain. Calling map doesn’t actually run any of the operations, but if we can pass an argument to the final function all of the operations are run in sequence. We can think of this as lazily queueing up operations similar to Future:

val func =
  ((x: Int) => x.toDouble).
    map(x => x + 1).
    map(x => x * 2).
    map(x => s"${x}!")


func(123)
// res6: String = "248.0!"



Partial Unification

For the above examples to work, in versions of Scala before 2.13, we need to add the following compiler option to build.sbt:

scalacOptions += "-Ypartial-unification"


otherwise we’ll get a compiler error:

func1.map(func2)
// <console>: error: value map is not a member of Int => Double
//        func1.map(func2)
                ^


We’ll look at why this happens in detail in Section 7.8.





7.3 Definition of a Functor

Every example we’ve looked at so far is a functor: a class that encapsulates sequencing computations. Formally, a functor is a type F[A] with an operation map with type (A => B) => F[B]. The general type chart is shown in Figure 4.


[image: Type chart: generalised functor map]
Figure 4: Type chart: generalised functor map

Cats encodes Functor as a type class, cats.Functor, so the method looks a little different. It accepts the initial F[A] as a parameter alongside the transformation function. Here’s a simplified version of the definition:

package cats



trait Functor[F[_]] {
  def map[A, B](fa: F[A])(f: A => B): F[B]
}


If you haven’t seen syntax like F[_] before, it’s time to take a brief detour to discuss type constructors and higher kinded types.


Functor Laws

Functors guarantee the same semantics whether we sequence many small operations one by one, or combine them into a larger function before mapping. To ensure this is the case the following laws must hold:

Identity: calling map with the identity function is the same as doing nothing:

fa.map(a => a) == fa


Composition: mapping with two functions f and g is the same as mapping with f and then mapping with g:

fa.map(g(f(_))) == fa.map(f).map(g)






7.4 Aside: Higher Kinds and Type Constructors

Kinds are like types for types. They describe the number of “holes” in a type. We distinguish between regular types that have no holes and “type constructors” that have holes we can fill to produce types.

For example, List is a type constructor with one hole. We fill that hole by specifying a parameter to produce a regular type like List[Int] or List[A]. The trick is not to confuse type constructors with generic types. List is a type constructor, List[A] is a type:

List    // type constructor, takes one parameter
List[A] // type, produced by applying a type parameter


There’s a close analogy here with functions and values. Functions are “value constructors”—they produce values when we supply parameters:

math.abs    // function, takes one parameter
math.abs(x) // value, produced by applying a value parameter


In Scala we declare type constructors using underscores. This specifies how many “holes” the type constructor has. However, to use them we refer to just the name.

// Declare F using underscores:
def myMethod[F[_]] = {

  // Reference F without underscores:
  val functor = Functor.apply[F]

  // ...
}


This is analogous to specifying function parameter types. When we declare a parameter we also give its type. However, to use them we refer to just the name.

// Declare f specifying parameter types
def f(x: Int): Int = 
  // Reference x without type
  x * 2


Armed with this knowledge of type constructors, we can see that the Cats definition of Functor allows us to create instances for any single-parameter type constructor, such as List, Option, Future, or a type alias such as MyFunc.


Language Feature Imports

In versions of Scala before 2.13 we need to “enable” the higher kinded type language feature, to suppress warnings from the compiler, whenever we declare a type constructor with A[_] syntax. We can either do this with a “language import” as above:

import scala.language.higherKinds


or by adding the following to scalacOptions in build.sbt:

scalacOptions += "-language:higherKinds"


In practice we find the scalacOptions flag to be the simpler of the two options.





7.5 Functors in Cats

Let’s look at the implementation of functors in Cats. We’ll examine the same aspects we did for monoids: the type class, the instances, and the syntax.


7.5.1 The Functor Type Class and Instances

The functor type class is cats.Functor. We obtain instances using the standard Functor.apply method on the companion object. As usual, default instances are arranged by type in the cats.instances package:

import cats.Functor
import cats.instances.list._   // for Functor
import cats.instances.option._ // for Functor


val list1 = List(1, 2, 3)
// list1: List[Int] = List(1, 2, 3)
val list2 = Functor[List].map(list1)(_ * 2)
// list2: List[Int] = List(2, 4, 6)

val option1 = Option(123)
// option1: Option[Int] = Some(value = 123)
val option2 = Functor[Option].map(option1)(_.toString)
// option2: Option[String] = Some(value = "123")


Functor provides a method called lift, which converts a function of type A => B to one that operates over a functor and has type F[A] => F[B]:

val func = (x: Int) => x + 1
// func: Function1[Int, Int] = repl.MdocSession$MdocApp0$$$Lambda$19546/0x00007efd66e94220@59d49026

val liftedFunc = Functor[Option].lift(func)
// liftedFunc: Function1[Option[Int], Option[Int]] = cats.Functor$$Lambda$19547/0x00007efd66e6a8c0@5f097442

liftedFunc(Option(1))
// res1: Option[Int] = Some(value = 2)


The as method is the other method you are likely to use. It replaces with value inside the Functor with the given value.

Functor[List].as(list1, "As")
// res2: List[String] = List("As", "As", "As")




7.5.2 Functor Syntax

The main method provided by the syntax for Functor is map. It’s difficult to demonstrate this with Options and Lists as they have their own built-in map methods and the Scala compiler will always prefer a built-in method over an extension method. We’ll work around this with two examples.

First let’s look at mapping over functions. Scala’s Function1 type doesn’t have a map method (it’s called andThen instead) so there are no naming conflicts:

import cats.instances.function._ // for Functor
import cats.syntax.functor._     // for map


val func1 = (a: Int) => a + 1
val func2 = (a: Int) => a * 2
val func3 = (a: Int) => s"${a}!"
val func4 = func1.map(func2).map(func3)


func4(123)
// res3: String = "248!"


Let’s look at another example. This time we’ll abstract over functors so we’re not working with any particular concrete type. We can write a method that applies an equation to a number no matter what functor context it’s in:

def doMath[F[_]](start: F[Int])
    (implicit functor: Functor[F]): F[Int] =
  start.map(n => n + 1 * 2)

import cats.instances.option._ // for Functor
import cats.instances.list._   // for Functor


doMath(Option(20))
// res4: Option[Int] = Some(value = 22)
doMath(List(1, 2, 3))
// res5: List[Int] = List(3, 4, 5)


To illustrate how this works, let’s take a look at the definition of the map method in cats.syntax.functor. Here’s a simplified version of the code:

implicit class FunctorOps[F[_], A](src: F[A]) {
  def map[B](func: A => B)
      (implicit functor: Functor[F]): F[B] =
    functor.map(src)(func)
}


The compiler can use this extension method to insert a map method wherever no built-in map is available:

foo.map(value => value + 1)


Assuming foo has no built-in map method, the compiler detects the potential error and wraps the expression in a FunctorOps to fix the code:

new FunctorOps(foo).map(value => value + 1)


The map method of FunctorOps requires an implicit Functor as a parameter. This means this code will only compile if we have a Functor for F in scope. If we don’t, we get a compiler error:

final case class Box[A](value: A)

val box = Box[Int](123)


box.map(value => value + 1)
// error: 
// value map is not a member of repl.MdocSession.MdocApp0.Box[Int]


The as method is also available as syntax.

List(1, 2, 3).as("As")
// res7: List[String] = List("As", "As", "As")




7.5.3 Instances for Custom Types

We can define a functor simply by defining its map method. Here’s an example of a Functor for Option, even though such a thing already exists in cats.instances. The implementation is trivial—we simply call Option's map method:

implicit val optionFunctor: Functor[Option] =
  new Functor[Option] {
    def map[A, B](value: Option[A])(func: A => B): Option[B] =
      value.map(func)
  }


Sometimes we need to inject dependencies into our instances. For example, if we had to define a custom Functor for Future (another hypothetical example—Cats provides one in cats.instances.future) we would need to account for the implicit ExecutionContext parameter on future.map. We can’t add extra parameters to functor.map so we have to account for the dependency when we create the instance:

import scala.concurrent.{Future, ExecutionContext}

implicit def futureFunctor
    (implicit ec: ExecutionContext): Functor[Future] =
  new Functor[Future] {
    def map[A, B](value: Future[A])(func: A => B): Future[B] =
      value.map(func)
  }


Whenever we summon a Functor for Future, either directly using Functor.apply or indirectly via the map extension method, the compiler will locate futureFunctor by implicit resolution and recursively search for an ExecutionContext at the call site. This is what the expansion might look like:

// We write this:
Functor[Future]

// The compiler expands to this first:
Functor[Future](futureFunctor)

// And then to this:
Functor[Future](futureFunctor(executionContext))




7.5.4 Exercise: Branching out with Functors

Write a Functor for the following binary tree data type. Verify that the code works as expected on instances of Branch and Leaf:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])
  extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]


See the solution




7.6 Contravariant and Invariant Functors

As we have seen, we can think of Functor's map method as “appending” a transformation to a chain. We’re now going to look at two other type classes, one representing prepending operations to a chain, and one representing building a bidirectional chain of operations. These are called contravariant and invariant functors respectively.


This Section is Optional!

You don’t need to know about contravariant and invariant functors to understand monads, which are the most important pattern in this book and the focus of the next chapter. However, contravariant and invariant do come in handy in our discussion of Semigroupal and Applicative in Chapter 10.

If you want to move on to monads now, feel free to skip straight to Chapter 8. Come back here before you read Chapter 10.




7.6.1 Contravariant Functors and the contramap Method

The first of our type classes, the contravariant functor, provides an operation called contramap that represents “prepending” an operation to a chain. The general type signature is shown in Figure 5.


[image: Type chart: the contramap method]
Figure 5: Type chart: the contramap method

The contramap method only makes sense for data types that represent transformations. For example, we can’t define contramap for an Option because there is no way of feeding a value in an Option[B] backwards through a function A => B. However, we can define contramap for the Printable type class we discussed in Chapter 4:

trait Printable[A] {
  def format(value: A): String
}


A Printable[A] represents a transformation from A to String. Its contramap method accepts a function func of type B => A and creates a new Printable[B]:

trait Printable[A] {
  def format(value: A): String

  def contramap[B](func: B => A): Printable[B] =
    ???
}

def format[A](value: A)(implicit p: Printable[A]): String =
  p.format(value)



7.6.1.1 Exercise: Showing off with Contramap

Implement the contramap method for Printable above. Start with the following code template and replace the ??? with a working method body:

trait Printable[A] {
  def format(value: A): String

  def contramap[B](func: B => A): Printable[B] =
    new Printable[B] {
      def format(value: B): String =
        ???
    }
}


If you get stuck, think about the types. You need to turn value, which is of type B, into a String. What functions and methods do you have available and in what order do they need to be combined?

See the solution

For testing purposes, let’s define some instances of Printable for String and Boolean:

implicit val stringPrintable: Printable[String] =
  new Printable[String] {
    def format(value: String): String =
      s"'${value}'"
  }

implicit val booleanPrintable: Printable[Boolean] =
  new Printable[Boolean] {
    def format(value: Boolean): String =
      if(value) "yes" else "no"
  }


format("hello")
// res2: String = "'hello'"
format(true)
// res3: String = "yes"


Now define an instance of Printable for the following Box case class. You’ll need to write this as an implicit def as described in Section 4.2.3:

final case class Box[A](value: A)


Rather than writing out the complete definition from scratch (new Printable[Box] etc…), create your instance from an existing instance using contramap.

Your instance should work as follows:

format(Box("hello world"))
// res4: String = "'hello world'"
format(Box(true))
// res5: String = "yes"


If we don’t have a Printable for the type inside the Box, calls to format should fail to compile:

format(Box(123))
// error:
// No given instance of type repl.MdocSession.MdocApp1.Printable[repl.MdocSession.MdocApp1.Box[Int]] was found for parameter p of method format in object MdocApp1.
// I found:
// 
//     repl.MdocSession.MdocApp1.boxPrintable[A](
//       /* missing */summon[repl.MdocSession.MdocApp1.Printable[A]])
// 
// But no implicit values were found that match type repl.MdocSession.MdocApp1.Printable[A].
// def encode[A](value: A)(implicit c: Codec[A]): String =
//


See the solution




7.6.2 Invariant functors and the imap method

Invariant functors implement a method called imap that is informally equivalent to a combination of map and contramap. If map generates new type class instances by appending a function to a chain, and contramap generates them by prepending an operation to a chain, imap generates them via a pair of bidirectional transformations.

The most intuitive examples of this are a type class that represents encoding and decoding as some data type, such as Play JSON’s Format and scodec’s Codec. We can build our own Codec by enhancing Printable to support encoding and decoding to/from a String:

trait Codec[A] {
  def encode(value: A): String
  def decode(value: String): A
  def imap[B](dec: A => B, enc: B => A): Codec[B] = ???
}


def encode[A](value: A)(implicit c: Codec[A]): String =
  c.encode(value)

def decode[A](value: String)(implicit c: Codec[A]): A =
  c.decode(value)


The type chart for imap is shown in Figure 6. If we have a Codec[A] and a pair of functions A => B and B => A, the imap method creates a Codec[B]:


[image: Type chart: the imap method]
Figure 6: Type chart: the imap method

As an example use case, imagine we have a basic Codec[String], whose encode and decode methods both simply return the value they are passed:

implicit val stringCodec: Codec[String] =
  new Codec[String] {
    def encode(value: String): String = value
    def decode(value: String): String = value
  }


We can construct many useful Codecs for other types by building off of stringCodec using imap:

implicit val intCodec: Codec[Int] =
  stringCodec.imap(_.toInt, _.toString)

implicit val booleanCodec: Codec[Boolean] =
  stringCodec.imap(_.toBoolean, _.toString)



Coping with Failure

Note that the decode method of our Codec type class doesn’t account for failures. If we want to model more sophisticated relationships we can move beyond functors to look at lenses and optics.

Optics are beyond the scope of this book. However, Julien Truffaut’s library Monocle provides a great starting point for further investigation.




7.6.2.1 Transformative Thinking with imap

Implement the imap method for Codec above.

See the solution

Demonstrate your imap method works by creating a Codec for Double.

See the solution

Finally, implement a Codec for the following Box type:

final case class Box[A](value: A)


See the solution

Your instances should work as follows:

encode(123.4)
// res11: String = "123.4"
decode[Double]("123.4")
// res12: Double = 123.4

encode(Box(123.4))
// res13: String = "123.4"
decode[Box[Double]]("123.4")
// res14: Box[Double] = Box(value = 123.4)



What’s With the Names?

What’s the relationship between the terms “contravariance”, “invariance”, and “covariance” and these different kinds of functor?

If you recall from Section 4.6.1, variance affects subtyping, which is essentially our ability to use a value of one type in place of a value of another type without breaking the code.

Subtyping can be viewed as a conversion. If B is a subtype of A, we can always convert a B to an A.

Equivalently we could say that B is a subtype of A if there exists a function B => A. A standard covariant functor captures exactly this. If F is a covariant functor, wherever we have an F[B] and a conversion B => A we can always convert to an F[A].

A contravariant functor captures the opposite case. If F is a contravariant functor, whenever we have a F[A] and a conversion B => A we can convert to an F[B].

Finally, invariant functors capture the case where we can convert from F[A] to F[B] via a function A => B and vice versa via a function B => A.







7.7 Contravariant and Invariant in Cats

Let’s look at the implementation of contravariant and invariant functors in Cats, provided by the cats.Contravariant and cats.Invariant type classes. Here’s a simplified version of the code:

trait Contravariant[F[_]] {
  def contramap[A, B](fa: F[A])(f: B => A): F[B]
}

trait Invariant[F[_]] {
  def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]
}



7.7.1 Contravariant in Cats

We can summon instances of Contravariant using the Contravariant.apply method. Cats provides instances for data types that consume parameters, including Eq, Show, and Function1. Here’s an example:

import cats.Contravariant
import cats.Show
import cats.instances.string._

val showString = Show[String]

val showSymbol = Contravariant[Show].
  contramap(showString)((sym: Symbol) => s"'${sym.name}")


showSymbol.show(Symbol("dave"))
// res1: String = "'dave"


More conveniently, we can use cats.syntax.contravariant, which provides a contramap extension method:

import cats.syntax.contravariant._ // for contramap


showString
  .contramap[Symbol](sym => s"'${sym.name}")
  .show(Symbol("dave"))
// res2: String = "'dave"




7.7.2 Invariant in Cats

Among other types, Cats provides an instance of Invariant for Monoid. This is a little different from the Codec example we introduced in Section 7.6.2. If you recall, this is what Monoid looks like:

package cats

trait Monoid[A] {
  def empty: A
  def combine(x: A, y: A): A
}


Imagine we want to produce a Monoid for Scala’s Symbol type. Cats doesn’t provide a Monoid for Symbol but it does provide a Monoid for a similar type: String. We can write our new semigroup with an empty method that relies on the empty String, and a combine method that works as follows:


	accept two Symbols as parameters;

	convert the Symbols to Strings;

	combine the Strings using Monoid[String];

	convert the result back to a Symbol.



We can implement combine using imap, passing functions of type String => Symbol and Symbol => String as parameters. Here’ the code, written out using the imap extension method provided by cats.syntax.invariant:

import cats.Monoid
import cats.instances.string._ // for Monoid
import cats.syntax.invariant._ // for imap
import cats.syntax.semigroup._ // for |+|

implicit val symbolMonoid: Monoid[Symbol] =
  Monoid[String].imap(Symbol.apply)(_.name)


Monoid[Symbol].empty
// res3: Symbol = '

Symbol("a") |+| Symbol("few") |+| Symbol("words")
// res4: Symbol = 'afewwords





7.8 Aside: Partial Unification

In Section 7.2 we saw a functor instance for Function1.

import cats.Functor
import cats.instances.function._ // for Functor
import cats.syntax.functor._     // for map

val func1 = (x: Int)    => x.toDouble
val func2 = (y: Double) => y * 2


val func3 = func1.map(func2)
// func3: Function1[Int, Double] = scala.Function1$$Lambda$19496/0x00007efd66cda310@280d76a6


Function1 has two type parameters (the function argument and the result type):

trait Function1[-A, +B] {
  def apply(arg: A): B
}


However, Functor accepts a type constructor with one parameter:

trait Functor[F[_]] {
  def map[A, B](fa: F[A])(func: A => B): F[B]
}


The compiler has to fix one of the two parameters of Function1 to create a type constructor of the correct kind to pass to Functor. It has two options to choose from:

type F[A] = Int => A
type F[A] = A => Double


We know that the former of these is the correct choice. However the compiler doesn’t understand what the code means. Instead it relies on a simple rule, implementing what is called “partial unification”.

The partial unification in the Scala compiler works by fixing type parameters from left to right. In the above example, the compiler fixes the Int in Int => Double and looks for a Functor for functions of type Int => ?:

type F[A] = Int => A

val functor = Functor[F]


This left-to-right elimination works for a wide variety of common scenarios, including Functors for types such as Function1 and Either:

val either: Either[String, Int] = Right(123)
// either: Either[String, Int] = Right(value = 123)

either.map(_ + 1)
// res0: Either[String, Int] = Right(value = 124)



Partial unification is the default behaviour in Scala 2.13. In earlier versions of Scala we need to add the -Ypartial-unification compiler flag. In sbt we would add the compiler flag in build.sbt:

scalacOptions += "-Ypartial-unification"


The rationale behind this change is discussed in SI-2712.




7.8.1 Limitations of Partial Unification

There are situations where left-to-right elimination is not the correct choice. One example is the Or type in Scalactic, which is a conventionally left-biased equivalent of Either:

type PossibleResult = ActualResult Or Error


Another example is the Contravariant functor for Function1.

While the covariant Functor for Function1 implements andThen-style left-to-right function composition, the Contravariant functor implements compose-style right-to-left composition. In other words, the following expressions are all equivalent:

val func3a: Int => Double =
  a => func2(func1(a))

val func3b: Int => Double =
  func2.compose(func1)


// Hypothetical example. This won't actually compile:
val func3c: Int => Double =
  func2.contramap(func1)


If we try this for real, however, our code won’t compile:

import cats.syntax.contravariant._ // for contramap


val func3c = func2.contramap(func1)
// error:
// value contramap is not a member of Double => Double.
// An extension method was tried, but could not be fully constructed:
// 
//     cats.syntax.contravariant.toContravariantOps[[R] =>> Double => R, A](
//       repl.MdocSession.MdocApp.func2)(
//       cats.instances.function.catsStdContravariantForFunction1[R])
// val func3c = func2.contramap(func1)
//              ^^^^^^^^^^^^^^^


The problem here is that the Contravariant for Function1 fixes the return type and leaves the parameter type varying, requiring the compiler to eliminate type parameters from right to left, as shown below and in Figure 7:

type F[A] = A => Double



[image: Type chart: contramapping over a Function1]
Figure 7: Type chart: contramapping over a Function1

The compiler fails simply because of its left-to-right bias. We can prove this by creating a type alias that flips the parameters on Function1:

type <=[B, A] = A => B


type F[A] = Double <= A


If we re-type func2 as an instance of <=, we reset the required order of elimination and we can call contramap as desired:

val func2b: Double <= Double = func2


val func3c = func2b.contramap(func1)
// func3c: Function1[Int, Double] = scala.Function1$$Lambda$19496/0x00007efd66cda310@7212d03d


The difference between func2 and func2b is purely syntactic—both refer to the same value and the type aliases are otherwise completely compatible. Incredibly, however, this simple rephrasing is enough to give the compiler the hint it needs to solve the problem.

It is rare that we have to do this kind of right-to-left elimination. Most multi-parameter type constructors are designed to be right-biased, requiring the left-to-right elimination that is supported by the compiler out of the box. However, it is useful to know about this quirk of elimination order in case you ever come across an odd scenario like the one above.




7.9 Summary

Functors represent sequencing behaviours. We covered three types of functor in this chapter:


	Regular covariant Functors, with their map method, represent the ability to apply functions to a value in some context. Successive calls to map apply these functions in sequence, each accepting the result of its predecessor as a parameter.


	Contravariant functors, with their contramap method, represent the ability to “prepend” functions to a function-like context. Successive calls to contramap sequence these functions in the opposite order to map.


	Invariant functors, with their imap method, represent bidirectional transformations.




Regular Functors are by far the most common of these type classes, but even then it is rare to use them on their own. Functors form a foundational building block of several more interesting abstractions that we use all the time. In the following chapters we will look at two of these abstractions: monads and applicative functors.

Functors for collections are extremely important, as they transform each element independently of the rest. This allows us to parallelise or distribute transformations on large collections, a technique leveraged heavily in “map-reduce” frameworks like Hadoop. We will investigate this approach in more detail in the map-reduce case study later in Section 14.

The Contravariant and Invariant type classes are less widely applicable but are still useful for building data types that represent transformations. We will revisit them to discuss the Semigroupal type class later in Chapter 10.
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8 Monads

Monads are one of the most common abstractions in Scala. Many Scala programmers quickly become intuitively familiar with monads, even if we don’t know them by name.

Informally, a monad is anything with a constructor and a flatMap method. All of the functors we saw in the last chapter are also monads, including Option, List, and Future. We even have special syntax to support monads: for comprehensions. However, despite the ubiquity of the concept, the Scala standard library lacks a concrete type to encompass “things that can be flatMapped”. This type class is one of the benefits brought to us by Cats.

In this chapter we will take a deep dive into monads. We will start by motivating them with a few examples. We’ll proceed to their formal definition and their implementation in Cats. Finally, we’ll tour some interesting monads that you may not have seen, providing introductions and examples of their use.


8.1 What is a Monad?

This is the question that has been posed in a thousand blog posts, with explanations and analogies involving concepts as diverse as cats, Mexican food, space suits full of toxic waste, and monoids in the category of endofunctors (whatever that means). We’re going to solve the problem of explaining monads once and for all by stating very simply:


A monad is a mechanism for sequencing computations.



That was easy! Problem solved, right? But then again, last chapter we said functors were a control mechanism for exactly the same thing. Ok, maybe we need some more discussion…

In Section 7.1 we said that functors allow us to sequence computations ignoring some complication. However, functors are limited in that they only allow this complication to occur once at the beginning of the sequence. They don’t account for further complications at each step in the sequence.

This is where monads come in. A monad’s flatMap method allows us to specify what happens next, taking into account an intermediate complication. The flatMap method of Option takes intermediate Options into account. The flatMap method of List handles intermediate Lists. And so on. In each case, the function passed to flatMap specifies the application-specific part of the computation, and flatMap itself takes care of the complication allowing us to flatMap again. Let’s ground things by looking at some examples.

Options

Option allows us to sequence computations that may or may not return values. Here are some examples:

def parseInt(str: String): Option[Int] =
  scala.util.Try(str.toInt).toOption

def divide(a: Int, b: Int): Option[Int] =
  if(b == 0) None else Some(a / b)


Each of these methods may “fail” by returning None. The flatMap method allows us to ignore this when we sequence operations:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =
  parseInt(aStr).flatMap { aNum =>
    parseInt(bStr).flatMap { bNum =>
      divide(aNum, bNum)
    }
  }


The semantics are:


	the first call to parseInt returns a None or a Some;

	if it returns a Some, the flatMap method calls our function and passes us the integer aNum;

	the second call to parseInt returns a None or a Some;

	if it returns a Some, the flatMap method calls our function and passes us bNum;

	the call to divide returns a None or a Some, which is our result.



At each step, flatMap chooses whether to call our function, and our function generates the next computation in the sequence. This is shown in Figure 8.


[image: Type chart: flatMap for Option]
Figure 8: Type chart: flatMap for Option

The result of the computation is an Option, allowing us to call flatMap again and so the sequence continues. This results in the fail-fast error handling behaviour that we know and love, where a None at any step results in a None overall:

stringDivideBy("6", "2")
// res0: Option[Int] = Some(value = 3)
stringDivideBy("6", "0")
// res1: Option[Int] = None
stringDivideBy("6", "foo")
// res2: Option[Int] = None
stringDivideBy("bar", "2")
// res3: Option[Int] = None


Every monad is also a functor (see below for proof), so we can rely on both flatMap and map to sequence computations that do and don’t introduce a new monad. Plus, if we have both flatMap and map we can use for comprehensions to clarify the sequencing behaviour:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =
  for {
    aNum <- parseInt(aStr)
    bNum <- parseInt(bStr)
    ans  <- divide(aNum, bNum)
  } yield ans


Lists

When we first encounter flatMap as budding Scala developers, we tend to think of it as a pattern for iterating over Lists. This is reinforced by the syntax of for comprehensions, which look very much like imperative for loops:

for {
  x <- (1 to 3).toList
  y <- (4 to 5).toList
} yield (x, y)
// res5: List[Tuple2[Int, Int]] = List(
//   (1, 4),
//   (1, 5),
//   (2, 4),
//   (2, 5),
//   (3, 4),
//   (3, 5)
// )


However, there is another mental model we can apply that highlights the monadic behaviour of List. If we think of Lists as sets of intermediate results, flatMap becomes a construct that calculates permutations and combinations.

For example, in the for comprehension above there are three possible values of x and two possible values of y. This means there are six possible values of (x, y). flatMap is generating these combinations from our code, which states the sequence of operations:


	get x

	get y

	create a tuple (x, y)




Futures

Future is a monad that sequences computations without worrying that they may be asynchronous:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

def doSomethingLongRunning: Future[Int] = ???
def doSomethingElseLongRunning: Future[Int] = ???

def doSomethingVeryLongRunning: Future[Int] =
  for {
    result1 <- doSomethingLongRunning
    result2 <- doSomethingElseLongRunning
  } yield result1 + result2


Again, we specify the code to run at each step, and flatMap takes care of all the horrifying underlying complexities of thread pools and schedulers.

If you’ve made extensive use of Future, you’ll know that the code above is running each operation in sequence. This becomes clearer if we expand out the for comprehension to show the nested calls to flatMap:

def doSomethingVeryLongRunning: Future[Int] =
  doSomethingLongRunning.flatMap { result1 =>
    doSomethingElseLongRunning.map { result2 =>
      result1 + result2
    }
  }


Each Future in our sequence is created by a function that receives the result from a previous Future. In other words, each step in our computation can only start once the previous step is finished. This is born out by the type chart for flatMap in Figure 9, which shows the function parameter of type A => Future[B].


[image: Type chart: flatMap for Future]
Figure 9: Type chart: flatMap for Future

We can run futures in parallel, of course, but that is another story and shall be told another time. Monads are all about sequencing.


8.1.1 Definition of a Monad

While we have only talked about flatMap above, monadic behaviour is formally captured in two operations:


	pure, of type A => F[A];

	flatMap
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9 Monad Transformers

Monads are like burritos, which means that once you acquire a taste, you’ll find yourself returning to them again and again. This is not without issues. As burritos can bloat the waist, monads can bloat the code base through nested for-comprehensions.

Imagine we are interacting with a database. We want to look up a user record. The user may or may not be present, so we return an Option[User]. Our communication with the database could fail for many reasons (network issues, authentication problems, and so on), so this result is wrapped up in an Either, giving us a final result of Either[Error, Option[User]].

To use this value we must nest flatMap calls (or equivalently, for-comprehensions):

def lookupUserName(id: Long): Either[Error, Option[String]] =
  for {
    optUser <- lookupUser(id)
  } yield {
    for { user <- optUser } yield user.name
  }


This quickly becomes very tedious.


9.1 Exercise: Composing Monads

A question arises. Given two arbitrary monads, can we combine them in some way to make a single monad? That is, do monads compose? We can try to write the code but we soon hit problems:

import cats.syntax.applicative._ // for pure


// Hypothetical example. This won't actually compile:
def compose[M1[_]: Monad, M2[_]: Monad] = {
  type Composed[A] = M1[M2[A]]

  new Monad[Composed] {
    def pure[A](a: A): Composed[A] =
      a.pure[M2].pure[M1]

    def flatMap[A, B](fa: Composed[A])
        (f: A => Composed[B]): Composed[B] =
      // Problem! How do we write flatMap?
      ???
  }
}


It is impossible to write a general definition of flatMap without knowing something about M1 or M2. However, if we do know something about one or other monad, we can typically complete this code. For example, if we fix M2 above to be Option, a definition of flatMap comes to light:

def flatMap[A, B](fa: Composed[A])
    (f: A => Composed[B]): Composed[B] =
  fa.flatMap(_.fold[Composed[B]](None.pure[M1])(f))


Notice that the definition above makes use of None—an Option-specific concept that doesn’t appear in the general Monad interface. We need this extra detail to combine Option with other monads. Similarly, there are things about other monads that help us write composed flatMap methods for them. This is the idea behind monad transformers: Cats defines transformers for a variety of monads, each providing the extra knowledge we need to compose that monad with others. Let’s look at some examples.



9.2 A Transformative Example

Cats provides transformers for many monads, each named with a T suffix: EitherT composes Either with other monads, OptionT composes Option, and so on.

Here’s an example that uses OptionT to compose List and Option. We can use OptionT[List, A], aliased to ListOption[A] for convenience, to transform a List[Option[A]] into a single monad:

import cats.data.OptionT

type ListOption[A] = OptionT[List, A]


Note how we build ListOption from the inside out: we pass List, the type of the outer monad, as a parameter to OptionT, the transformer for the inner monad.

We can create instances of ListOption using the OptionT constructor, or more conveniently using pure:

import cats.instances.list._     // for Monad
import cats.syntax.applicative._ // for pure


val result1: ListOption[Int] = OptionT(List(Option(10)))
// result1: OptionT[List, Int] = OptionT(value = List(Some(value = 10)))

val result2: ListOption[Int] = 32.pure[ListOption]
// result2: OptionT[List, Int] = OptionT(value = List(Some(value = 32)))


The map and flatMap methods combine the corresponding methods of List and Option into single operations:

result1.flatMap { (x: Int) =>
  result2.map { (y: Int) =>
    x + y
  }
}
// res1: OptionT[List, Int] = OptionT(value = List(Some(value = 42)))


This is the basis of all monad transformers. The combined map and flatMap methods allow us to use both component monads without having to recursively unpack and repack values at each stage in the computation. Now let’s look at the API in more depth.


Complexity of Imports

The imports in the code samples above hint at how everything bolts together.

We import cats.syntax.applicative to get the pure syntax. pure requires an implicit parameter of type Applicative[ListOption]. We haven’t met Applicatives yet, but all Monads are also Applicatives so we can ignore that difference for now.

In order to generate our Applicative[ListOption] we need instances of Applicative for List and OptionT. OptionT is a Cats data type so its instance is provided by its companion object. The instance for List comes from cats.instances.list.

Notice we’re not importing cats.syntax.functor or cats.syntax.flatMap. This is because OptionT is a concrete data type with its own explicit map and flatMap methods. It wouldn’t cause problems if we imported the syntax—the compiler would ignore it in favour of the explicit methods.

Remember that we’re subjecting ourselves to these shenanigans because we’re stubbornly refusing to use the universal Cats import, cats.implicits. If we did use that import, all of the instances and syntax we needed would be in scope and everything would just work.





9.3 Monad Transformers in Cats

Each monad transformer is a data type, defined in cats.data, that allows us to wrap stacks of monads to produce new monads. We use the monads we’ve built via the Monad type class. The main concepts we have to cover to understand monad transformers are:


	the available transformer classes;

	how to build stacks of monads using transformers;

	how to construct instances of a monad stack; and

	how to pull apart a stack to access the wrapped monads.




9.3.1 The Monad Transformer Classes

By convention, in Cats a monad Foo will have a transformer class called FooT. In fact, many monads in Cats are defined by combining a monad transformer with the Id monad. Concretely, some of the available instances are:


	cats.data.OptionT for Option;

	cats.data.EitherT for Either;

	cats.data.ReaderT for Reader;

	cats.data.WriterT for Writer;

	cats.data.StateT for State;

	cats.data.IdT for the Id monad.




Kleisli Arrows

In Section 8.8 we mentioned that the Reader monad was a specialisation of a more general concept called a “kleisli arrow”, represented in Cats as cats.data.Kleisli.

We can now reveal that Kleisli and ReaderT are, in fact, the same thing! ReaderT is actually a type alias for Kleisli. Hence, we were creating Readers last chapter and seeing Kleislis on the console.





9.3.2 Building Monad Stacks

All of these monad transformers follow the same convention. The transformer itself represents the inner monad in a stack, while the first type parameter specifies the outer monad. The remaining type parameters are the types we’ve used to form the corresponding monads.

For example, our ListOption type above is an alias for OptionT[List, A] but the result is effectively a List[Option[A]]. In other words, we build monad stacks from the inside out:

type ListOption[A] = OptionT[List, A]


Many monads and all transformers have at least two type parameters, so we often have to define type aliases for intermediate stages.

For example, suppose we want to wrap Either around Option. Option is the innermost type so we want to use the OptionT monad transformer. We need to use Either as the first type parameter. However, Either itself has two type parameters and monads only have one. We need a type alias to convert the type constructor to the correct shape:

// Alias Either to a type constructor with one parameter:
type ErrorOr[A] = Either[String, A]

// Build our final monad stack using OptionT:
type ErrorOrOption[A] = OptionT[ErrorOr, A]


ErrorOrOption is a monad, just like ListOption. We can use pure, map, and flatMap as usual to create and transform instances:

import cats.instances.either._ // for Monad


val a = 10.pure[ErrorOrOption]
// a: OptionT[ErrorOr, Int] = OptionT(value = Right(value = Some(value = 10)))
val b = 32.pure[ErrorOrOption]
// b: OptionT[ErrorOr, Int] = OptionT(value = Right(value = Some(value = 32)))

val c = a.flatMap(x => b.map(y => x + y))
// c: OptionT[ErrorOr, Int] = OptionT(value = Right(value = Some(value = 42)))


Things become even more confusing when we want to stack three or more monads.

For example, let’s create a Future of an Either of Option. Once again we build this from the inside out with an OptionT of an EitherT of Future. However, we can’t define this in one line because EitherT has three type parameters:

case class EitherT[F[_], E, A](stack: F[Either[E, A]]) {
  // etc...
}


The three type parameters are as follows:


	F[_] is the outer monad in the stack (Either is the inner);

	E is the error type for the Either;

	A is the result type for the Either.



This time we create an alias for EitherT that fixes Future and Error and allows A to vary:

import scala.concurrent.Future
import cats.data.{EitherT, OptionT}

type FutureEither[A] = EitherT[Future, String, A]

type FutureEitherOption[A] = OptionT[FutureEither, A]


Our mammoth stack now composes three monads and our map and flatMap methods cut through three layers of abstraction:

import cats.instances.future._ // for Monad
import scala.concurrent.Await
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._


val futureEitherOr: FutureEitherOption[Int] =
  for {
    a <- 10.pure[FutureEitherOption]
    b <- 32.pure[FutureEitherOption]
  } yield a + b



Kind Projector

If you frequently find yourself defining multiple type aliases when building monad stacks, you may want to try the Kind Projector compiler plugin. Kind Projector enhances Scala’s type syntax to make it easier to define partially applied type constructors. For example:

import cats.instances.option._ // for Monad // for Monad

123.pure[EitherT[Option, String, _]]
// res3: EitherT[[A >: Nothing <: Any] => Option[A], String, Int] = EitherT(
//   value = Some(value = Right(value = 123))
// )


Kind Projector can’t simplify all type declarations down to a single line, but it can reduce the number of intermediate type definitions needed to keep our code readable.





9.3.3 Constructing and Unpacking Instances

As we saw above, we can create transformed monad stacks using the relevant monad transformer’s apply method or the usual pure syntax
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10 Semigroupal and Applicative

In previous chapters we saw how functors and monads let us sequence operations using map and flatMap. While functors and monads are both immensely useful abstractions, there are certain types of program flow that they cannot represent.

One such example is form validation. When we validate a form we want to return all the errors to the user, not stop on the first error we encounter. If we model this with a monad like Either, we fail fast and lose errors. For example, the code below fails on the first call to parseInt and doesn’t go any further:

import cats.syntax.either._ // for catchOnly

def parseInt(str: String): Either[String, Int] =
  Either.catchOnly[NumberFormatException](str.toInt).
    leftMap(_ => s"Couldn't read $str")


for {
  a <- parseInt("a")
  b <- parseInt("b")
  c <- parseInt("c")
} yield (a + b + c)
// res0: Either[String, Int] = Left(value = "Couldn't read a")


Another example is the concurrent evaluation of Futures. If we have several long-running independent tasks, it makes sense to execute them concurrently. However, monadic comprehension only allows us to run them in sequence. map and flatMap aren’t quite capable of capturing what we want because they make the assumption that each computation is dependent on the previous one:

// context2 is dependent on value1:
context1.flatMap(value1 => context2)


The calls to parseInt and Future.apply above are independent of one another, but map and flatMap can’t exploit this. We need a weaker construct—one that doesn’t guarantee sequencing—to achieve the result we want. In this chapter we will look at three type classes that support this pattern:


	Semigroupal encompasses the notion of composing pairs of contexts. Cats provides a cats.syntax.apply module that makes use of Semigroupal and Functor to allow users to sequence functions with multiple arguments.


	Parallel converts types with a Monad instance to a related type with a Semigroupal instance.


	Applicative extends Semigroupal and Functor. It provides a way of applying functions to parameters within a context. Applicative is the source of the pure method we introduced in Chapter 8.




Applicatives are often formulated in terms of function application, instead of the semigroupal formulation that is emphasised in Cats. This alternative formulation provides a link to other libraries and languages such as Scalaz and Haskell. We’ll take a look at different formulations of Applicative, as well as the relationships between Semigroupal, Functor, Applicative, and Monad, towards the end of the chapter.


10.1 Semigroupal

cats.Semigroupal is a type class that allows us to combine contexts
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11 Foldable and Traverse

In this chapter we’ll look at two type classes that capture iteration over collections:


	Foldable abstracts the familiar foldLeft and foldRight operations;

	Traverse is a higher-level abstraction that uses Applicatives to iterate with less pain than folding.



We’ll start by looking at Foldable, and then examine cases where folding becomes complex and Traverse becomes convenient.


11.1 Foldable

The Foldable type class captures the foldLeft and foldRight methods we’re used to in sequences like Lists, Vectors, and Streams. Using Foldable, we can write generic folds that work with a variety of sequence types. We can also invent new sequences and plug them into our code. Foldable gives us great use cases for Monoids and the Eval monad.


11.1.1 Folds and Folding

Let’s start with a quick recap of the general concept of folding. We supply an accumulator value and a binary function to combine it with each item in the sequence:

def show[A](list: List[A]): String =
  list.foldLeft("nil")((accum, item) => s"$item then $accum")


show(Nil)
// res0: String = "nil"

show(List(1, 2, 3))
// res1: String = "3 then 2 then 1 then nil"


The foldLeft method works recursively down the sequence. Our binary function is called repeatedly for each item, the result of each call becoming the accumulator for the next. When we reach the end of the sequence, the final accumulator becomes our final result.

Depending on the operation we’re performing, the order in which we fold may be important. Because of this there are two standard variants of fold:


	foldLeft traverses from “left” to “right” (start to finish);

	foldRight traverses from “right” to “left” (finish to start).



Figure 11 illustrates each direction.


[image: Illustration of foldLeft and foldRight]
Figure 11: Illustration of foldLeft and foldRight

foldLeft and foldRight are equivalent if our binary operation is associative. For example, we can sum a List[Int] by folding in either direction, using 0 as our accumulator and addition as our operation:

List(1, 2, 3).foldLeft(0)(_ + _)
// res2: Int = 6
List(1, 2, 3).foldRight(0)(_ + _)
// res3: Int = 6


If we provide a non-associative operator the order of evaluation makes a difference. For example, if we fold using subtraction, we get different results in each direction:

List(1, 2, 3).foldLeft(0)(_ - _)
// res4: Int = -6
List(1, 2, 3).foldRight(0)(_ - _)
// res5: Int = 2




11.1.2 Exercise: Reflecting on Folds

Try using foldLeft and foldRight with an empty list as the accumulator and :: as the binary operator. What results do you get in each case?

See the solution



11.1.3 Exercise: Scaf-fold-ing Other Methods

foldLeft and foldRight are very general methods. We can use them to implement many of the other high-level sequence operations we know. Prove this to yourself by implementing substitutes for List's map, flatMap, filter, and sum methods in terms of foldRight.

See the solution



11.1.4 Foldable in Cats

Cats’ Foldable abstracts foldLeft and foldRight into a type class. Instances of Foldable define these two methods and inherit a host of derived methods. Cats provides out-of-the-box instances of Foldable for a handful of Scala data types: List, Vector, LazyList, and Option.

We can summon instances as usual using Foldable.apply and call their implementations of foldLeft directly. Here is an example using List:

import cats.Foldable
import cats.instances.list._ // for Foldable

val ints = List(1, 2, 3)


Foldable[List].foldLeft(ints, 0)(_ + _)
// res0: Int = 6


Other sequences like Vector and LazyList work in the same way. Here is an example using Option, which is treated like a sequence of zero or one elements:

import cats.instances.option._ // for Foldable

val maybeInt = Option(123)


Foldable[Option].foldLeft(maybeInt, 10)(_ * _)
// res1: Int = 1230



11.1.4.1 Folding Right

Foldable defines foldRight differently to foldLeft, in terms of the Eval monad:

def foldRight[A, B](fa: F[A], lb: Eval[B])
                     (f: (A, Eval[B]) => Eval[B]): Eval[B]


Using Eval means folding is always stack safe, even when the collection’s default definition of foldRight is not. For example, the default implementation of foldRight for LazyList is not stack safe. The longer the lazy list, the larger the stack requirements for the fold. A sufficiently large lazy list will trigger a StackOverflowError:

import cats.Eval
import cats.Foldable

def bigData = (1 to 100000).to(LazyList)


bigData.foldRight(0L)(_ + _)
// java.lang.StackOverflowError ...


Using Foldable forces us to use stack safe operations, which fixes the overflow exception:

import cats.instances.lazyList._ // for Foldable


val eval: Eval[Long] =
  Foldable[LazyList].
    foldRight(bigData, Eval.now(0L)) { (num, eval) =>
      eval.map(_ + num)
    }


eval.value
// res3: Long = 5000050000L



Stack Safety in the Standard Library

Stack safety isn’t typically an issue when using the standard library. The most commonly used collection types, such as List and Vector, provide stack safe implementations of foldRight:

(1 to 100000).toList.foldRight(0L)(_ + _)
// res4: Long = 5000050000L
(1 to 100000).toVector.foldRight(0L)(_ + _)
// res5: Long = 5000050000L


We’ve called out Stream because it is an exception to this rule. Whatever data type we’re using, though, it’s useful to know that Eval has our back.





11.1.4.2 Folding with Monoids

Foldable provides us with a host of useful methods defined on top of foldLeft. Many of these are facsimiles of familiar methods from the standard library: find, exists, forall, toList, isEmpty, nonEmpty, and so on:

Foldable[Option].nonEmpty(Option(42))
// res6: Boolean = true

Foldable[List].find(List(1, 2, 3))(_ % 2 == 0)
// res7: Option[Int] = Some(value = 2)


In addition to these familiar methods, Cats provides two methods that make use of Monoids:


	combineAll (and its alias fold) combines all elements in the sequence using their Monoid;


	foldMap maps a user-supplied function over the sequence and combines the results using a Monoid.




For example, we can use combineAll to sum over a List[Int]:

import cats.instances.int._ // for Monoid


Foldable[List].combineAll(List(1, 2, 3))
// res8: Int = 6


Alternatively, we can use foldMap to convert each Int to a String and concatenate them:

import cats.instances.string._ // for Monoid


Foldable[List].foldMap(List(1, 2, 3))(_.toString)
// res9: String = "123"


Finally, we can compose Foldables to support deep traversal of nested sequences:

import cats.instances.vector._ // for Monoid

val ints = List(Vector(1, 2, 3), Vector(4, 5, 6))


(Foldable[List] compose Foldable[Vector]).combineAll(ints)
// res11: Int = 21




11.1.4.3 Syntax for Foldable

Every method in Foldable is available in syntax form via cats.syntax.foldable. In each case, the first argument to the method on Foldable becomes the receiver of the method call:

import cats.syntax.foldable._ // for combineAll and foldMap


List(1, 2, 3).combineAll
// res12: Int = 6

List(1, 2, 3).foldMap(_.toString)
// res13: String = "123"



Explicits over Implicits

Remember that Scala will only use an instance of Foldable if the method isn’t explicitly available on the receiver. For example, the following code will use the version of foldLeft defined on List:

List(1, 2, 3).foldLeft(0)(_ + _)
// res14: Int = 6


whereas the following generic code will use Foldable:




def sum[F[_]: Foldable](values: F[Int]): Int =
  values.foldLeft(0)(_ + _)


We typically don’t need to worry about this distinction. It’s a feature! We call the method we want and the compiler uses a Foldable when needed to ensure our code works as expected. If we need a stack-safe implementation of foldRight, using Eval as the accumulator is enough to force the compiler to select the method from Cats.







11.2 Traverse

foldLeft and foldRight are flexible iteration methods but they require us to do a lot of work to define accumulators and combinator functions. The Traverse type class is a higher level tool that leverages Applicatives to provide a more convenient, more lawful, pattern for iteration.


11.2.1 Traversing with Futures

We can demonstrate Traverse using the Future.traverse and Future.sequence methods in the Scala standard library. These methods provide Future-specific implementations of the traverse pattern. As an example, suppose we have a list of server hostnames and a method to poll a host for its uptime:

import scala.concurrent._
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global

val hostnames = List(
  "alpha.example.com",
  "beta.example.com",
  "gamma.demo.com"
)

def getUptime(hostname: String): Future[Int] =
  Future(hostname.length * 60) // just for demonstration


Now, suppose we want to poll all of the hosts and collect all of their uptimes. We can’t simply map over hostnames because the result—a List[Future[Int]]—would contain more than one Future. We need to reduce the results to a single Future to get something we can block on. Let’s start by doing this manually using a fold:

val allUptimes: Future[List[Int]] =
  hostnames.foldLeft(Future(List.empty[Int])) {
    (accum, host) =>
      val uptime = getUptime(host)
      for {
        accum  <- accum
        uptime <- uptime
      } yield accum :+ uptime
  }


Await.result(allUptimes, 1.second)
// res0: List[Int] = List(1020, 960, 840)


Intuitively, we iterate over hostnames, call func for each item, and combine the results into a list. This sounds simple, but the code is fairly unwieldy because of the need to create and combine Futures at every iteration. We can improve on things greatly using Future.traverse, which is tailor-made for this pattern:

val allUptimes: Future[List[Int]] =
  Future.traverse(hostnames)(getUptime)


Await.result(allUptimes, 1.second)
// res2: List[Int] = List(1020, 960, 840)


This is much clearer and more concise—let’s see how it works. If we ignore distractions like CanBuildFrom and ExecutionContext, the implementation of Future.traverse in the standard library looks like this:

def traverse[A, B](values: List[A])
    (func: A => Future[B]): Future[List[B]] =
  values.foldLeft(Future(List.empty[B])) { (accum, host) =>
    val item = func(host)
    for {
      accum <- accum
      item  <- item
    } yield accum :+ item
  }


This is essentially the same as our example code above. Future.traverse is abstracting away the pain of folding and defining accumulators and combination functions. It gives us a clean high-level interface to do what we want:


	start with a List[A];

	provide a function A => Future[B];

	end up with a Future[List[B]].



The standard library also provides another method, Future.sequence, that assumes we’re starting with a List[Future[B]] and don’t need to provide an identity function:

object Future {
  def sequence[B](futures: List[Future[B]]): Future[List[B]] =
    traverse(futures)(identity)

  // etc...
}


In this case the intuitive understanding is even simpler:


	start with a List[Future[A]];

	end up with a Future[List[A]].



Future.traverse and Future.sequence solve a very specific problem: they allow us to iterate over a sequence of Futures and accumulate a result. The simplified examples above only work with Lists, but the real Future.traverse and Future.sequence work with any standard Scala collection.

Cats’ Traverse type class generalises these patterns to work with any type of Applicative: Future, Option, Validated, and so on. We’ll approach Traverse in the next sections in two steps: first we’ll generalise over the Applicative, then we’ll generalise over the sequence type. We’ll end up with an extremely valuable tool that trivialises many operations involving sequences and other data types.



11.2.2 Traversing with Applicatives

If we squint, we’ll see that we can rewrite traverse in terms of an Applicative. Our accumulator from the example above:

Future(List.empty[Int])


is equivalent to Applicative.pure:

import cats.Applicative
import cats.instances.future._   // for Applicative
import cats.syntax.applicative._ // for pure

List.empty[Int].pure[Future]


Our combinator, which used to be this:

def oldCombine(
  accum : Future[List[Int]],
  host  : String
): Future[List[Int]] = {
  val uptime = getUptime(host)
  for {
    accum  <- accum
    uptime <- uptime
  } yield accum :+ uptime
}


is now equivalent to Semigroupal.combine:

import cats.syntax.apply._ // for mapN

// Combining accumulator and hostname using an Applicative:
def newCombine(accum: Future[List[Int]],
      host: String): Future[List[Int]] =
  (accum, getUptime(host)).mapN(_ :+ _)


By substituting these snippets back into the definition of traverse we can generalise it to to work with any Applicative:


def listTraverse[F[_]: Applicative, A, B]
      (list: List[A])(func: A => F[B]): F[List[B]] =
  list.foldLeft(List.empty[B].pure[F]) { (accum, item) =>
    (accum, func(item)).mapN(_ :+ _)
  }

def listSequence[F[_]: Applicative, B]
      (list: List[F[B]]): F[List[B]] =
  listTraverse(list)(identity)


We can use listTraverse to re-implement our uptime example:

val totalUptime = listTraverse(hostnames)(getUptime)


Await.result(totalUptime, 1.second)
// res5: List[Int] = List(1020, 960, 840)


or we can use it with other Applicative data types as shown in the following exercises.


11.2.2.1 Exercise: Traversing with Vectors

What is the result of the following?

import cats.instances.vector._ // for Applicative

listSequence(List(Vector(1, 2), Vector(3, 4)))


See the solution

What about a list of three parameters?

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))


See the solution



11.2.2.2 Exercise: Traversing with Options

Here’s an example that uses Options:

import cats.instances.option._ // for Applicative

def process(inputs: List[Int]) =
  listTraverse(inputs)(n => if(n % 2 == 0) Some(n) else None)


What is the return type of this method? What does it produce for the following inputs?

process(List(2, 4, 6))
process(List(1, 2, 3))


See the solution



11.2.2.3 Exercise: Traversing with Validated

Finally, here is an example that uses Validated:

import cats.data.Validated
import cats.instances.list._ // for Monoid

type ErrorsOr[A] = Validated[List[String], A]

def process(inputs: List[Int]): ErrorsOr[List[Int]] =
  listTraverse(inputs) { n =>
    if(n % 2 == 0) {
      Validated.valid(n)
    } else {
      Validated.invalid(List(s"$n is not even"))
    }
  }


What does this method produce for the following inputs?

process(List(2, 4, 6))
process(List(1, 2, 3))


See the solution




11.2.3 Traverse in Cats

Our listTraverse and listSequence methods work with any type of Applicative, but they only work with one type of sequence: List. We can generalise over different sequence types using a type class, which brings us to Cats’ Traverse. Here’s the abbreviated definition:

package cats

trait Traverse[F[_]] {
  def traverse[G[_]: Applicative, A, B]
      (inputs: F[A])(func: A => G[B]): G[F[B]]

  def sequence[G[_]: Applicative, B]
      (inputs: F[G[B]]): G[F[B]] =
    traverse(inputs)(identity)
}


Cats provides instances of Traverse for List, Vector, Stream, Option, Either, and a variety of other types. We can summon instances as usual using Traverse.apply and use the traverse and sequence methods as described in the previous section:

import cats.Traverse
import cats.instances.future._ // for Applicative
import cats.instances.list._   // for Traverse

val totalUptime: Future[List[Int]] =
  Traverse[List].traverse(hostnames)(getUptime)


Await.result(totalUptime, 1.second)
// res0: List[Int] = List(1020, 960, 840)


val numbers = List(Future(1), Future(2), Future(3))

val numbers2: Future[List[Int]] =
  Traverse[List].sequence(numbers)


Await.result(numbers2, 1.second)
// res1: List[Int] = List(1, 2, 3)


There are also syntax versions of the methods, imported via cats.syntax.traverse:

import cats.syntax.traverse._ // for sequence and traverse


val numbers3 = hostnames.traverse(getUptime)
// numbers3: Future[List[Int]] = Future(Success(List(1020, 960, 840)))
val numbers4 = numbers.sequence
// numbers4: Future[List[Int]] = Future(Success(List(1, 2, 3)))

Await.result(numbers3, 1.second)
// res2: List[Int] = List(1020, 960, 840)
Await.result(numbers4, 1.second)
// res3: List[Int] = List(1, 2, 3)


As you can see, this is much more compact and readable than the foldLeft code we started with earlier this chapter!




11.3 Summary

In this chapter we were introduced to Foldable and Traverse, two type classes for iterating over sequences.

Foldable abstracts the foldLeft and foldRight methods we know from collections in the standard library. It adds stack-safe implementations of these methods to a handful of extra data types, and defines a host of situationally useful additions. That said, Foldable doesn’t introduce much that we didn’t already know.

The real power comes from Traverse, which abstracts and generalises the traverse and sequence methods we know from Future. Using these methods we can turn an F[G[A]] into a G[F[A]] for any F with an instance of Traverse and any G with an instance of Applicative. In terms of the reduction we get in lines of code, Traverse is one of the most powerful patterns in this book. We can reduce folds of many lines down to a single foo.traverse.



…and with that, we’ve finished all of the theory in this book. There’s plenty more to come, though, as we put everything we’ve learned into practice in a series of in-depth case studies in Part II!






  
  
  
  ch013.xhtml
  
  




12 Optimizing Interpreters and Compilers

In a previous chapter we introduced interpreters as a key strategy in functional programming. In many cases simple structurally recursive interpreters are sufficient. However, in a few cases we need more performance than they can offer so in this chapter we’ll turn to optimization. This is a huge subject, which we cannot hope to cover in just one book chapter. Instead we’ll focus on two techniques that I believe use key ideas found in more complex techniques: algebraic manipulation and compilation to a virtual machine.

We’ll start looking at algebraic manipulation, returning to the regular expression example we used earlier. We’ll then move to virtual machine, this time using a simple arithmetic interpreter example. We’ll see how we can compile code to a stack machine, and then look at some of the optimizations that are available when we use a virtual machine.


12.1 Algebraic Manipulation

Reifying a program represents it as a data structure. We can rewrite this data structure to several ends: as a way to simplify and therefore optimize the program being interpreted, but also as a general form of computation implementing the interpreter. In this section we’re going to return to our regular expression example, and show how rewriting can be used perform both of these tasks.

We will use a technique known as regular expression derivatives. Regular expression derivatives provide a simple way to match a regular expression against input (with the correct semantics for union, which you may recall we didn’t deal with in the previous chapter). The derivative of a regular expression, with respect to a character, is the regular expression that remains after matching that character. Say we have the regular expression that matches the string "osprey". In our library this would be Regexp("osprey"). The derivative with respect to the character o is Regexp("sprey"). In other words it’s the regular expression that is looking for the string "sprey". The derivative with respect to the character a is the regular expression that matches nothing, which is written Regexp.empty in our library. To take a more complicated example, the derivative with respect to c of Regexp("cats").repeat is Regexp("ats") ++ Regexp("cats").repeat. This indicates we’re looking for the string "ats" followed by zero or more repeats of "cats"

All we need to do to determine if a regular expression matches some input is to calculate successive derivatives with respect to the characters in the input in the order in which they occur. If the resulting regular expression matches the empty string then we have a successful match. Otherwise it has failed to match.

To implement this algorithm we need three things:


	an explicit representation of the regular expression that matches the empty string;

	a method that tests if a regular expression matches the empty string; and

	a method that computes the derivative of a regular expression with respect to a given character.



Our starting point is the basic reified interpreter we developed in the previous chapter. This is the simplest code and therefore the easiest to work with.

enum Regexp {
  def ++(that: Regexp): Regexp =
    Append(this, that)

  def orElse(that: Regexp): Regexp =
    OrElse(this, that)

  def repeat: Regexp =
    Repeat(this)

  def `*` : Regexp = this.repeat

  def matches(input: String): Boolean = {
    def loop(regexp: Regexp, idx: Int): Option[Int] =
      regexp match {
        case Append(left, right) =>
          loop(left, idx).flatMap(i => loop(right, i))
        case OrElse(first, second) =>
          loop(first, idx).orElse(loop(second, idx))
        case Repeat(source) =>
          loop(source, idx)
            .flatMap(i => loop(regexp, i))
            .orElse(Some(idx))
        case Apply(string) =>
          Option.when(input.startsWith(string, idx))(idx + string.size)
        case Empty =>
          None
      }

    // Check we matched the entire input
    loop(this, 0).map(idx => idx == input.size).getOrElse(false)
  }

  case Append(left: Regexp, right: Regexp)
  case OrElse(first: Regexp, second: Regexp)
  case Repeat(source: Regexp)
  case Apply(string: String)
  case Empty
}
object Regexp {
  val empty: Regexp = Empty

  def apply(string: String): Regexp =
    Apply(string)
}


We want to explicitly represent the regular expression that matches the empty string, as it plays an important part in the algorithms that follow. This is simple to do: we just reify it and adjust the constructors as necessary. I’ve called this case “epsilon”, which matches the terminology used in the literature.

enum Regexp {
  // ...
  case Epsilon
}
object Regexp {
  val epsilon: Regexp = Epsilon

  def apply(string: String): Regexp =
    if string.isEmpty() then Epsilon
    else Apply(string)
}


Next up we will create a predicate that tells us if a regular expression matches the empty string. Such a regular expression is called “nullable”. The code is so simple it’s easier to read it than try to explain it in English.

def nullable: Boolean =
  this match {
    case Append(left, right) => left.nullable && right.nullable
    case OrElse(first, second) => first.nullable || second.nullable
    case Repeat(source) => true
    case Apply(string) => false
    case Epsilon => true
    case Empty => false
  }


Now we can implement the actual regular expression derivative. It consists of two parts: the method to calculate the derivative which in turn depends on a method that handles a nullable regular expression. Both parts are quite simple so I’ll give the code first and then explain the more complicated parts.

def delta: Regexp =
  if nullable then Epsilon else Empty

def derivative(ch: Char): Regexp =
  this match {
    case Append(left, right) =>
      (left.derivative(ch) ++ right).orElse(left.delta ++ right.derivative(ch))
    case OrElse(first, second) =>
      first.derivative(ch).orElse(second.derivative(ch))
    case Repeat(source) =>
      source.derivative(ch) ++ this
    case Apply(string) =>
      if string.size == 1 then
        if string.charAt(0) == ch then Epsilon
        else Empty
      else if string.charAt(0) == ch then Apply(string.tail)
      else Empty
    case Epsilon => Empty
    case Empty => Empty
  }


I think this code is reasonably straightforward, except perhaps for the cases for OrElse and Append. The case for OrElse is trying to match both regular expressions simultaneously, which gets around the problem in our earlier implementation. The definition of nullable ensures we match if either side matches. The case for Append is attempting to match the left side if it is still looking for characters; otherwise it is attempting to match the right side.

With this we redefine matches as follows.

def matches(input: String): Boolean = {
  val r = input.foldLeft(this){ (regexp, ch) => regexp.derivative(ch) }
  r.nullable
}


We can show the code works as expected.

val regexp = Regexp("Sca") ++ Regexp("la") ++ Regexp("la").repeat


regexp.matches("Scala")
// res1: Boolean = true
regexp.matches("Scalalalala")
// res2: Boolean = true
regexp.matches("Sca")
// res3: Boolean = false
regexp.matches("Scalal")
// res4: Boolean = false


It also solves the problem with the earlier implementation.

Regexp("cat").orElse(Regexp("cats")).matches("cats")
// res5: Boolean = true


This is a nice result for a very simple algorithm. However there is a problem. You might notice that regular expression matching can become very slow. In fact we can run out of heap space trying a simple match like

Regexp("cats").repeat.matches("catscatscatscats")
// java.lang.OutOfMemoryError: Java heap space


This happens because the derivative of the regular expression can grow very large. Look at this example, after only a few derivatives.

Regexp("cats").repeat.derivative('c').derivative('a').derivative('t')
// res6: Regexp = OrElse(OrElse(Append(Apply(s),Repeat(Apply(cats))),Append(Empty,Append(Empty,Repeat(Apply(cats))))),OrElse(Append(Empty,Append(Empty,Repeat(Apply(cats)))),Append(Empty,OrElse(Append(Empty,Repeat(Apply(cats))),Append(Empty,Append(Empty,Repeat(Apply(cats))))))))


The root cause is that the derivative rules for Append, OrElse, and Repeat can produce a regular expression that is larger than the input. However this output often contains redundant information. In the example above there are multiple occurrences of Append(Empty, ...), which is equivalent to just Empty. This is similar to adding zero or multiplying by one in arithmetic, and we can use similar algebraic simplification rules to get rid of these unnecessary elements.

We can implement this simplification in one of two ways: we can make simplification a separate method that we apply to an existing Regexp, or we can do the simplification as we construct the Regexp. I’ve chosen to do the latter, modifying ++, orElse, and repeat as follows:

def ++(that: Regexp): Regexp = {
  (this, that) match {
    case (Epsilon, re2) => re2
    case (re1, Epsilon) => re1
    case (Empty, _) => Empty
    case (_, Empty) => Empty
    case _ => Append(this, that)
  }
}

def orElse(that: Regexp): Regexp = {
  (this, that) match {
    case (Empty, re) => re
    case (re, Empty) => re
    case _ => OrElse(this, that)
  }
}

def repeat: Regexp = {
  this match {
    case Repeat(source) => this
    case Epsilon => Epsilon
    case Empty => Empty
    case _ => Repeat(this)
  }
}


With this small change in-place, our regular expressions stay at a reasonable size for any input.

Regexp("cats").repeat.derivative('c').derivative('a').derivative('t')
// res8: Regexp = Append(Apply(s),Repeat(Apply(cats)))


Here’s the final code.

enum Regexp {
  def ++(that: Regexp): Regexp = {
    (this, that) match {
      case (Epsilon, re2) => re2
      case (re1, Epsilon) => re1
      case (Empty, _) => Empty
      case (_, Empty) => Empty
      case _ => Append(this, that)
    }
  }

  def orElse(that: Regexp): Regexp = {
    (this, that) match {
      case (Empty, re) => re
      case (re, Empty) => re
      case _ => OrElse(this, that)
    }
  }

  def repeat: Regexp = {
    this match {
      case Repeat(source) => this
      case Epsilon => Epsilon
      case Empty => Empty
      case _ => Repeat(this)
    }
  }

  def `*` : Regexp = this.repeat

  /** True if this regular expression accepts the empty string */
  def nullable: Boolean =
    this match {
      case Append(left, right) => left.nullable && right.nullable
      case OrElse(first, second) => first.nullable || second.nullable
      case Repeat(source) => true
      case Apply(string) => false
      case Epsilon => true
      case Empty => false
    }

  def delta: Regexp =
    if nullable then Epsilon else Empty

  def derivative(ch: Char): Regexp =
    this match {
      case Append(left, right) =>
        (left.derivative(ch) ++ right).orElse(left.delta ++ right.derivative(ch))
      case OrElse(first, second) =>
        first.derivative(ch).orElse(second.derivative(ch))
      case Repeat(source) =>
        source.derivative(ch) ++ this
      case Apply(string) =>
        if string.size == 1 then
          if string.charAt(0) == ch then Epsilon
          else Empty
        else if string.charAt(0) == ch then Apply(string.tail)
        else Empty
      case Epsilon => Empty
      case Empty => Empty
    }

  def matches(input: String): Boolean = {
    val r = input.foldLeft(this){ (regexp, ch) => regexp.derivative(ch) }
    r.nullable
  }

  case Append(left: Regexp, right: Regexp)
  case OrElse(first: Regexp, second: Regexp)
  case Repeat(source: Regexp)
  case Apply(string: String)
  case Epsilon
  case Empty
}
object Regexp {
  val empty: Regexp = Empty

  val epsilon: Regexp = Epsilon

  def apply(string: String): Regexp =
    if string.isEmpty() then Epsilon
    else Apply(string)
}


Notice that our implementation is tail recursive. The only “looping” is the call to the tail recursive foldLeft in matches. No continuation-passing style transform is necessary here! (Calculating the derivatives is not tail recursive but it very unlikely this would overflow the stack.) This may not be surprising if you’ve studied theory of computation. A key result from that field is the equivalence between regular expressions and finite state machines. If you know this you may have found it a bit surprising we had to use a stack at all in our prior implementations. But hold on a minute. If we think carefully about regular expression derivatives we’ll see that they actually are continuations! A continuation means “what comes next”, which is exactly what a regular expression derviative defines for a regular expression and a particular character. So our interpreter does use CPS, but reified as a regular expression not a function, and derived through a different route.

Continuations reify control-flow. That is, they give us an explicit representation of how control moves through our program. This means we can change the control flow by applying continuations in a different order. Let’s make this concrete. A regular expression derivative represents a continuation. So imagine we’re running a regular expression on data that arrives asynchronously; we want to match as much data as we have available, and then suspend the regular expression and continue matching when more data arrives. This is trival. When we run out of data we just store the current derivative. When more data arrives we continue processing using the derivative we stored. Here’s an example.

Start by defining the regular expression.

val cats = Regexp("cats").repeat


Process the first piece of data and store the continuation.

val next = "catsca".foldLeft(cats){ (regexp, ch) => regexp.derivative(ch) }


Continue processing when more data arrives.

"tscats".foldLeft(next){ (regexp, ch) => regexp.derivative(ch) }


Notice that we could just as easily go back to a previous regular expression if we wanted to. This would give us backtracking. We don’t need backtracking for regular expressions, but for more general parsers we do. In fact with continuations we can define any control flow we like, including backtracking search, exceptions, cooperative threading, and much much more.

In this section we’ve also seen the power of rewrites. Regular expression matching using derivatives works solely by rewriting the regular expression. We also used rewriting to simplify the regular expressions, avoiding the explosion in size that derivatives can cause. The abstract type of these methods is Program => Program so we might think they are combinators. However the implementation uses structural recursion and they serve the role of interpreters. Rewrites are the one place where the types alone can lead us astray.

I hope you find regular expression derivatives interesting and a bit surprising. I certainly did when I first read about them. There is a deeper point here, which runs throughout the book: most problems have already been solved and we can save a lot of time if we can just find those solutions. I elevate this idea of the status of a strategy, which I call read the literature for reasons that will soon be clear. Most developers read the occasional blog post and might attend a conference from time to time. Many fewer, I think, read academic papers. This is unfortunate. Part of the fault is with the academics: they write in a style that is hard to read without some practice. However I think many developers think the academic literature is irrelevant. One of the goals of this book is to show the relevance of academic work, which is why each chapter conclusion sketches the development of its main ideas with links to relevant papers.



12.2 From Continuations to Stacks

In the previous section we explored regular expression derivatives. We saw that they are continuations, but reified as data structures rather than the functions we used when we first worked with continuation-passing style. In this section we’ll reify continuations-as-functions as data. In doing so we’ll find continuations implicitly encode a stack structure. Explicitly reifying this structure is a step towards implementing a stack machine.

We’ll start with the CPSed regular expression interpreter (not using derivatives), shown below.

enum Regexp {
  def ++(that: Regexp): Regexp =
    Append(this, that)

  def orElse(that: Regexp): Regexp =
    OrElse(this, that)

  def repeat: Regexp =
    Repeat(this)

  def `*` : Regexp = this.repeat

  def matches(input: String): Boolean = {
    // Define a type alias so we can easily write continuations
    type Continuation = Option[Int] => Option[Int]

    def loop(regexp: Regexp, idx: Int, cont: Continuation): Option[Int] =
      regexp match {
        case Append(left, right) =>
          val k: Continuation = _ match {
            case None    => cont(None)
            case Some(i) => loop(right, i, cont)
          }
          loop(left, idx, k)

        case OrElse(first, second) =>
          val k: Continuation = _ match {
            case None => loop(second, idx, cont)
            case some => cont(some)
          }
          loop(first, idx, k)

        case Repeat(source) =>
          val k: Continuation =
            _ match {
              case None    => cont(Some(idx))
              case Some(i) => loop(regexp, i, cont)
            }
          loop(source, idx, k)

        case Apply(string) =>
          cont(Option.when(input.startsWith(string, idx))(idx + string.size))

        case Empty =>
          cont(None)
      }

    // Check we matched the entire input
    loop(this, 0, identity).map(idx => idx == input.size).getOrElse(false)
  }

  case Append(left: Regexp, right: Regexp)
  case OrElse(first: Regexp, second: Regexp)
  case Repeat(source: Regexp)
  case Apply(string: String)
  case Empty
}
object Regexp {
  val empty: Regexp = Empty

  def apply(string: String): Regexp =
    Apply(string)
}


To reify the continuations we can apply the same recipe as before: we create a case for each place in which we construct a continuation. In our interpreter loop this is for Append, OrElse, and Repeat. We also construct a continuation using the identity function when we first call loop, which represents the continuation to call when the loop has finished. This gives us four cases.

enum Continuation {
  case AppendK
  case OrElseK
  case RepeatK
  case DoneK
}


What data does each case next to hold? Let’s let look at the structure of the cases within the CPS interpreter. The case for Append is typical.

case Append(left, right) =>
  val k: Cont = _ match {
    case None    => cont(None)
    case Some(i) => loop(right, i, cont)
  }
  loop(left, idx, k)


The continuation k refers to the Regexp right, the method loop, and the continuation cont. Our reification should reflect this by holding the same data. If we consider all the cases we end up with the following definition. Notice that I implemented an apply method so we can still call these continuations like a function.

type Loop = (Regexp, Int, Continuation) => Option[Int]
enum Continuation {
  case AppendK(right: Regexp, loop: Loop, next: Continuation)
  case OrElseK(second: Regexp, index: Int, loop: Loop, next: Continuation)
  case RepeatK(regexp: Regexp, index: Int, loop: Loop, next: Continuation)
  case DoneK

  def apply(idx: Option[Int]): Option[Int] =
    this match {
      case AppendK(right, loop, next) =>
        idx match {
          case None    => next(None)
          case Some(i) => loop(right, i, next)
        }

      case OrElseK(second, index, loop, next) =>
        idx match {
          case None => loop(second, index, next)
          case some => next(some)
        }

      case RepeatK(regexp, index, loop, next) =>
        idx match {
          case None    => next(Some(index))
          case Some(i) => loop(regexp, i, next)
        }

      case DoneK =>
        idx
    }
}


Now we can rewrite the interpreter loop using the Continuation type.

def matches(input: String): Boolean = {
  def loop(
      regexp: Regexp,
      idx: Int,
      cont: Continuation
  ): Option[Int] =
    regexp match {
      case Append(left, right) =>
        val k: Continuation = AppendK(right, loop, cont)
        loop(left, idx, k)

      case OrElse(first, second) =>
        val k: Continuation = OrElseK(second, idx, loop, cont)
        loop(first, idx, k)

      case Repeat(source) =>
        val k: Continuation = RepeatK(regexp, idx, loop, cont)
        loop(source, idx, k)

      case Apply(string) =>
        cont(Option.when(input.startsWith(string, idx))(idx + string.size))

      case Empty =>
        cont(None)
    }

  // Check we matched the entire input
  loop(this, 0, DoneK)
    .map(idx => idx == input.size)
    .getOrElse(false)
}


The point of this construction is that we’ve reified the stack: it’s now explicitly represented as the next field in each Continuation. The stack is a last-in first-out (LIFO) data structure: the last element we add to the stack is the first element we use. (This is exactly the same as efficient use of a List.) We construct continuations by adding elements to the front of the existing continuation, which is exactly how we construct lists or stacks. We use continuations from front-to-back; in other words in last-in first-out (LIFO) order. This is the correct access pattern to use a list efficiently, and also the access pattern that defines a stack. Reifying the continuations as data has reified the stack. In the next section we’ll use this fact to build a compiler that targets a stack machine.



12.3 Compilers and Virtual Machines

We’ve reified continuations and seen they contain a stack structure: each continuation contains a references to the next continuation, and continuations are constructed in a last-in first-out order. We’ll now, once again, reify this structure. This time we’ll create an explicit stack, giving rise to a stack-based virtual machine to run our code. We’ll also introduce a compiler, transforming our code into a sequence of operations that run on this virtual machine. We’ll then look at optimizing our virtual machine. As this code involves benchmarking, there is an accompanying repository that contains benchmarks you can run on your own computer.


12.3.1 Virtual and Abstract Machines

A virtual machine is a computational machine implemented in software rather than hardware. A virtual machine runs programs written in some instruction set. The Java Virtual Machine (JVM), for example, runs programs written in Java bytecode. Closely related are abstract machines. The two terms are sometimes used interchangeably but I’ll make the distinction that a virtual machine has an implementation in software, while an abstract machine is a theoretical model without an implementation. Thus we can think of an abstract machine as a concept, and a virtual machine as a realization of a concept. This is a distinction we’ve made in many other parts of the book.

As an abstract machine, stack machines are represented by models such as push down automata and the SECD machine. From abstract stack machines we firstly get the concept itself of a stack machine. The two core operations for a stack are pushing a value on to the top of the stack, and popping the top value off the stack. Function arguments and results are both passed via the stack. So, for example, a binary operation like addition will pop the top two values off the stack, add them, and push the result onto the stack. Abstract stack machines also tell us that stack machines with a single stack are not universal computers. In other words, they are not as powerful as Turing machines. If we add a second stack, or some other form of additional memory, we have a universal computer. This informs the design of virtual machines based on a stack machine.

Stack machines are also very common virtual machines. The Java Virtual Machine is a stack machine, as are the .Net and WASM virtual machines. They are easy to implement, and to write compilers for. We’ve already seen how easy it is to implement an interpreter so why should we care about stack machines, or virtual machines in general? The usual answer is performance. Implementing a virtual machine opens up opportunities for optimizations that are difficult to implement in interpreters. Virtual machines also give us a lot of flexibility. It’s simple to trace or otherwise inspect the execution of a virtual machine, which makes debugging easier. They are easy to port to different platforms and languages. Virtual machines are often very compact, as is the code they run. This makes them suitable for embedded devices. Our focus will be on performance. Although we won’t go down the rabbit-hole of compiler and virtual machine optimizations, which would easily take up an entire book, we’ll at least tip-toe to the edge and peek down.



12.3.2 Compilation

Let’s now briefly talk about compilation. A compiler transforms a program from one representation to another. In our case we will transform our programs represented as an algebraic data type of reified constructors and combinators into the instruction set for our virtual machine. The virtual machine itself is an interpreter for its instruction set. Computation always bottoms out in interpretation: a hardware CPU is nothing but an interpreter for it’s machine code.

Notice there are two notions of program here, and two corresponding instruction sets: there is the program the structurally recursive interpreter executes, with an instruction set consisting of reified constructors and combinators, and there is the program we compile this into for the stack machine using the stack machine’s instruction set. We will call these the interpreter program and instruction set, and stack machine program and instruction set respectively.

The structurally recursive interpreter is an example of a tree-walking interpreter or abstract syntax tree (AST) interpreter. The stack machine is an example of a byte-code interpreter.




12.4 From Interpreter to Stack Machine

There are three parts to transforming an interpreter to a stack machine:


	creating the instruction set the stack machine will run;

	creating the compiler from interpreter programs to stack machine programs; and

	implementing the stack machine to execute stack machine instructions.



Let’s make this concrete by returning to our arithmetic interpreter.

enum Expression {
  def +(that: Expression): Expression = Addition(this, that)
  def *(that: Expression): Expression = Multiplication(this, that)
  def -(that: Expression): Expression = Subtraction(this, that)
  def /(that: Expression): Expression = Division(this, that)

  def eval: Double =
    this match {
      case Literal(value)              => value
      case Addition(left, right)       => left.eval + right.eval
      case Subtraction(left, right)    => left.eval - right.eval
      case Multiplication(left, right) => left.eval * right.eval
      case Division(left, right)       => left.eval / right.eval
    }

  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)
}
object Expression {
  def literal(value: Double): Expression = Literal(value)
}


Interpreter programs are defined by the interpreter instruction set

enum Expression {
  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)
}


Transforming the interpreter instruction set to the stack machine instruction set works as follows:


	each constructor interpreter instruction corresponds to stack machine instruction carrying exactly the same data; and

	each combinator interpreter instruction has a corresponding stack machine instruction that carries only non-recursive data. Recursive data, which is executed by recursive calls to the interpreter, will be represented by data on the stack machine’s stack.



Turning to the arithmetic interpreter’s instruction set, we see that Literal is our sole constructor and thus has a mirror in our stack machine’s instruction set. Here I’ve named the interpreter instruction set Op (short for “operation”), and shortened the name from Literal to Lit to make it clearer which instruction set we are using.

enum Op {
  case Lit(value: Double)
}


The other instructions are all combinators. They also all only contain values of type Expression, and hence in the stack machine the corresponding values will be found on the stack. This gives us the complete stack machine instruction set.

enum Op {
  case Lit(value: Double)
  case Add
  case Sub
  case Mul
  case Div
}


This completes the first step of the process. The second step is to implement the compiler. The secret to compiling for a stack machine is to transfrom instructions into reverse polish notation (RPN). In RPN operations follow their operands. So, instead of writing 1 + 2 we write 1 2 +. This is exactly the order in which a stack machine works. To evaluate 1 + 2 we should first push 1 onto the stack, then push 2, and finally pop both these values, perform the addition, and push the result back to the stack. RPN also does not need nesting. To represent 1 + (2 + 3) in RPN we simply use 2 3 + 1 +. Doing away with brackets means that stack machine programs can be represented as a linear sequence of instructions, not a tree. Concretely, we can use List[Op].

How we should we implement the conversion to RPN. We are performing a transformation on an algebraic data type, our interpreter instruction set and therefore we can use structural recursion. The following code shows one way to implement this. It’s not very efficient (appending lists is a slow operation) but this doesn’t matter for our purposes.

def compile: List[Op] =
  this match {
    case Literal(value) => List(Op.Lit(value))
    case Addition(left, right) =>
      left.compile ++ right.compile ++ List(Op.Add)
    case Subtraction(left, right) =>
      left.compile ++ right.compile ++ List(Op.Sub)
    case Multiplication(left, right) =>
      left.compile ++ right.compile ++ List(Op.Mul)
    case Division(left, right) =>
      left.compile ++ right.compile ++ List(Op.Div)
  }


We now are left to implement the stack machine. We’ll start by sketching out the interface for the stack machine.

final case class StackMachine(program: List[Op]) {
  def eval: Double = ???
}


In this design the program is fixed for a given StackMachine instance, but we can run the program multiple times.

Now we’ll implement eval. It is a structural recursion over an algebraic data type, in this case the program of type List[Op]. It’s a little bit more complicated than some of the structural recursions we have seen, because we need to implement the stack as well. We’ll represent the stack as a List[Double], and define methods to push and pop the stack.

final case class StackMachine(program: List[Op]) {
  def eval: Double = {
    def pop(stack: List[Double]): (Double, List[Double]) =
      stack match {
        case head :: next => (head, next)
        case Nil =>
          throw new IllegalStateException(
            s"The data stack does not have any elements."
          )
      }

    def push(value: Double, stack: List[Double]): List[Double] =
      value :: stack

    ???
  }
}


Now we can define the main stack machine loop. It takes as parameters the program and the stack, and is a structural recursion over the program.

def eval: Double = {
  // pop and push defined here ...

  def loop(stack: List[Double], program: List[Op]): Double =
    program match {
      case head :: next =>
        head match {
          case Op.Lit(value) => loop(push(value, stack), next)
          case Op.Add =>
            val (a, s1) = pop(stack)
            val (b, s2) = pop(s1)
            val s = push(a + b, s2)
            loop(s, next)
          case Op.Sub =>
            val (a, s1) = pop(stack)
            val (b, s2) = pop(s1)
            val s = push(a + b, s2)
            loop(s, next)
          case Op.Mul =>
            val (a, s1) = pop(stack)
            val (b, s2) = pop(s1)
            val s = push(a + b, s2)
            loop(s, next)
          case Op.Div =>
            val (a, s1) = pop(stack)
            val (b, s2) = pop(s1)
            val s = push(a + b, s2)
            loop(s, next)
        }

      case Nil => stack.head
    }

  loop(List.empty, program)
}


I’ve implemented a simple benchmark for this code (see the repository) and it’s roughly five times slower than the interpreter we started with. Clearly some optimization is needed.


12.4.1 Effectful Interpreters

One of the reasons for using the interpreter strategy is to isolate effects, such as state or input and output. An interpreter can be effectful without impacting the ability to reason about or compose the programs the interpreter runs. Sometimes the effects are the entire point of the interpreter as the program may describe effectful actions, such as parsing network data or drawing on a screen, which the interpreter then carries out. Sometimes effects may just be optimizations, which is how we are going to use them in our arithmetic stack machine.

There are many inefficiencies in the stack machine we have just created. A List is a poor choice of data structure for both the stack and program. We can avoid a lot of pointer chasing and memory allocation by using a fixed size Array. The program never changes in size, and we can simply allocate a large enough stack that resizing it becomes very unlikely. We can also avoid the indirection of pushing and popping and operate directly on the stack array.

The code below shows a simple implementation, which in my benchmarking is about thirty percent faster than the tree-walking interpreter.

final case class StackMachine(program: Array[Op]) {
  // The data stack
  private val stack: Array[Double] = Array.ofDim[Double](256)

  def eval: Double = {
    // sp points to first free element on the stack
    // stack(sp - 1) is the first element with data
    //
    // pc points to the current instruction in program
    def loop(sp: Int, pc: Int): Double =
      if (pc == program.size) stack(sp - 1)
      else
        program(pc) match {
          case Op.Lit(value) =>
            stack(sp) = value
            loop(sp + 1, pc + 1)
          case Op.Add =>
            val a = stack(sp - 1)
            val b = stack(sp - 2)
            stack(sp - 2) = (a + b)
            loop(sp - 1, pc + 1)
          case Op.Sub =>
            val a = stack(sp - 1)
            val b = stack(sp - 2)
            stack(sp - 2) = (a - b)
            loop(sp - 1, pc + 1)
          case Op.Mul =>
            val a = stack(sp - 1)
            val b = stack(sp - 2)
            stack(sp - 2) = (a * b)
            loop(sp - 1, pc + 1)
          case Op.Div =>
            val a = stack(sp - 1)
            val b = stack(sp - 2)
            stack(sp - 2) = (a / b)
            loop(sp - 1, pc + 1)
        }

    loop(0, 0)
  }
}




12.4.2 Further Optimization

The above optimization is, to me, the most obvious and straightforward to implement. In this section we’ll attempt to go further, by looking at some of the optimizations described in the literature. We’ll see that there is not always a straight path to faster code.

The benchmark I used is the simple recursive Fibonacci. Calculating the nth Fibonacci number produces a large expression for a modest choice of n. I used a value of 25, and the expression has over one million elements. Notably the expressions only involve addition, and the only literals in use are zero and one. This limits the applicability of the optimizations to a wider range of inputs, but the intention is not to produce an optimized interpreter for this specific case but rather to discuss possible optimizations and issues that arise when attempting to optimize an interpreter in general.

We’ll look at four different optimizations, which all use the optimized stack machine above as their base:


	Algebraic simplification performs simplifications at compile-time to produce smaller expressions. A small expression should require fewer interpreter steps and hence be faster. The only simplification I used was replacing x + 0 or 0 + x with x. This occurs frequently in the Fibonacci series. Since the expressions we are working with have no variables or control flow we could simplify the entire expression to a single literal at compile-time. This would be an extremely good optimization but rather defeats the purpose of trying to generalize to other applications.


	Byte code replaces the Op algebraic data type with a single byte. The hope here is that the smaller representation will lead to better cache utilization, and possibly a faster match expression, and therefore a faster overall interpreter. In this representation literals are also stored in a separate array of Doubles. More on this later.


	Stack caching stores the top of the stack in a variable, which we hope will be allocated to a register and therefore be extremely fast to access. The remainder of the stack is stored in an array as above. Stack caching involves more work when pushing values on to the stack, as we must copy the value from the top into the array, but less work when popping values off the stack. The hope is that the savings will outweigh the costs.


	Superinstructions replace common sequences of instructions with a single instruction. We already do this to an extent; a typical stack machine would have separate instructions for pushing and popping, but our instruction set merges these into the arithmetic operations. I used two superinstructions: one for incrementing a value, which frequently occurs in the Fibonacci, and one for adding two values from the stack and a literal.




Below are the benchmarks results obtained on an AMD Ryzen 5 3600 and an Apple M1, both running JDK 21. Results are shown in operations per second. The Baseline interpreter is the one using structural recursion. The Stack interpreter uses a List to represent the stack and program. The Optimized Stack represents the stack and program as arrays. The other interpreters build on the Optimized Stack interpreter and add the optimizations described above. The All interpreter has all the optimizations.











	Interpreter
	Ryzen 5
	Speedup
	M1
	Speedup





	Baseline
	2754.43
	1
	3932.93
	1



	Stack
	676.43
	0.25
	1004.16
	0.26



	Optimized Stack
	3631.19
	1.32
	2953.21
	0.75



	Algebraic Simplification
	1630.93
	0.59
	4818.45
	1.23



	Byte Code
	4057.11
	1.47
	3355.75
	0.85



	Stack Caching
	3698.10
	1.34
	3237.17
	0.82



	Superinstructions
	3706.10
	1.35
	4689.02
	1.19



	All
	7612.45
	2.76
	7098.06
	1.80





There are a few lessons to take from this. The most important, in my opinion, is that performance is not compositional. The results of applying two optimizations is not simply the sum of applying the optimizations individually. You can see that most of the optimizations on their own make little or no change to performance relative to the Optimized Stack interpreter. Taken together, however, they make a significant improvement.

Basic structural recursion, the Baseline interpreter, is surprisingly fast; a bit slower than the Optimized Stack interpreter on the Ryzen 5 but faster on the M1. A stack machine emulates the processor’s built-in call stack. The native call stack is extremely fast, so we need a good reason to avoid using it.

Details really matter in optimization. We see the choice of data structure makes a massive difference between the Stack and Optimized Stack interpreters. An earlier version of the Byte Code interpreter had worse performance than the Optimized Stack. As best I could tell this was because I was storing literals alongside byte code, and loading a Double from an Array[Byte] (using a ByteBuffer) was slow. Superinstructions are very dependent on the chosen superinstructions. The superinstruction to add two values from the stack plus a literal had little effect on it’s own; in fact the interpreter with this single superinstruction was much slower on the Ryzen 5.

Compilers, and JIT compilers in particular, are difficult to understand. I cannot explain why, for example, the Algebraic Simplification interpreter is so slow on the Ryzen 5. This interpreter does strictly less work than the Optimized Stack interpreter. Just like the interpreter optimizations I implemented, compiler optimizations apply in restricted cases that the algorithms recognize. If code does not match the patterns the algorithms look for, the optimizations will not apply, which can lead to strange performance cliffs. My best guess is that something about my implementation caused me to run afoul of such an issue.

Finally, differences between platforms are also significant. It’s hard to know how much this due to differences in the computer’s architecture, and how much is down to differences in the JVM. Either way, be aware of which platform or platforms you expect the majority of users to run on, and don’t naively assume performance on one platform will directly translate to another.




12.5 Conclusions

In this chapter we explored two main techniques for optimizing interpeters: algebraic simplification of programs, and interpretation in a virtual machine.

Our regular expression derivative algorithm is taken from Regular-expression derivatives reexamined. What we didn’t explore, but we should if we really care about performance, is compiling regular expressions to a finite state machine, another kind of virtual machine. Regular expression derivatives are very easy to implement and nicely illustrate the point of algebraic simplification. However we have to recompute the derivative on each input character. If we instead compile the regular expression to a finite state machine ahead of time, we save time when parsing input. The details of this algorithm are in the paper.

This work is based on Derivatives of Regular Expressions. Derivatives of Regular Expressions was published in 1964. Although the style of the paper will be immediately recognizable to anyone familiar with the more theoretical end of computer science, anachronisms like “State Diagram Construction” are a reminder that this work comes from the very beginnings of the discipline. Regular expression derivatives can be extended to context-free grammars and therefore used to implement parsers. This is explored in Parsing with Derivatives.

A lot of work has looked at systematically transforming an interpreter into a compiler and virtual machine. From Interpreter to Compiler and Virtual Machine: A Functional Derivation is an earlier example. Calculating Correct Compilers is more recent, and follow-up papers extend the technique in a number of directions.

Interpreter and their optimization is an enormous area of work. It also one I find very interesting, so I’ve been a bit more through in collecting references for this section.

We looked at four techniques for optimization: algebraic simplification, byte code, stack caching, and superinstructions. Algebraic simplification is as old as algebra, and something familiar to any secondary school student. In the world of compilers, different aspects of algebraic simplification are known as constant folding, constant propagation, and common subexpression elimination. Byte code is probably as old as interpreters, and dates back to at least the 1960s in the form of p-code. Stack Caching for Interpreters introduces the idea of stack caching, and shows some rather more complex realizations than the simple system I used. Superinstructions were introduced in Optimizing an ANSI C interpreter with superoperators. Towards Superinstructions for Java Interpreters is a nice example of applying superinstructions to a interpreted JVM.

Let’s now talk about instruction dispatch, which is area we did not consider for optimization. Instruction dispatch is the process by which the interpreter chooses the code to run for a given interpreter instruction. The Structure and Performance of Efficient Interpreters argues that instruction dispatch makes up a major portion of an interpreter’s execution time. The approach we used is generally called switch dispatch in the literature. There are several alternative approaches. Direct threaded dispatch is described in Threaded Code. Direct threading represents an instruction by the function that implements it. This requires first-class functions and full tail calls. It is generally considered the fastest form of dispatch. Notice that it relies on the duality between data and functions. Subroutine threading is like direct threading, but uses normal calls and returns instead of tail calls. In indirect threaded code (described in Indirect Threaded Code), each bytecode is the index into a lookup table that points to the implementing function.

Stack machines are not the only virtual machine used for implementing interpreters. Register machines are the most common alternative. The Lua virtual machine, for example, is a register machine. Virtual Machine Showdown: Stack Versus Registers compares the two and concludes that register machines are faster. However they are more complex to implement.

If you’re interested in the design considerations in a general purpose stack based instruction set, Bringing the Web up to Speed with WebAssembly is the paper for you. It covers the design of WebAssembly, and the rationale behind the design choices. An interpreter for WebAssembly is described in A Fast In-Place Interpreter for WebAssembly. Notice how often tail calls arise in the discussion!
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13 Case Study: Testing Asynchronous Code

We’ll start with a straightforward case study: how to simplify unit tests for asynchronous code by making them synchronous.

Let’s return to the example from Chapter 11 where we’re measuring the uptime on a set of servers. We’ll flesh out the code into a more complete structure. There will be two components. The first is an UptimeClient that polls remote servers for their uptime:

import scala.concurrent.Future

trait UptimeClient {
  def getUptime(hostname: String): Future[Int]
}


We’ll also have an UptimeService that maintains a list of servers and allows the user to poll them for their total uptime:

import cats.instances.future._ // for Applicative
import cats.instances.list._   // for Traverse
import cats.syntax.traverse._  // for traverse
import scala.concurrent.ExecutionContext.Implicits.global

class UptimeService(client: UptimeClient) {
  def getTotalUptime(hostnames: List[String]): Future[Int] =
    hostnames.traverse(client.getUptime).map(_.sum)
}


We’ve modelled UptimeClient as a trait because we’re going to want to stub it out in unit tests. For example, we can write a test client that allows us to provide dummy data rather than calling out to actual servers:

class TestUptimeClient(hosts: Map[String, Int]) extends UptimeClient {
  def getUptime(hostname: String): Future[Int] =
    Future.successful(hosts.getOrElse(hostname, 0))
}


Now, suppose we’re writing unit tests for UptimeService. We want to test its ability to sum values, regardless of where it is getting them from. Here’s an example:

def testTotalUptime() = {
  val hosts    = Map("host1" -> 10, "host2" -> 6)
  val client   = new TestUptimeClient(hosts)
  val service  = new UptimeService(client)
  val actual   = service.getTotalUptime(hosts.keys.toList)
  val expected = hosts.values.sum
  assert(actual == expected)
}
// error:
// Values of types concurrent.Future[Int] and Int cannot be compared with == or !=
//   assert(actual == expected)
//          ^^^^^^^^^^^^^^^^^^


The code doesn’t compile because we’ve made a classic error

  
  
  
  ch015.xhtml
  
  




14 Case Study: Map-Reduce


In this case study we’re going to implement a simple-but-powerful parallel processing framework using Monoids, Functors, and a host of other goodies.

If you have used Hadoop or otherwise worked in “big data” you will have heard of MapReduce, which is a programming model for doing parallel data processing across clusters of machines (aka “nodes”). As the name suggests, the model is built around a map phase, which is the same map function we know from Scala and the Functor type class, and a reduce phase, which we usually call fold
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15 Case Study: Data Validation

In this case study we will build a library for validation. What do we mean by validation? Almost all programs must check their input meets certain criteria. Usernames must not be blank, email addresses must be valid, and so on. This type of validation often occurs in web forms, but it could be performed on configuration files, on web service responses, and any other case where we have to deal with data that we can’t guarantee is correct. Authentication, for example, is just a specialised form of validation.

We want to build a library that performs these checks. What design goals should we have? For inspiration, let’s look at some examples of the types of checks we want to perform:


	A user must be over 18 years old or must have parental consent.


	A String ID must be parsable as a Int and the Int must correspond to a valid record ID.


	A bid in an auction must apply to one or more items and have a positive value.


	A username must contain at least four characters and all characters must be alphanumeric.


	An email address must contain a single @ sign. Split the string at the @. The string to the left must not be empty. The string to the right must be at least three characters long and contain a dot.




With these examples in mind we can state some goals:


	We should be able to associate meaningful messages with each validation failure, so the user knows why their data is not valid.


	We should be able to combine small checks into larger ones. Taking the username example above, we should be able to express this by combining a check of length and a check for alphanumeric values.


	We should be able to transform data while we are checking it. There is an example above requiring we parse data, changing its type from String to Int.


	Finally, we should be able to accumulate all the failures in one go, so the user can correct all the issues before resubmitting.




These goals assume we’re checking a single piece of data. We will also need to combine checks across multiple pieces of data. For a login form, for example, we’ll need to combine the check results for the username and the password. This will turn out to be quite a small component of the library, so the majority of our time will focus on checking a single data item.


15.1 Sketching the Library Structure

Let’s start at the bottom, checking individual pieces of data. Before we start coding let’s try to develop a feel for what we’ll be building. We can use a graphical notation to help us. We’ll go through our goals one by one.

Providing error messages

Our first goal requires us to associate useful error messages with a check failure. The output of a check could be either the value being checked, if it passed the check, or some kind of error message. We can abstractly represent this as a value in a context, where the context is the possibility of an error message as shown in Figure 16.


[image: A validation result]
Figure 16: A validation result

A check itself is therefore a function that transforms a value into a value in a context as shown in Figure 17.


[image: A validation check]
Figure 17: A validation check

Combine checks

How do we combine smaller checks into larger ones? Is this an applicative or semigroupal as shown in Figure 18?


[image: Applicative combination of checks]
Figure 18: Applicative combination of checks

Not really. With applicative combination, both checks are applied to the same value and result in a tuple with the value repeated. What we want feels more like a monoid as shown in Figure 19. We can define a sensible identity—a check that always passes—and two binary combination operators—and and or:


[image: Monoid combination of checks]
Figure 19: Monoid combination of checks

We’ll probably be using and and or about equally often with our validation library and it will be annoying to continuously switch between two monoids for combining rules. We consequently won’t actually use the monoid API: we’ll use two separate methods, and and or, instead.

Accumulating errors as we check

Monoids also feel like a good mechanism for accumulating error messages. If we store messages as a List or NonEmptyList, we can even use a pre-existing monoid from inside Cats.

Transforming data as we check it

In addition to checking data, we also have the goal of transforming it. This seems like it should be a map or a flatMap depending on whether the transform can fail or not, so it seems we also want checks to be a monad as shown in Figure 20.


[image: Monadic combination of checks]
Figure 20: Monadic combination of checks

We’ve now broken down our library into familiar abstractions and are in a good position to begin development.



15.2 The Check Datatype

Our design revolves around a Check, which we said was a function from a value to a value in a context. As soon as you see this description you should think of something like

type Check[A] = A => Either[String, A]


Here we’ve represented the error message as a String. This is probably not the best representation. We may want to accumulate messages in a List, for example, or even use a different representation that allows for internationalization or standard error codes.

We could attempt to build some kind of ErrorMessage type that holds all the information we can think of. However, we can’t predict the user’s requirements. Instead let’s let the user specify what they want. We can do this by adding a second type parameter to Check:

type Check[E, A] = A => Either[E, A]


We will probably want to add custom methods to Check so let’s declare it as a trait instead of a type alias:

trait Check[E, A] {
  def apply(value: A): Either[E, A]

  // other methods...
}


As we said in Essential Scala, there are two functional programming patterns that we should consider when defining a trait:


	we can make it a typeclass, or;

	we can make it an algebraic data type (and hence seal it).



Type classes allow us to unify disparate data types with a common interface. This doesn’t seem like what we’re trying to do here. That leaves us with an algebraic data type. Let’s keep that thought in mind as we explore the design a bit further.



15.3 Basic Combinators

Let’s add some combinator methods to Check, starting with and. This method combines two checks into one, succeeding only if both checks succeed. Think about implementing this method now. You should hit some problems. Read on when you do!

trait Check[E, A] {
  def and(that: Check[E, A]): Check[E, A] =
    ???

  // other methods...
}


The problem is: what do you do when both checks fail? The correct thing to do is to return both errors, but we don’t currently have any way to combine Es. We need a type class that abstracts over the concept of “accumulating” errors as shown in Figure 21 What type class do we know that looks like this? What method or operator should we use to implement the ? operation?


[image: Combining error messages]
Figure 21: Combining error messages

See the solution

There is another semantic issue that will come up quite quickly: should and short-circuit if the first check fails. What do you think the most useful behaviour is?

See the solution

Use this knowledge to implement and. Make sure you end up with the behaviour you expect!

See the solution

Strictly speaking, Either[E, A] is the wrong abstraction for the output of our check. Why is this the case? What other data type could we use instead? Switch your implementation over to this new data type.

See the solution

Our implementation is looking pretty good now. Implement an or combinator to complement and.

See the solution

With and and or we can implement many of checks we’ll want in practice. However, we still have a few more methods to add. We’ll turn to map and related methods next.



15.4 Transforming Data

One of our requirements is the ability to transform data. This allows us to support additional scenarios like parsing input. In this section we’ll extend our check library with this additional functionality.

The obvious starting point is map. When we try to implement this, we immediately run into a wall. Our current definition of Check requires the input and output types to be the same:

type Check[E, A] = A => Either[E, A]


When we map over a check, what type do we assign to the result? It can’t be A and it can’t be B. We are at an impasse:

def map(check: Check[E, A])(func: A => B): Check[E, ???]


To implement map we need to change the definition of Check. Specifically, we need to a new type variable to separate the input type from the output:

type Check[E, A, B] = A => Either[E, B]


Checks can now represent operations like parsing a String as an Int:

val parseInt: Check[List[String], String, Int] =
  // etc...


However, splitting our input and output types raises another issue. Up until now we have operated under the assumption that a Check always returns its input when successful. We used this in and and or to ignore the output of the left and right rules and simply return the original input on success:

(this(a), that(a)) match {
  case And(left, right) =>
    (left(a), right(a))
      .mapN((result1, result2) => Right(a))

  // etc...
}


In our new formulation we can’t return Right(a) because its type is Either[E, A] not Either[E, B]. We’re forced to make an arbitrary choice between returning Right(result1) and Right(result2). The same is true of the or method. From this we can derive two things:


	we should strive to make the laws we adhere to explicit; and

	the code is telling us we have the wrong abstraction in Check.




15.4.1 Predicates

We can make progress by pulling apart the concept of a predicate, which can be combined using logical operations such as and and or, and the concept of a check, which can transform data.

What we have called Check so far we will call Predicate. For Predicate we can state the following identity law encoding the notion that a predicate always returns its input if it succeeds:


For a predicate p of type Predicate[E, A] and elements a1 and a2 of type A, if p(a1) == Success(a2) then a1 == a2.



Making this change gives us the following code:

import cats.Semigroup
import cats.data.Validated
import cats.syntax.semigroup._ // for |+|
import cats.syntax.apply._     // for mapN
import cats.data.Validated._   // for Valid and Invalid


sealed trait Predicate[E, A] {
  def and(that: Predicate[E, A]): Predicate[E, A] =
    And(this, that)

  def or(that: Predicate[E, A]): Predicate[E, A] =
    Or(this, that)

  def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
    this match {
      case Pure(func) =>
        func(a)

      case And(left, right) =>
        (left(a), right(a)).mapN((_, _) => a)

      case Or(left, right) =>
        left(a) match {
          case Valid(_)   => Valid(a)
          case Invalid(e1) =>
            right(a) match {
              case Valid(_)   => Valid(a)
              case Invalid(e2) => Invalid(e1 |+| e2)
            }
        }
    }
}

final case class And[E, A](
  left: Predicate[E, A],
  right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](
  left: Predicate[E, A],
  right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](
  func: A => Validated[E, A]) extends Predicate[E, A]




15.4.2 Checks

We’ll use Check to represent a structure we build from a Predicate that also allows transformation of its input. Implement Check with the following interface:

sealed trait Check[E, A, B] {
  def apply(a: A): Validated[E, B] =
    ???

  def map[C](func: B => C): Check[E, A, C] =
    ???
}


See the solution

What about flatMap? The semantics are a bit unclear here. The method is simple enough to declare but it’s not so obvious what it means or how we should implement apply. The general shape of flatMap is shown in Figure 22.


[image: Type chart for flatMap]
Figure 22: Type chart for flatMap

How do we relate F in the figure to Check in our code? Check has three type variables while F only has one.

To unify the types we need to fix two of the type parameters. The idiomatic choices are the error type E and the input type A. This gives us the relationships shown in Figure 23. In other words, the semantics of applying a FlatMap are:


	given an input of type A, convert to F[B];


	use the output of type B to choose a Check[E, A, C];


	return to the original input of type A and apply it to the chosen check to generate the final result of type F[C].





[image: Type chart for flatMap applied to Check]
Figure 23: Type chart for flatMap applied to Check

This is quite an odd method. We can implement it, but it is hard to find a use for it. Go ahead and implement flatMap for Check, and then we’ll see a more generally useful method.

See the solution

We can write a more useful combinator that chains together two Checks. The output of the first check is connected to the input of the second. This is analogous to function composition using andThen:

val f: A => B = ???
val g: B => C = ???
val h: A => C = f andThen g


A Check is basically a function A => Validated[E, B] so we can define an analagous andThen method:

trait Check[E, A, B] {
  def andThen[C](that: Check[E, B, C]): Check[E, A, C]
}


Implement andThen now!

See the solution



15.4.3 Recap

We now have two algebraic data types, Predicate and Check, and a host of combinators with their associated case class implementations. Look at the following solution for a complete definition of each ADT.

See the solution

We have a complete implementation of Check and Predicate that do most of what we originally set out to do. However, we are not finished yet. You have probably recognised structure in Predicate and Check that we can abstract over: Predicate has a monoid and Check has a monad. Furthermore, in implementing Check you might have felt the implementation doesn’t do much—all we do is call through to underlying methods on Predicate and Validated.

There are a lot of ways this library could be cleaned up. However, let’s implement some examples to prove to ourselves that our library really does work, and then we’ll turn to improving it.

Implement checks for some of the examples given in the introduction:


	A username must contain at least four characters and consist entirely of alphanumeric characters


	An email address must contain an @ sign. Split the string at the @. The string to the left must not be empty. The string to the right must be at least three characters long and contain a dot.




You might find the following predicates useful:

import cats.data.{NonEmptyList, Validated}


type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =
  NonEmptyList(s, Nil)

def longerThan(n: Int): Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must be longer than $n characters"),
    str => str.size > n)

val alphanumeric: Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must be all alphanumeric characters"),
    str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must contain the character $char"),
    str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must contain the character $char only once"),
    str => str.filter(c => c == char).size == 1)


See the solution




15.5 Kleislis

We’ll finish off this case study by cleaning up the implementation of Check. A justifiable criticism of our approach is that we’ve written a lot of code to do very little. A Predicate is essentially a function A => Validated[E, A], and a Check is basically a wrapper that lets us compose these functions.

We can abstract A => Validated[E, A] to A => F[B], which you’ll recognise as the type of function you pass to the flatMap method on a monad. Imagine we have the following sequence of operations:


	We lift some value into a monad (by using pure, for example). This is a function with type A => F[A].


	We then sequence some transformations on the monad using flatMap.




We can illustrate this as shown in Figure 24. We can also write out this example using the monad API as follows:

val aToB: A => F[B] = ???
val bToC: B => F[C] = ???

def example[A, C](a: A): F[C] =
  aToB(a).flatMap(bToC)



[image: Sequencing monadic transforms]
Figure 24: Sequencing monadic transforms

Recall that Check is, in the abstract, allowing us to compose functions of type A => F[B]. We can write the above in terms of andThen as:

val aToC = aToB andThen bToC


The result is a (wrapped) function aToC of type A => F[C] that we can subsequently apply to a value of type A.

We have achieved the same thing as the example method without having to reference an argument of type A. The andThen method on Check is analogous to function composition, but is composing function A => F[B] instead of A => B.

The abstract concept of composing functions of type A => F[B] has a name: a Kleisli.

Cats contains a data type cats.data.Kleisli that wraps a function just as Check does. Kleisli has all the methods of Check plus some additional ones. If Kleisli seems familiar to you, then congratulations. You’ve seen through its disguise and recognised it as another concept from earlier in the book: Kleisli is just another name for ReaderT.

Here is a simple example using Kleisli to transform an integer into a list of integers through three steps:

import cats.data.Kleisli
import cats.instances.list._ // for Monad


These steps each transform an input Int into an output of type List[Int]:

val step1: Kleisli[List, Int, Int] =
  Kleisli(x => List(x + 1, x - 1))

val step2: Kleisli[List, Int, Int] =
  Kleisli(x => List(x, -x))

val step3: Kleisli[List, Int, Int] =
  Kleisli(x => List(x * 2, x / 2))


We can combine the steps into a single pipeline that combines the underlying Lists using flatMap:

val pipeline = step1 andThen step2 andThen step3


The result is a function that consumes a single Int and returns eight outputs, each produced by a different combination of transformations from step1, step2, and step3:

pipeline.run(20)
// res0: List[Int] = List(42, 10, -42, -10, 38, 9, -38, -9)


The only notable difference between Kleisli and Check in terms of API is that Kleisli renames our apply method to run.

Let’s replace Check with Kleisli in our validation examples. To do so we need to make a few changes to Predicate. We must be able to convert a Predicate to a function, as Kleisli only works with functions. Somewhat more subtly, when we convert a Predicate to a function, it should have type A => Either[E, A] rather than A => Validated[E, A] because Kleisli relies on the wrapped function returning a monad.

Add a method to Predicate called run that returns a function of the correct type. Leave the rest of the code in Predicate the same.

See the solution

Now rewrite our username and email validation example in terms of Kleisli and Predicate. Here are few tips in case you get stuck:

First, remember that the run method on Predicate takes an implicit parameter. If you call aPredicate.run(a) it will try to pass the implicit parameter explicitly. If you want to create a function from a Predicate and immediately apply that function, use aPredicate.run.apply(a)

Second, type inference can be tricky in this exercise. We found that the following definitions helped us to write code with fewer type declarations.

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

// Create a check from a function:
def check[A, B](func: A => Result[B]): Check[A, B] =
  Kleisli(func)

// Create a check from a Predicate:
def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =
  Kleisli[Result, A, A](pred.run)


See the solution

We have now written our code entirely in terms of Kleisli and Predicate, completely removing Check. This is a good first step to simplifying our library. There’s still plenty more to do, but we have a sophisticated building block from Cats to work with. We’ll leave further improvements up to the reader.



15.6 Summary

This case study has been an exercise in removing rather than building abstractions. We started with a fairly complex Check type. Once we realised we were conflating two concepts, we separated out Predicate leaving us with something that could be implemented with Kleisli.


We made several design choices above that reasonable developers may disagree with. Should the method that converts a Predicate to a function really be called run instead of, say, toFunction? Should Predicate be a subtype of Function to begin with? Many functional programmers prefer to avoid subtyping because it plays poorly with implicit resolution and type inference, but there could be an argument to use it here. As always the best decisions depend on the context in which the library will be used.
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16 Case Study: CRDTs

In this case study we will explore Commutative Replicated Data Types (CRDTs), a family of data structures that can be used to reconcile eventually consistent data.

We’ll start by describing the utility and difficulty of eventually consistent systems, then show how we can use monoids and their extensions to solve the issues that arise. Finally, we will model the solutions in Scala.

Our goal here is to focus on the implementation in Scala of a particular type of CRDT. We’re not aiming at a comprehensive survey of all CRDTs. CRDTs are a fast-moving field and we advise you to read the literature to learn about more.


16.1 Eventual Consistency

As soon as a system scales beyond a single machine we have to make a fundamental choice about how we manage data.

One approach is to build a system that is consistent, meaning that all machines have the same view of data. For example, if a user changes their password then all machines that store a copy of that password must accept the change before we consider the operation to have completed successfully.

Consistent systems are easy to work with but they have their disadvantages. They tend to have high latency because a single change can result in many messages being sent between machines. They also tend to have relatively low uptime because outages can cut communications between machines creating a network partition. When there is a network partition, a consistent system may refuse further updates to prevent inconsistencies across machines.

An alternative approach is an eventually consistent system. This means that at any particular point in time machines are allowed to have differing views of data. However, if all machines can communicate and there are no further updates they will eventually all have the same view of data.

Eventually consistent systems require less communication between machines so latency can be lower. A partitioned machine can still accept updates and reconcile its changes when the network is fixed, so systems can also have better uptime.

The big question is: how do we do this reconciliation between machines? CRDTs provide one approach to the problem.



16.2 The GCounter

Let’s look at one particular CRDT implementation. Then we’ll attempt to generalise properties to see if we can find a general pattern.

The data structure we will look at is called a GCounter. It is a distributed increment-only counter that can be used, for example, to count the number of visitors to a web site where requests are served by many web servers.


16.2.1 Simple Counters

To see why a straightforward counter won’t work, imagine we have two servers storing a simple count of visitors. Let’s call the machines A and B. Each machine is storing an integer counter and the counters all start at zero as shown in Figure 25.


[image: Simple counters: initial state]
Figure 25: Simple counters: initial state

Now imagine we receive some web traffic. Our load balancer distributes five incoming requests to A and B, A serving three visitors and B two. The machines have inconsistent views of the system state that they need to reconcile to achieve consistency. One reconciliation strategy with simple counters is to exchange counts and add them as shown in Figure 26.


[image: Simple counters: first round of requests and reconciliation]
Figure 26: Simple counters: first round of requests and reconciliation

So far so good, but things will start to fall apart shortly. Suppose A serves a single visitor, which means we’ve seen six visitors in total. The machines attempt to reconcile state again using addition leading to the answer shown in Figure 27.


[image: Simple counters: second round of requests and (incorrect) reconciliation]
Figure 27: Simple counters: second round of requests and (incorrect) reconciliation

This is clearly wrong! The problem is that simple counters don’t give us enough information about the history of interactions between the machines. Fortunately we don’t need to store the complete history to get the correct answer—just a summary of it. Let’s look at how the GCounter solves this problem.



16.2.2 GCounters

The first clever idea in the GCounter is to have each machine storing a separate counter for every machine it knows about (including itself). In the previous example we had two machines, A and B. In this situation both machines would store a counter for A and a counter for B as shown in Figure 28.


[image: GCounter: initial state]
Figure 28: GCounter: initial state

The rule with GCounters is that a given machine is only allowed to increment its own counter. If A serves three visitors and B serves two visitors the counters look as shown in Figure 29.


[image: GCounter: first round of web requests]
Figure 29: GCounter: first round of web requests

When two machines reconcile their counters the rule is to take the largest value stored for each machine. In our example, the result of the first merge will be as shown in Figure 30.


[image: GCounter: first reconciliation]
Figure 30: GCounter: first reconciliation

Subsequent incoming web requests are handled using the increment-own-counter rule and subsequent merges are handled using the take-maximum-value rule, producing the same correct values for each machine as shown in Figure 31.


[image: GCounter: second reconciliation]
Figure 31: GCounter: second reconciliation

GCounters allow each machine to keep an accurate account of the state of the whole system without storing the complete history of interactions. If a machine wants to calculate the total traffic for the whole web site, it sums up all the per-machine counters. The result is accurate or near-accurate depending on how recently we performed a reconciliation. Eventually, regardless of network outages, the system will always converge on a consistent state.



16.2.3 Exercise: GCounter Implementation

We can implement a GCounter with the following interface, where we represent machine IDs as Strings.

final case class GCounter(counters: Map[String, Int]) {
  def increment(machine: String, amount: Int) =
    ???

  def merge(that: GCounter): GCounter =
    ???

  def total: Int =
    ???
}


Finish the implementation!

See the solution




16.3 Generalisation

We’ve now created a distributed, eventually consistent, increment-only counter. This is a useful achievement but we don’t want to stop here. In this section we will attempt to abstract the operations in the GCounter so it will work with more data types than just natural numbers.

The GCounter uses the following operations on natural numbers:


	addition (in increment and total);

	maximum (in merge);

	and the identity element 0 (in increment and merge).



You can probably guess that there’s a monoid in here somewhere, but let’s look in more detail at the properties we’re relying on.

As a refresher, in Chapter 6 we saw that monoids must satisfy two laws. The binary operation + must be associative:

(a + b) + c == a + (b + c)

and the empty element must be an identity:

0 + a == a + 0 == a

We need an identity in increment to initialise the counter. We also rely on associativity to ensure the specific sequence of merges gives the correct value.

In total we implicitly rely on associativity and commutativity to ensure we get the correct value no matter what arbitrary order we choose to sum the per-machine counters. We also implicitly assume an identity, which allows us to skip machines for which we do not store a counter.

The properties of merge are a bit more interesting. We rely on commutativity to ensure that machine A merging with machine B yields the same result as machine B merging with machine A. We need associativity to ensure we obtain the correct result when three or more machines are merging data. We need an identity element to initialise empty counters. Finally, we need an additional property, called idempotency, to ensure that if two machines hold the same data in a per-machine counter, merging data will not lead to an incorrect result. Idempotent operations are ones that return the same result again and again if they are executed multiple times. Formally, a binary operation max is idempotent if the following relationship holds:

a max a = a

Written more compactly, we have:











	Method
	Identity
	Commutative
	Associative
	Idempotent





	increment
	Y
	N
	Y
	N



	merge
	Y
	Y
	Y
	Y



	total
	Y
	Y
	Y
	N





From this we can see that


	increment requires a monoid;

	total requires a commutative monoid; and

	merge required an idempotent commutative monoid, also called a bounded semilattice.



Since increment and get both use the same binary operation (addition) it’s usual to require the same commutative monoid for both.

This investigation demonstrates the powers of thinking about properties or laws of abstractions. Now we have identified these properties we can substitute the natural numbers used in our GCounter with any data type with operations satisfying these properties. A simple example is a set, with the binary operation being union and the identity element the empty set. With this simple substitution of Int for Set[A] we can create a GSet type.


16.3.1 Implementation

Let’s implement this generalisation in code. Remember increment and total require a commutative monoid and merge requires a bounded semilattice (or idempotent commutative monoid).

Cats provides a type class for both Monoid and CommutativeMonoid, but doesn’t provide one for bounded semilattice
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17 Solutions to Exercises


17.1 Algebraic Data Types


17.1.1 Solution to: Tree 

We can directly translate this binary tree into Scala. Here’s the Scala 3 version.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
}


In the Scala 2 encoding we write

sealed abstract class Tree[A] extends Product with Serializable
final case class Leaf[A](value: A) extends Tree[A]
final case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A]


Return to the exercise



17.1.2 Solution to: Methods for Tree 

I chose to use pattern matching to implement these methods. I’m using the Scala 3 encoding so I have no choice.

I start by creating the method declarations with empty bodies.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def size: Int = 
    ???

  def contains(element: A): Boolean =
    ???
    
  def map[B](f: A => B): Tree[B] =
    ???
}


Now these methods all transform an algebraic data type so I can implement them using structural recursion. I write down the structural recursion skeleton for Tree, remembering to apply the recursion rule.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def size: Int = 
    this match { 
      case Leaf(value)       => ???
      case Node(left, right) => left.size ??? right.size
    }

  def contains(element: A): Boolean =
    this match { 
      case Leaf(value)       => ???
      case Node(left, right) => left.contains(element) ??? right.contains(element)
    }
    
  def map[B](f: A => B): Tree[B] =
    this match { 
      case Leaf(value)       => ???
      case Node(left, right) => left.map(f) ??? right.map(f)
    }
}


Now I can use the other reasoning techniques to complete the method declarations. Let’s work through size.

def size: Int = 
  this match { 
    case Leaf(value)       => 1
    case Node(left, right) => left.size ??? right.size
  }


I can reason independently by case. The size of a Leaf is, by definition, 1.

def size: Int = 
  this match { 
    case Leaf(value)       => 1
    case Node(left, right) => left.size ??? right.size
  }


Now I can use the rule for reasoning about recursion: I assume the recursive calls successfully compute the size of the left and right children. What is the size then of the combined tree? It must be the sum of the size of the children. With this, I’m done.

def size: Int = 
  this match { 
    case Leaf(value)       => 1
    case Node(left, right) => left.size + right.size
  }


I can use the same process to work through the other two methods, giving me the complete solution shown below.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def size: Int = 
    this match { 
      case Leaf(value)       => 1
      case Node(left, right) => left.size + right.size
    }

  def contains(element: A): Boolean =
    this match { 
      case Leaf(value)       => element == value
      case Node(left, right) => left.contains(element) || right.contains(element)
    }
    
  def map[B](f: A => B): Tree[B] =
    this match { 
      case Leaf(value)       => Leaf(f(value))
      case Node(left, right) => Node(left.map(f), right.map(f))
    }
}


Return to the exercise



17.1.3 Solution to: Tree Fold 

I start by add the method declaration without a body.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def fold[B]: B =
    ???
}


Next step is to add the structural recursion skeleton.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def fold[B]: B =
    this match {
      case Leaf(value)       => ???
      case Node(left, right) => left.fold ??? right.fold
    }
}


Now I follow the types to add the method parameters. For the Leaf case we want a function of type A => B.

enum Tree[A] {
  case Leaf(value: A => B)
  case Node(left: Tree[A], right: Tree[A])
  
  def fold[B](leaf: A => B): B =
    this match {
      case Leaf(value)       => leaf(value)
      case Node(left, right) => left.fold ??? right.fold
    }
}


For the Node case we want a function that combines the two recursive results, and therefore has type (B, B) => B.

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def fold[B](leaf: A => B)(node: (B, B) => B): B =
    this match {
      case Leaf(value)       => leaf(value)
      case Node(left, right) => node(left.fold(leaf)(node), right.fold(leaf)(node))
    }
}


Return to the exercise



17.1.4 Solution to: Using Fold 

enum Tree[A] {
  case Leaf(value: A)
  case Node(left: Tree[A], right: Tree[A])
  
  def fold[B](leaf: A => B)(node: (B, B) => B): B =
    this match {
      case Leaf(value)       => leaf(value)
      case Node(left, right) => node(left.fold(leaf)(node), right.fold(leaf)(node))
    }
    
  def size: Int = 
    this.fold(_ => 1)(_ + _)

  def contains(element: A): Boolean =
    this.fold(_ == element)(_ || _)
    
  def map[B](f: A => B): Tree[B] =
    this.fold(v => Leaf(f(v)))((l, r) => Node(l, r))
}


Return to the exercise



17.1.5 Solution to: Iterate 

object MyList {
  def unfold[A, B](seed: A)(stop: A => Boolean, f: A => B, next: A => A): MyList[B] =
    if stop(seed) then MyList.Empty()
    else MyList.Pair(f(seed), unfold(next(seed))(stop, f, next))
    
  def fill[A](n: Int)(elem: => A): MyList[A] =
    unfold(n)(_ == 0)(_ => elem, _ - 1)
    
  def iterate[A](start: A, len: Int)(f: A => A): MyList[A] =
    unfold((len, start)){
      (len, _) => len == 0,
      (_, start) => start,
      (len, start) => (len - 1, f(start))
    }
}


We should check that this works.

List.iterate(0, 5)(x => x - 1)
// res11: List[Int] = List(0, -1, -2, -3, -4)
MyList.iterate(0, 5)(x => x - 1)
// res12: MyList[Int] = MyList(0, -1, -2, -3, -4)


Return to the exercise



17.1.6 Solution to: Map 

def map[B](f: A => B): MyList[B] =
  MyList.unfold(this)(
    _.isEmpty,
    pair => f(pair.head),
    pair => pair.tail
  )


List.iterate(0, 5)(x => x + 1).map(x => x * 2)
// res13: List[Int] = List(0, 2, 4, 6, 8)
MyList.iterate(0, 5)(x => x + 1).map(x => x * 2)
// res14: MyList[Int] = MyList(0, 2, 4, 6, 8)


Return to the exercise



17.1.7 Solution to: Identities 

It’s Unit, because adding Unit to any product doesn’t add any more information. So, Int contains exactly as much information as Int × Unit (written as the tuple (Int, Unit) in Scala).

Return to the exercise



17.1.8 Solution to: Identities Part 2

It’s Nothing, following the same reasoning as products: a case of Nothing adds no further information (and we cannot even create a value with this type.)

Return to the exercise




17.2 Objects as Codata


17.2.1 Solution to: Stream Combinators 

For all of these methods I found that structural corecursion was the most natural way to tackle them. You could start with structural recursion, though.

You might be worried about the inefficiency of filter. That’s something we’ll discuss a bit later.

trait Stream[A] {
  def head: A
  def tail: Stream[A]

  def filter(pred: A => Boolean): Stream[A] = {
    val self = this
    new Stream[A] {
      def head: A = {
        def loop(stream: Stream[A]): A =
          if pred(stream.head) then stream.head
          else loop(stream.tail)
          
        loop(self)
      }
      
      def tail: Stream[A] = {
        def loop(stream: Stream[A]): Stream[A] =
          if pred(stream.head) then stream.tail
          else loop(stream.tail)
          
        loop(self)
      }
    }
  }

  def zip[B](that: Stream[B]): Stream[(A, B)] = {
    val self = this 
    new Stream[(A, B)] {
      def head: (A, B) = (self.head, that.head)
      
      def tail: Stream[(A, B)] =
        self.tail.zip(that.tail)
    }
  }

  def scanLeft[B](zero: B)(f: (B, A) => B): Stream[B] = {
    val self = this
    new Stream[B] {
      def head: B = f(zero, self.head)
      
      def tail: Stream[B] =
        self.tail.scanLeft(this.head)(f)
    }
  }
}


Return to the exercise



17.2.2 Solution to: Or and Not 

We can follow the same structure as and.

def or(l: Bool, r: Bool): Bool =
  new Bool {
    def `if`[A](t: A)(f: A): A =
      l.`if`(True)(r).`if`(t)(f)
  }

def not(b: Bool): Bool =
  new Bool {
    def `if`[A](t: A)(f: A): A =
      b.`if`(False)(True).`if`(t)(f)
  }


Once again, we can test the entire truth table.

or(True, True).`if`("yes")("no")
// res5: String = "yes"
or(True, False).`if`("yes")("no")
// res6: String = "yes"
or(False, True).`if`("yes")("no")
// res7: String = "yes"
or(False, False).`if`("yes")("no")
// res8: String = "no"

not(True).`if`("yes")("no")
// res9: String = "no"
not(False).`if`("yes")("no")
// res10: String = "yes"


Return to the exercise



17.2.3 Solution to: Sets 

I used structural corecursion to implement these methods. I decided to name the subclasses, as I think it’s a little bit clearer what’s going on in this case.

trait Set[A] {
  
  def contains(elt: A): Boolean
  
  def insert(elt: A): Set[A] =
    InsertOneSet(elt, this)
  
  def union(that: Set[A]): Set[A] =
    UnionSet(this, that)
}

final class InsertOneSet[A](element: A, source: Set[A]) 
    extends Set[A] {

  def contains(elt: A): Boolean =
    elt == elt || source.contains(elt)
}

final class UnionSet[A](first: Set[A], second: Set[A])
    extends Set[A] {

  def contains(elt: A): Boolean =
    first.contains(elt) || second.contains(elt)
}


Return to the exercise



17.2.4 Solution to: Sets Part 2

I implemented Evens using an object. This is possible because all possible instances of this set are the same, so we only need one instance.

object Evens extends Set[Int] {

  def contains(elt: Int): Boolean =
    (elt % 2 == 0)
}


It turns out, perhaps surprisingly, that this works. Let’s define a few sets using Evens and ListSet.

val evensAndOne = Evens.insert(1)
val evensAndOthers = 
  Evens.union(ListSet.empty.insert(1).insert(3))


Now show that they work as expected.

evensAndOne.contains(1)
// res1: Boolean = true
evensAndOthers.contains(1)
// res2: Boolean = true
evensAndOne.contains(2)
// res3: Boolean = true
evensAndOthers.contains(2)
// res4: Boolean = true
evensAndOne.contains(3)
// res5: Boolean = true
evensAndOthers.contains(3)
// res6: Boolean = true


Return to the exercise



17.2.5 Solution to: Sets Part 3

final class IndicatorSet[A](indicator: A => Boolean)
    extends Set[A] {

  def contains(elt: A): Boolean =
    indicator(elt)
}


To test this, let’s define the infinite set of odd integers.

val odds = IndicatorSet[Int](_ % 2 == 1)


Now we’ll show it works as expected.

odds.contains(1)
// res7: Boolean = true
odds.contains(2)
// res8: Boolean = false
odds.contains(3)
// res9: Boolean = true


Taking the union of even and odd integers gives us a set that contains all integers.

val integers = Evens.union(odds)


It has the expected behaviour.

integers.contains(1)
// res10: Boolean = true
integers.contains(2)
// res11: Boolean = true
integers.contains(3)
// res12: Boolean = true


Return to the exercise




17.3 Contextual Abstraction


17.3.1 Solution to: Printable Library 

These steps define the three main components of our type class. First we define Printable—the type class itself:

trait Printable[A] {
  def format(value: A): String
}


Then we define some default instances of Printable and package them in PrintableInstances:

object PrintableInstances {
  implicit val stringPrintable: Printable[String] = new Printable[String] {
    def format(input: String) = input
  }

  implicit val intPrintable: Printable[Int] = new Printable[Int] {
    def format(input: Int) = input.toString
  }
}


Finally we define an interface object, Printable:

object Printable {
  def format[A](input: A)(implicit p: Printable[A]): String =
    p.format(input)

  def print[A](input: A)(implicit p: Printable[A]): Unit =
    println(p.format(input))
}


Return to the exercise



17.3.2 Solution to: Printable Library Part 2

This is a standard use of the type class pattern. First we define a set of custom data types for our application:

final case class Cat(name: String, age: Int, color: String)


Then we define type class instances for the types we care about. These either go into the companion object of Cat or a separate object to act as a namespace:

import PrintableInstances._

implicit val catPrintable: Printable[Cat] = new Printable[Cat] {
  def format(cat: Cat) = {
    val name  = Printable.format(cat.name)
    val age   = Printable.format(cat.age)
    val color = Printable.format(cat.color)
    s"$name is a $age year-old $color cat."
  }
}


Finally, we use the type class by bringing the relevant instances into scope and using interface object/syntax. If we defined the instances in companion objects Scala brings them into scope for us automatically. Otherwise we use an import to access them:

val cat = Cat("Garfield", 41, "ginger and black")
// cat: Cat = Cat(name = "Garfield", age = 41, color = "ginger and black")

Printable.print(cat)
// Garfield is a 41 year-old ginger and black cat.


Return to the exercise



17.3.3 Solution to: Printable Library Part 3

First we define an implicit class containing our extension methods:

object PrintableSyntax {
  implicit class PrintableOps[A](value: A) {
    def format(implicit p: Printable[A]): String =
      p.format(value)

    def print(implicit p: Printable[A]): Unit =
      println(format(p))
  }
}


With PrintableOps in scope, we can call the imaginary print and format methods on any value for which Scala can locate an implicit instance of Printable:

import PrintableSyntax._


Cat("Garfield", 41, "ginger and black").print
// Garfield is a 41 year-old ginger and black cat.


We get a compile error if we haven’t defined an instance of Printable for the relevant type:

import java.util.Date
new Date().print
// error:
// No given instance of type repl.MdocSession.MdocApp0.Printable[java.util.Date] was found for parameter p of method print in class PrintableOps
// new Date().print
//            ^^^^^


Return to the exercise



17.3.4 Solution to: Cat Show 

First let’s import everything we need from Cats: the Show type class, the instances for Int and String, and the interface syntax:

import cats.Show
import cats.instances.int._    // for Show
import cats.instances.string._ // for Show
import cats.syntax.show._      // for show


Our definition of Cat remains the same:

final case class Cat(name: String, age: Int, color: String)


In the companion object we replace our Printable with an instance of Show using one of the definition helpers discussed above:

implicit val catShow: Show[Cat] = Show.show[Cat] { cat =>
  val name  = cat.name.show
  val age   = cat.age.show
  val color = cat.color.show
  s"$name is a $age year-old $color cat."
}


Finally, we use the Show interface syntax to print our instance of Cat:

println(Cat("Garfield", 38, "ginger and black").show)
// Garfield is a 38 year-old ginger and black cat.


Return to the exercise



17.3.5 Solution to: Equality, Liberty, and Felinity 

First we need our Cats imports. In this exercise we’ll be using the Eq type class and the Eq interface syntax. We’ll bring instances of Eq into scope as we need them below:

import cats.Eq
import cats.syntax.eq._ // for ===


Our Cat class is the same as ever:

final case class Cat(name: String, age: Int, color: String)


We bring the Eq instances for Int and String into scope for the implementation of Eq[Cat]:

import cats.instances.int._    // for Eq
import cats.instances.string._ // for Eq

implicit val catEqual: Eq[Cat] =
  Eq.instance[Cat] { (cat1, cat2) =>
    (cat1.name  === cat2.name ) &&
    (cat1.age   === cat2.age  ) &&
    (cat1.color === cat2.color)
  }


Finally, we test things out in a sample application:

val cat1 = Cat("Garfield",   38, "orange and black")
// cat1: Cat = Cat(name = "Garfield", age = 38, color = "orange and black")
val cat2 = Cat("Heathcliff", 32, "orange and black")
// cat2: Cat = Cat(name = "Heathcliff", age = 32, color = "orange and black")

cat1 === cat2
// res15: Boolean = false
cat1 =!= cat2
// res16: Boolean = true


import cats.instances.option._ // for Eq


val optionCat1 = Option(cat1)
// optionCat1: Option[Cat] = Some(
//   value = Cat(name = "Garfield", age = 38, color = "orange and black")
// )
val optionCat2 = Option.empty[Cat]
// optionCat2: Option[Cat] = None

optionCat1 === optionCat2
// res17: Boolean = false
optionCat1 =!= optionCat2
// res18: Boolean = true


Return to the exercise




17.4 Reified Interpreters


17.4.1 Solution to: Arithmetic 

The trick here is to recognize how the textual description relates to code, and to apply reification correctly.

enum Expression {
  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)
}
object Expression {
  def apply(value: Double): Expression =
    Literal(value)
}


Return to the exercise



17.4.2 Solution to: Arithmetic Part 2

Our interpreter is a structural recursion.

enum Expression {
  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)
  
  def eval: Double =
    this match {
      case Literal(value)              => value
      case Addition(left, right)       => left.eval + right.eval
      case Subtraction(left, right)    => left.eval - right.eval
      case Multiplication(left, right) => left.eval * right.eval
      case Division(left, right)       => left.eval / right.eval
    }
}
object Expression {
  def apply(value: Double): Expression =
    Literal(value)
}


Return to the exercise



17.4.3 Solution to: Arithmetic Part 3

Here’s the complete code.

enum Expression {
  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)

  def +(that: Expression): Expression =
    Addition(this, that)

  def -(that: Expression): Expression =
    Subtraction(this, that)

  def *(that: Expression): Expression =
    Multiplication(this, that)

  def /(that: Expression): Expression =
    Division(this, that)

  def eval: Double =
    this match {
      case Literal(value)              => value
      case Addition(left, right)       => left.eval + right.eval
      case Subtraction(left, right)    => left.eval - right.eval
      case Multiplication(left, right) => left.eval * right.eval
      case Division(left, right)       => left.eval / right.eval
    }
}
object Expression {
  def apply(value: Double): Expression =
    Literal(value)
}


Here’s an example showing use, and that the code is correct.

val fortyTwo = ((Expression(15.0) + Expression(5.0)) * Expression(2.0) + Expression(2.0)) / Expression(1.0)


fortyTwo.eval
// res2: Double = 42.0


Return to the exercise



17.4.4 Solution to: CPS Arithmetic 

The continuations have a slightly different structure to the regular expression example. In the regular expression example, all the information needs by a continuation is either found in the parameter to the continuation (the index) or values extracted via pattern matching. In the arithmetic code we need values from previous continuations that are not passed as parameters. This is to compute binary operations like additions. The solution is to capture these values within the environment of the closure that represents the continuation.

type Continuation = Double => Double

enum Expression {
  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)

  def eval: Double = {
    def loop(expr: Expression, cont: Continuation): Double =
      expr match {
        case Literal(value) => cont(value)
        case Addition(left, right) =>
          loop(left, l => loop(right, r => cont(l + r)))
        case Subtraction(left, right) =>
          loop(left, l => loop(right, r => cont(l - r)))
        case Multiplication(left, right) =>
          loop(left, l => loop(right, r => cont(l * r)))
        case Division(left, right) =>
          loop(left, l => loop(right, r => cont(l / r)))
      }

    loop(this, identity)
  }
  
  def +(that: Expression): Expression =
    Addition(this, that)

  def -(that: Expression): Expression =
    Subtraction(this, that)

  def *(that: Expression): Expression =
    Multiplication(this, that)

  def /(that: Expression): Expression =
    Division(this, that)
}
object Expression {
  def apply(value: Double): Expression =
    Literal(value)
}


Return to the exercise



17.4.5 Solution to: Exericse: Trampolined Arithmetic 

The process to produce this code is very similar to the regular expression example. We just identify all the different types of calls (which are the same as the regular expression example) and reify them.

type Continuation = Double => Call

enum Call {
  case Continue(value: Double, k: Continuation)
  case Loop(expr: Expression, k: Continuation)
  case Done(result: Double)
}

enum Expression {
  case Literal(value: Double)
  case Addition(left: Expression, right: Expression)
  case Subtraction(left: Expression, right: Expression)
  case Multiplication(left: Expression, right: Expression)
  case Division(left: Expression, right: Expression)

  def eval: Double = {
    def loop(expr: Expression, cont: Continuation): Call =
      expr match {
        case Literal(value) => Call.Continue(value, cont)
        case Addition(left, right) =>
          Call.Loop(
            left,
            l => Call.Loop(right, r => Call.Continue(l + r, cont))
          )
        case Subtraction(left, right) =>
          Call.Loop(
            left,
            l => Call.Loop(right, r => Call.Continue(l - r, cont))
          )
        case Multiplication(left, right) =>
          Call.Loop(
            left,
            l => Call.Loop(right, r => Call.Continue(l * r, cont))
          )
        case Division(left, right) =>
          Call.Loop(
            left,
            l => Call.Loop(right, r => Call.Continue(l / r, cont))
          )
      }

    def trampoline(call: Call): Double =
      call match {
        case Call.Continue(value, k) => trampoline(k(value))
        case Call.Loop(expr, k)      => trampoline(loop(expr, k))
        case Call.Done(result)       => result
      }

    trampoline(loop(this, x => Call.Done(x)))
  }

  def +(that: Expression): Expression =
    Addition(this, that)

  def -(that: Expression): Expression =
    Subtraction(this, that)

  def *(that: Expression): Expression =
    Multiplication(this, that)

  def /(that: Expression): Expression =
    Division(this, that)
}
object Expression {
  def apply(value: Double): Expression =
    Literal(value)
}


Return to the exercise




17.5 Monoids and Semigroups


17.5.1 Solution to: The Truth About Monoids 

There are four monoids for Boolean! First, we have and with operator && and identity true:

implicit val booleanAndMonoid: Monoid[Boolean] =
  new Monoid[Boolean] {
    def combine(a: Boolean, b: Boolean) = a && b
    def empty = true
  }


Second, we have or with operator || and identity false:

implicit val booleanOrMonoid: Monoid[Boolean] =
  new Monoid[Boolean] {
    def combine(a: Boolean, b: Boolean) = a || b
    def empty = false
  }


Third, we have exclusive or with identity false:

implicit val booleanEitherMonoid: Monoid[Boolean] =
  new Monoid[Boolean] {
    def combine(a: Boolean, b: Boolean) =
      (a && !b) || (!a && b)

    def empty = false
  }


Finally, we have exclusive nor (the negation of exclusive or) with identity true:

implicit val booleanXnorMonoid: Monoid[Boolean] =
  new Monoid[Boolean] {
    def combine(a: Boolean, b: Boolean) =
      (!a || b) && (a || !b)

    def empty = true
  }


Showing that the identity law holds in each case is straightforward. Similarly associativity of the combine operation can be shown by enumerating the cases.

Return to the exercise



17.5.2 Solution to: All Set for Monoids 

Set union forms a monoid along with the empty set:

implicit def setUnionMonoid[A]: Monoid[Set[A]] =
  new Monoid[Set[A]] {
    def combine(a: Set[A], b: Set[A]) = a union b
    def empty = Set.empty[A]
  }


We need to define setUnionMonoid as a method rather than a value so we can accept the type parameter A. The type parameter allows us to use the same definition to summon Monoids for Sets of any type of data:

val intSetMonoid = Monoid[Set[Int]]
val strSetMonoid = Monoid[Set[String]]


intSetMonoid.combine(Set(1, 2), Set(2, 3))
// res18: Set[Int] = Set(1, 2, 3)
strSetMonoid.combine(Set("A", "B"), Set("B", "C"))
// res19: Set[String] = Set("A", "B", "C")


Set intersection forms a semigroup, but doesn’t form a monoid because it has no identity element:

implicit def setIntersectionSemigroup[A]: Semigroup[Set[A]] =
  new Semigroup[Set[A]] {
    def combine(a: Set[A], b: Set[A]) =
      a intersect b
  }


Set complement and set difference are not associative, so they cannot be considered for either monoids or semigroups. However, symmetric difference (the union less the intersection) does also form a monoid with the empty set:

implicit def symDiffMonoid[A]: Monoid[Set[A]] =
  new Monoid[Set[A]] {
    def combine(a: Set[A], b: Set[A]): Set[A] =
      (a diff b) union (b diff a)
    def empty: Set[A] = Set.empty
  }


Return to the exercise



17.5.3 Solution to: Adding All The Things 

We can write the addition as a foldLeft using 0 and the + operator:

def add(items: List[Int]): Int =
  items.foldLeft(0)(_ + _)


We can alternatively write the fold using Monoids, although there’s not a compelling use case for this yet:

import cats.Monoid
import cats.instances.int._    // for Monoid
import cats.syntax.semigroup._ // for |+|

def add(items: List[Int]): Int =
  items.foldLeft(Monoid[Int].empty)(_ |+| _)


Return to the exercise



17.5.4 Solution to: Adding All The Things Part 2

Now there is a use case for Monoids. We need a single method that adds Ints and instances of Option[Int]. We can write this as a generic method that accepts an implicit Monoid as a parameter:

import cats.Monoid
import cats.syntax.semigroup._ // for |+|

def add[A](items: List[A])(implicit monoid: Monoid[A]): A =
  items.foldLeft(monoid.empty)(_ |+| _)


We can optionally use Scala’s context bound syntax to write the same code in a shorter way:

def add[A: Monoid](items: List[A]): A =
  items.foldLeft(Monoid[A].empty)(_ |+| _)


We can use this code to add values of type Int and Option[Int] as requested:

import cats.instances.int._ // for Monoid


add(List(1, 2, 3))
// res10: Int = 6


import cats.instances.option._ // for Monoid


add(List(Some(1), None, Some(2), None, Some(3)))
// res11: Option[Int] = Some(value = 6)


Note that if we try to add a list consisting entirely of Some values, we get a compile error:

add(List(Some(1), Some(2), Some(3)))
// error:
// No given instance of type cats.kernel.Monoid[Some[Int]] was found for an implicit parameter of method add in object MdocApp2
// implicit val monoid: Monoid[Order] = new Monoid[Order] {
//


This happens because the inferred type of the list is List[Some[Int]], while Cats will only generate a Monoid for Option[Int]. We’ll see how to get around this in a moment.

Return to the exercise



17.5.5 Solution to: Adding All The Things Part 3

Easy—we simply define a monoid instance for Order!

implicit val monoid: Monoid[Order] = new Monoid[Order] {
  def combine(o1: Order, o2: Order) =
    Order(
      o1.totalCost + o2.totalCost,
      o1.quantity + o2.quantity
    )

  def empty = Order(0, 0)
}


Return to the exercise




17.6 Functors


17.6.1 Solution to: Branching out with Functors 

The semantics are similar to writing a Functor for List. We recurse over the data structure, applying the function to every Leaf we find. The functor laws intuitively require us to retain the same structure with the same pattern of Branch and Leaf nodes:

import cats.Functor

implicit val treeFunctor: Functor[Tree] =
  new Functor[Tree] {
    def map[A, B](tree: Tree[A])(func: A => B): Tree[B] =
      tree match {
        case Branch(left, right) =>
          Branch(map(left)(func), map(right)(func))
        case Leaf(value) =>
          Leaf(func(value))
      }
  }


Let’s use our Functor to transform some Trees:

Branch(Leaf(10), Leaf(20)).map(_ * 2)
// error:
// value map is not a member of repl.MdocSession.MdocApp0.Branch[Int]
//     Branch(left, right)
//     ^


Oops! This falls foul of the same invariance problem we discussed in Section 4.6.1. The compiler can find a Functor instance for Tree but not for Branch or Leaf. Let’s add some smart constructors to compensate:

object Tree {
  def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =
    Branch(left, right)

  def leaf[A](value: A): Tree[A] =
    Leaf(value)
}


Now we can use our Functor properly:

Tree.leaf(100).map(_ * 2)
// res9: Tree[Int] = Leaf(value = 200)

Tree.branch(Tree.leaf(10), Tree.leaf(20)).map(_ * 2)
// res10: Tree[Int] = Branch(left = Leaf(value = 20), right = Leaf(value = 40))


Return to the exercise



17.6.2 Solution to: Showing off with Contramap 

Here’s a working implementation. We call func to turn the B into an A and then use our original Printable to turn the A into a String. In a small show of sleight of hand we use a self alias to distinguish the outer and inner Printables:

trait Printable[A] { self =>

  def format(value: A): String

  def contramap[B](func: B => A): Printable[B] =
    new Printable[B] {
      def format(value: B): String =
        self.format(func(value))
    }
}

def format[A](value: A)(implicit p: Printable[A]): String =
  p.format(value)


Return to the exercise



17.6.3 Solution to: Showing off with Contramap Part 2

To make the instance generic across all types of Box, we base it on the Printable for the type inside the Box. We can either write out the complete definition by hand:

implicit def boxPrintable[A](
    implicit p: Printable[A]
): Printable[Box[A]] =
  new Printable[Box[A]] {
    def format(box: Box[A]): String =
      p.format(box.value)
  }


or use contramap to base the new instance on the implicit parameter:

implicit def boxPrintable[A](implicit p: Printable[A]): Printable[Box[A]] =
  p.contramap[Box[A]](_.value)


Using contramap is much simpler, and conveys the functional programming approach of building solutions by combining simple building blocks using pure functional combinators.

Return to the exercise



17.6.4 Solution to: Transformative Thinking with imap 

Here’s a working implementation:

trait Codec[A] { self =>
  def encode(value: A): String
  def decode(value: String): A

  def imap[B](dec: A => B, enc: B => A): Codec[B] = {
    new Codec[B] {
      def encode(value: B): String =
        self.encode(enc(value))

      def decode(value: String): B =
        dec(self.decode(value))
    }
  }
}


Return to the exercise



17.6.5 Solution to: Transformative Thinking with imap Part 2

We can implement this using the imap method of stringCodec:

implicit val doubleCodec: Codec[Double] =
  stringCodec.imap[Double](_.toDouble, _.toString)


Return to the exercise



17.6.6 Solution to: Transformative Thinking with imap Part 3

We need a generic Codec for Box[A] for any given A. We create this by calling imap on a Codec[A], which we bring into scope using an implicit parameter:

implicit def boxCodec[A](implicit c: Codec[A]): Codec[Box[A]] =
  c.imap[Box[A]](Box(_), _.value)


Return to the exercise




17.7 Monads


17.7.1 Solution to: Getting Func-y 

At first glance this seems tricky, but if we follow the types we’ll see there’s only one solution. We are passed a value of type F[A]. Given the tools available there’s only one thing we can do: call flatMap:

trait Monad[F[_]] {
  def pure[A](value: A): F[A]

  def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

  def map[A, B](value: F[A])(func: A => B): F[B] =
    flatMap(value)(a => ???)
}


We need a function of type A => F[B] as the second parameter. We have two function building blocks available: the func parameter of type A => B and the pure function of type A => F[A]. Combining these gives us our result:

trait Monad[F[_]] {
  def pure[A](value: A): F[A]

  def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

  def map[A, B](value: F[A])(func: A => B): F[B] =
    flatMap(value)(a => pure(func(a)))
}


Return to the exercise



17.7.2 Solution to: Monadic Secret Identities 

Let’s start by defining the method signatures:

import cats.Id

def pure[A](value: A): Id[A] =
  ???

def map[A, B](initial: Id[A])(func: A => B): Id[B] =
  ???

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =
  ???


Now let’s look at each method in turn. The pure operation creates an Id[A] from an A. But A and Id[A] are the same type! All we have to do is return the initial value:

def pure[A](value: A): Id[A] =
  value


pure(123)
// res7: Int = 123


The map method takes a parameter of type Id[A], applies a function of type A => B, and returns an Id[B]. But Id[A] is simply A and Id[B] is simply B! All we have to do is call the function—no boxing or unboxing required:

def map[A, B](initial: Id[A])(func: A => B): Id[B] =
  func(initial)


map(123)(_ * 2)
// res8: Int = 246


The final punch line is that, once we strip away the Id type constructors, flatMap and map are actually identical:

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =
  func(initial)


flatMap(123)(_ * 2)
// res9: Int = 246


This ties in with our understanding of functors and monads as sequencing type classes. Each type class allows us to sequence operations ignoring some kind of complication. In the case of Id there is no complication, making map and flatMap the same thing.

Notice that we haven’t had to write type annotations in the method bodies above. The compiler is able to interpret values of type A as Id[A] and vice versa by the context in which they are used.

The only restriction we’ve seen to this is that Scala cannot unify types and type constructors when searching for implicits. Hence our need to re-type Int as Id[Int] in the call to sumSquare at the opening of this section:

sumSquare(3 : Id[Int], 4 : Id[Int])


Return to the exercise



17.7.3 Solution to: What is Best? 

This is an open question. It’s also kind of a trick question—the answer depends on the semantics we’re looking for. Some points to ponder:


	Error recovery is important when processing large jobs. We don’t want to run a job for a day and then find it failed on the last element.


	Error reporting is equally important. We need to know what went wrong, not just that something went wrong.


	In a number of cases, we want to collect all the errors, not just the first one we encountered. A typical example is validating a web form. It’s a far better experience to report all errors to the user when they submit a form than to report them one at a time.




Return to the exercise



17.7.4 Solution to: Abstracting 

We can solve this using pure and raiseError. Note the use of type parameters to these methods, to aid type inference.

def validateAdult[F[_]](age: Int)(implicit me: MonadError[F, Throwable]): F[Int] =
  if(age >= 18) age.pure[F]
  else new IllegalArgumentException("Age must be greater than or equal to 18").raiseError[F, Int]


Return to the exercise



17.7.5 Solution to: Safer Folding using Eval 

The easiest way to fix this is to introduce a helper method called foldRightEval. This is essentially our original method with every occurrence of B replaced with Eval[B], and a call to Eval.defer to protect the recursive call:

import cats.Eval

def foldRightEval[A, B](as: List[A], acc: Eval[B])
    (fn: (A, Eval[B]) => Eval[B]): Eval[B] =
  as match {
    case head :: tail =>
      Eval.defer(fn(head, foldRightEval(tail, acc)(fn)))
    case Nil =>
      acc
  }


We can redefine foldRight simply in terms of foldRightEval and the resulting method is stack safe:

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =
  foldRightEval(as, Eval.now(acc)) { (a, b) =>
    b.map(fn(a, _))
  }.value


foldRight((1 to 100000).toList, 0L)(_ + _)
// res24: Long = 5000050000L


Return to the exercise



17.7.6 Solution to: Show Your Working 

We’ll start by defining a type alias for Writer so we can use it with pure syntax:

import cats.data.Writer
import cats.instances.vector._
import cats.syntax.applicative._ // for pure

type Logged[A] = Writer[Vector[String], A]


42.pure[Logged]
// res11: WriterT[Id, Vector[String], Int] = WriterT(run = (Vector(), 42))


We’ll import the tell syntax as well:

import cats.syntax.writer._ // for tell


Vector("Message").tell
// res12: WriterT[Id, Vector[String], Unit] = WriterT(
//   run = (Vector("Message"), ())
// )


Finally, we’ll import the Semigroup instance for Vector. We need this to map and flatMap over Logged:

import cats.instances.vector._ // for Monoid


41.pure[Logged].map(_ + 1)
// res13: WriterT[Id, Vector[String], Int] = WriterT(run = (Vector(), 42))


With these in scope, the definition of factorial becomes:

def factorial(n: Int): Logged[Int] =
  for {
    ans <- if(n == 0) {
             1.pure[Logged]
           } else {
             slowly(factorial(n - 1).map(_ * n))
           }
    _   <- Vector(s"fact $n $ans").tell
  } yield ans


When we call factorial, we now have to run the return value to extract the log and our factorial:

val (log, res) = factorial(5).run
// log: Vector[String] = Vector(
//   "fact 0 1",
//   "fact 1 1",
//   "fact 2 2",
//   "fact 3 6",
//   "fact 4 24",
//   "fact 5 120"
// )
// res: Int = 120


We can run several factorials in parallel as follows, capturing their logs independently without fear of interleaving:

Await.result(Future.sequence(Vector(
  Future(factorial(5)),
  Future(factorial(5))
)).map(_.map(_.written)), 5.seconds)
// res: scala.collection.immutable.Vector[cats.Id[Vector[String]]] = 
//   Vector(
//     Vector(fact 0 1, fact 1 1, fact 2 2, fact 3 6, fact 4 24, fact 5 120), 
//     Vector(fact 0 1, fact 1 1, fact 2 2, fact 3 6, fact 4 24, fact 5 120)
//   )



Return to the exercise



17.7.7 Solution to: Hacking on Readers 

Our type alias fixes the Db type but leaves the result type flexible:

type DbReader[A] = Reader[Db, A]


Return to the exercise



17.7.8 Solution to: Hacking on Readers Part 2

Remember: the idea is to leave injecting the configuration until last. This means setting up functions that accept the config as a parameter and check it against the concrete user info we have been given:

def findUsername(userId: Int): DbReader[Option[String]] =
  Reader(db => db.usernames.get(userId))

def checkPassword(
      username: String,
      password: String): DbReader[Boolean] =
  Reader(db => db.passwords.get(username).contains(password))


Return to the exercise



17.7.9 Solution to: Hacking on Readers Part 3

As you might expect, here we use flatMap to chain findUsername and checkPassword. We use pure to lift a Boolean to a DbReader[Boolean] when the username is not found:

import cats.syntax.applicative._ // for pure

def checkLogin(
      userId: Int,
      password: String): DbReader[Boolean] =
  for {
    username   <- findUsername(userId)
    passwordOk <- username.map { username =>
                    checkPassword(username, password)
                  }.getOrElse {
                    false.pure[DbReader]
                  }
  } yield passwordOk


Return to the exercise



17.7.10 Solution to: Post-Order Calculator 

The stack operation required is different for operators and operands. For clarity we’ll implement evalOne in terms of two helper functions, one for each case:

def evalOne(sym: String): CalcState[Int] =
  sym match {
    case "+" => operator(_ + _)
    case "-" => operator(_ - _)
    case "*" => operator(_ * _)
    case "/" => operator(_ / _)
    case num => operand(num.toInt)
  }


Let’s look at operand first. All we have to do is push a number onto the stack. We also return the operand as an intermediate result:

def operand(num: Int): CalcState[Int] =
  State[List[Int], Int] { stack =>
    (num :: stack, num)
  }


The operator function is a little more complex. We have to pop two operands off the stack (having the second operand at the top of the stack)i and push the result in their place. The code can fail if the stack doesn’t have enough operands on it, but the exercise description allows us to throw an exception in this case:

def operator(func: (Int, Int) => Int): CalcState[Int] =
  State[List[Int], Int] {
    case b :: a :: tail =>
      val ans = func(a, b)
      (ans :: tail, ans)

    case _ =>
      sys.error("Fail!")
  }


Return to the exercise



17.7.11 Solution to: Post-Order Calculator Part 2

We implement evalAll by folding over the input. We start with a pure CalcState that returns 0 if the list is empty. We flatMap at each stage, ignoring the intermediate results as we saw in the example:

import cats.syntax.applicative._ // for pure

def evalAll(input: List[String]): CalcState[Int] =
  input.foldLeft(0.pure[CalcState]) { (a, b) =>
    a.flatMap(_ => evalOne(b))
  }


Return to the exercise



17.7.12 Solution to: Post-Order Calculator Part 3

We’ve done all the hard work now. All we need to do is split the input into terms and call runA and value to unpack the result:

def evalInput(input: String): Int =
  evalAll(input.split(" ").toList).runA(Nil).value


evalInput("1 2 + 3 4 + *")
// res15: Int = 21


Return to the exercise



17.7.13 Solution to: Branching out Further with Monads 

The code for flatMap is similar to the code for map. Again, we recurse down the structure and use the results from func to build a new Tree.

The code for tailRecM is fairly complex regardless of whether we make it tail-recursive or not.

If we follow the types, the non-tail-recursive solution falls out:

import cats.Monad

implicit val treeMonad: Monad[Tree] = new Monad[Tree] {
  def pure[A](value: A): Tree[A] =
    Leaf(value)

  def flatMap[A, B](tree: Tree[A])
      (func: A => Tree[B]): Tree[B] =
    tree match {
      case Branch(l, r) =>
        Branch(flatMap(l)(func), flatMap(r)(func))
      case Leaf(value)  =>
        func(value)
    }

 def tailRecM[A, B](a: A)(func: A => Tree[Either[A, B]]): Tree[B] = {
   flatMap(func(a)) {
     case Left(value) =>
       tailRecM(value)(func)
     case Right(value) =>
       Leaf(value)
   }
 }
}


The solution above is perfectly fine for this exercise. Its only downside is that Cats cannot make guarantees about stack safety.

The tail-recursive solution is much harder to write. We adapted this solution from this Stack Overflow post by Nazarii Bardiuk. It involves an explicit depth first traversal of the tree, maintaining an open list of nodes to visit and a closed list of nodes to use to reconstruct the tree:

import cats.Monad
import scala.annotation.tailrec

implicit val treeMonad: Monad[Tree] = new Monad[Tree] {
  def pure[A](value: A): Tree[A] =
    Leaf(value)

  def flatMap[A, B](tree: Tree[A])
      (func: A => Tree[B]): Tree[B] =
    tree match {
      case Branch(l, r) =>
        Branch(flatMap(l)(func), flatMap(r)(func))
      case Leaf(value)  =>
        func(value)
    }

  def tailRecM[A, B](arg: A)
      (func: A => Tree[Either[A, B]]): Tree[B] = {
    @tailrec
    def loop(
          open: List[Tree[Either[A, B]]],
          closed: List[Option[Tree[B]]]): List[Tree[B]] =
      open match {
        case Branch(l, r) :: next =>
          loop(l :: r :: next, None :: closed)

        case Leaf(Left(value)) :: next =>
          loop(func(value) :: next, closed)

        case Leaf(Right(value)) :: next =>
          loop(next, Some(pure(value)) :: closed)

        case Nil =>
          closed.foldLeft(Nil: List[Tree[B]]) { (acc, maybeTree) =>
            maybeTree.map(_ :: acc).getOrElse {
              acc match {
                case left :: right :: tail => branch(left, right) :: tail
              }
            }
          }
      }

    loop(List(func(arg)), Nil).head
  }
}


Regardless of which version of tailRecM we define, we can use our Monad to flatMap and map on Trees:

import cats.syntax.functor._ // for map
import cats.syntax.flatMap._ // for flatMap


branch(leaf(100), leaf(200)).
  flatMap(x => branch(leaf(x - 1), leaf(x + 1)))
// res5: Tree[Int] = Branch(
//   left = Branch(left = Leaf(value = 99), right = Leaf(value = 101)),
//   right = Branch(left = Leaf(value = 199), right = Leaf(value = 201))
// )


We can also transform Trees using for comprehensions:

for {
  a <- branch(leaf(100), leaf(200))
  b <- branch(leaf(a - 10), leaf(a + 10))
  c <- branch(leaf(b - 1), leaf(b + 1))
} yield c
// res6: Tree[Int] = Branch(
//   left = Branch(
//     left = Branch(left = Leaf(value = 89), right = Leaf(value = 91)),
//     right = Branch(left = Leaf(value = 109), right = Leaf(value = 111))
//   ),
//   right = Branch(
//     left = Branch(left = Leaf(value = 189), right = Leaf(value = 191)),
//     right = Branch(left = Leaf(value = 209), right = Leaf(value = 211))
//   )
// )


The monad for Option provides fail-fast semantics. The monad for List provides concatenation semantics. What are the semantics of flatMap for a binary tree? Every node in the tree has the potential to be replaced with a whole subtree, producing a kind of “growing” or “feathering” behaviour, reminiscent of list concatenation along two axes.

Return to the exercise




17.8 Monad Transformers


17.8.1 Solution to: Monads: Transform and Roll Out 

This is a relatively simple combination. We want Future on the outside and Either on the inside, so we build from the inside out using an EitherT of Future:

import cats.data.EitherT
import scala.concurrent.Future

type Response[A] = EitherT[Future, String, A]


Return to the exercise



17.8.2 Solution to: Monads: Transform and Roll Out Part 2

import cats.data.EitherT
import scala.concurrent.Future
val powerLevels = Map(
  "Jazz"      -> 6,
  "Bumblebee" -> 8,
  "Hot Rod"   -> 10
)


import cats.instances.future._ // for Monad
import scala.concurrent.ExecutionContext.Implicits.global

type Response[A] = EitherT[Future, String, A]

def getPowerLevel(ally: String): Response[Int] = {
  powerLevels.get(ally) match {
    case Some(avg) => EitherT.right(Future(avg))
    case None      => EitherT.left(Future(s"$ally unreachable"))
  }
}


Return to the exercise



17.8.3 Solution to: Monads: Transform and Roll Out Part 3

We request the power level from each ally and use map and flatMap to combine the results:

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =
  for {
    power1 <- getPowerLevel(ally1)
    power2 <- getPowerLevel(ally2)
  } yield (power1 + power2) > 15


Return to the exercise



17.8.4 Solution to: Monads: Transform and Roll Out Part 4

We use the value method to unpack the monad stack and Await and fold to unpack the Future and Either:

import scala.concurrent.Await
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =
  for {
    power1 <- getPowerLevel(ally1)
    power2 <- getPowerLevel(ally2)
  } yield (power1 + power2) > 15

def tacticalReport(ally1: String, ally2: String): String = {
  val stack = canSpecialMove(ally1, ally2).value

  Await.result(stack, 1.second) match {
    case Left(msg) =>
      s"Comms error: $msg"
    case Right(true)  =>
      s"$ally1 and $ally2 are ready to roll out!"
    case Right(false) =>
      s"$ally1 and $ally2 need a recharge."
  }
}


Return to the exercise




17.9 Semigroupal and Applicative


17.9.1 Solution to: The Product of Lists 

This exercise is checking that you understood the definition of product in terms of flatMap and map.

import cats.syntax.functor._ // for map
import cats.syntax.flatMap._ // for flatMap

def product[F[_]: Monad, A, B](x: F[A], y: F[B]): F[(A, B)] =
  x.flatMap(a => y.map(b => (a, b)))


This code is equivalent to a for comprehension:

def product[F[_]: Monad, A, B](x: F[A], y: F[B]): F[(A, B)] =
  for {
    a <- x
    b <- y
  } yield (a, b)


The semantics of flatMap are what give rise to the behaviour for List and Either:

import cats.instances.list._ // for Semigroupal


product(List(1, 2), List(3, 4))
// res9: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3), (2, 4))


Return to the exercise



17.9.2 Solution to: Parallel List 

List does have a Parallel instance, and it zips the List insted of creating the cartesian product.

We can see by writing a little bit of code.

import cats.instances.list._


(List(1, 2), List(3, 4)).tupled
// res8: List[Tuple2[Int, Int]] = List((1, 3), (1, 4), (2, 3), (2, 4))
(List(1, 2), List(3, 4)).parTupled
// res9: List[Tuple2[Int, Int]] = List((1, 3), (2, 4))


Return to the exercise




17.10 Foldable and Traverse


17.10.1 Solution to: Reflecting on Folds 

Folding from left to right reverses the list:

List(1, 2, 3).foldLeft(List.empty[Int])((a, i) => i :: a)
// res6: List[Int] = List(3, 2, 1)


Folding right to left copies the list, leaving the order intact:

List(1, 2, 3).foldRight(List.empty[Int])((i, a) => i :: a)
// res7: List[Int] = List(1, 2, 3)


Note that we have to carefully specify the type of the accumulator to avoid a type error. We use List.empty[Int] to avoid inferring the accumulator type as Nil.type or List[Nothing]:

List(1, 2, 3).foldRight(Nil)(_ :: _)
// error:
// Found:    List[Int]
// Required: scala.collection.immutable.Nil.type
//   list.foldRight(List.empty[B]) { (item, accum) =>
//                                   ^


Return to the exercise



17.10.2 Solution to: Scaf-fold-ing Other Methods 

Here are the solutions:

def map[A, B](list: List[A])(func: A => B): List[B] =
  list.foldRight(List.empty[B]) { (item, accum) =>
    func(item) :: accum
  }


map(List(1, 2, 3))(_ * 2)
// res9: List[Int] = List(2, 4, 6)


def flatMap[A, B](list: List[A])(func: A => List[B]): List[B] =
  list.foldRight(List.empty[B]) { (item, accum) =>
    func(item) ::: accum
  }


flatMap(List(1, 2, 3))(a => List(a, a * 10, a * 100))
// res10: List[Int] = List(1, 10, 100, 2, 20, 200, 3, 30, 300)


def filter[A](list: List[A])(func: A => Boolean): List[A] =
  list.foldRight(List.empty[A]) { (item, accum) =>
    if(func(item)) item :: accum else accum
  }


filter(List(1, 2, 3))(_ % 2 == 1)
// res11: List[Int] = List(1, 3)


We’ve provided two definitions of sum, one using scala.math.Numeric (which recreates the built-in functionality accurately)…

import scala.math.Numeric

def sumWithNumeric[A](list: List[A])
      (implicit numeric: Numeric[A]): A =
  list.foldRight(numeric.zero)(numeric.plus)


sumWithNumeric(List(1, 2, 3))
// res12: Int = 6


and one using cats.Monoid (which is more appropriate to the content of this book):

import cats.Monoid

def sumWithMonoid[A](list: List[A])
      (implicit monoid: Monoid[A]): A =
  list.foldRight(monoid.empty)(monoid.combine)

import cats.instances.int._ // for Monoid


sumWithMonoid(List(1, 2, 3))
// res13: Int = 6


Return to the exercise



17.10.3 Solution to: Traversing with Vectors 

The argument is of type List[Vector[Int]], so we’re using the Applicative for Vector and the return type is going to be Vector[List[Int]].

Vector is a monad, so its semigroupal combine function is based on flatMap. We’ll end up with a Vector of Lists of all the possible combinations of List(1, 2) and List(3, 4):

listSequence(List(Vector(1, 2), Vector(3, 4)))
// res7: Vector[List[Int]] = Vector(
//   List(1, 3),
//   List(1, 4),
//   List(2, 3),
//   List(2, 4)
// )


Return to the exercise



17.10.4 Solution to: Traversing with Vectors Part 2

With three items in the input list, we end up with combinations of three Ints: one from the first item, one from the second, and one from the third:

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))
// res9: Vector[List[Int]] = Vector(
//   List(1, 3, 5),
//   List(1, 3, 6),
//   List(1, 4, 5),
//   List(1, 4, 6),
//   List(2, 3, 5),
//   List(2, 3, 6),
//   List(2, 4, 5),
//   List(2, 4, 6)
// )


Return to the exercise



17.10.5 Solution to: Traversing with Options 

The arguments to listTraverse are of types List[Int] and Int => Option[Int], so the return type is Option[List[Int]]. Again, Option is a monad, so the semigroupal combine function follows from flatMap. The semantics are therefore fail-fast error handling: if all inputs are even, we get a list of outputs. Otherwise we get None:

process(List(2, 4, 6))
// res12: Option[List[Int]] = Some(value = List(2, 4, 6))
process(List(1, 2, 3))
// res13: Option[List[Int]] = None


Return to the exercise



17.10.6 Solution to: Traversing with Validated 

The return type here is ErrorsOr[List[Int]], which expands to Validated[List[String], List[Int]]. The semantics for semigroupal combine on validated are accumulating error handling, so the result is either a list of even Ints, or a list of errors detailing which Ints failed the test:

process(List(2, 4, 6))
// res17: Validated[List[String], List[Int]] = Valid(a = List(2, 4, 6))
process(List(1, 2, 3))
// res18: Validated[List[String], List[Int]] = Invalid(
//   e = List("1 is not even", "3 is not even")
// )


Return to the exercise




17.11 Case Study: Testing Asynchronous Code


17.11.1 Solution to: Abstracting over Type Constructors 

Here’s the implementation:

import cats.Id

trait UptimeClient[F[_]] {
  def getUptime(hostname: String): F[Int]
}

trait RealUptimeClient extends UptimeClient[Future] {
  def getUptime(hostname: String): Future[Int]
}

trait TestUptimeClient extends UptimeClient[Id] {
  def getUptime(hostname: String): Id[Int]
}


Note that, because Id[A] is just a simple alias for A, we don’t need to refer to the type in TestUptimeClient as Id[Int]—we can simply write Int instead:

trait TestUptimeClient extends UptimeClient[Id] {
  def getUptime(hostname: String): Int
}


Of course, technically speaking we don’t need to redeclare getUptime in RealUptimeClient or TestUptimeClient. However, writing everything out helps illustrate the technique.

Return to the exercise



17.11.2 Solution to: Abstracting over Type Constructors Part 2

The final code is similar to our original implementation of TestUptimeClient, except we no longer need the call to Future.successful:

class TestUptimeClient(hosts: Map[String, Int])
  extends UptimeClient[Id] {
  def getUptime(hostname: String): Int =
    hosts.getOrElse(hostname, 0)
}


Return to the exercise



17.11.3 Solution to: Abstracting over Monads 

The code should look like this:

class UptimeService[F[_]](client: UptimeClient[F]) {
  def getTotalUptime(hostnames: List[String]): F[Int] =
    ???
    // hostnames.traverse(client.getUptime).map(_.sum)
}


Return to the exercise



17.11.4 Solution to: Abstracting over Monads Part 2

We can write this as an implicit parameter:

import cats.Applicative
import cats.syntax.functor._ // for map

class UptimeService[F[_]](client: UptimeClient[F])
    (implicit a: Applicative[F]) {

  def getTotalUptime(hostnames: List[String]): F[Int] =
    hostnames.traverse(client.getUptime).map(_.sum)
}


or more tersely as a context bound:

class UptimeService[F[_]: Applicative]
    (client: UptimeClient[F]) {

  def getTotalUptime(hostnames: List[String]): F[Int] =
    hostnames.traverse(client.getUptime).map(_.sum)
}


Note that we need to import cats.syntax.functor as well as cats.Applicative. This is because we’re switching from using future.map to the Cats’ generic extension method that requires an implicit Functor parameter.

Return to the exercise




17.12 Case Study: Map-Reduce


17.12.1 Solution to: Implementing foldMap 

import cats.Monoid

/** Single-threaded map-reduce function.
  * Maps `func` over `values` and reduces using a `Monoid[B]`.
  */
def foldMap[A, B: Monoid](values: Vector[A])(func: A => B): B =
  ???


Return to the exercise



17.12.2 Solution to: Implementing foldMap Part 2

We have to modify the type signature to accept a Monoid for B. With that change we can use the Monoid empty and |+| syntax as described in Section 6.5.3:

import cats.Monoid
import cats.syntax.semigroup._ // for |+|

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =
  as.map(func).foldLeft(Monoid[B].empty)(_ |+| _)


We can make a slight alteration to this code to do everything in one step:

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =
  as.foldLeft(Monoid[B].empty)(_ |+| func(_))


Return to the exercise



17.12.3 Solution to: Implementing parallelFoldMap 

Here is an annotated solution that splits out each map and fold into a separate line of code:

def parallelFoldMap[A, B: Monoid]
      (values: Vector[A])
      (func: A => B): Future[B] = {
  // Calculate the number of items to pass to each CPU:
  val numCores  = Runtime.getRuntime.availableProcessors
  val groupSize = (1.0 * values.size / numCores).ceil.toInt

  // Create one group for each CPU:
  val groups: Iterator[Vector[A]] =
    values.grouped(groupSize)

  // Create a future to foldMap each group:
  val futures: Iterator[Future[B]] =
    groups map { group =>
      Future {
        group.foldLeft(Monoid[B].empty)(_ |+| func(_))
      }
    }

  // foldMap over the groups to calculate a final result:
  Future.sequence(futures) map { iterable =>
    iterable.foldLeft(Monoid[B].empty)(_ |+| _)
  }
}

val result: Future[Int] =
  parallelFoldMap((1 to 1000000).toVector)(identity)


Await.result(result, 1.second)
// res14: Int = 1784293664


We can re-use our definition of foldMap for a more concise solution. Note that the local maps and reduces in steps 3 and 4 of Figure 15 are actually equivalent to a single call to foldMap, shortening the entire algorithm as follows:

def parallelFoldMap[A, B: Monoid]
      (values: Vector[A])
      (func: A => B): Future[B] = {
  val numCores  = Runtime.getRuntime.availableProcessors
  val groupSize = (1.0 * values.size / numCores).ceil.toInt

  val groups: Iterator[Vector[A]] =
    values.grouped(groupSize)

  val futures: Iterator[Future[B]] =
    groups.map(group => Future(foldMap(group)(func)))

  Future.sequence(futures) map { iterable =>
    iterable.foldLeft(Monoid[B].empty)(_ |+| _)
  }
}

val result: Future[Int] =
  parallelFoldMap((1 to 1000000).toVector)(identity)


Await.result(result, 1.second)
// res16: Int = 1784293664


Return to the exercise



17.12.4 Solution to: parallelFoldMap with more Cats 

We’ll restate all of the necessary imports for completeness:

import cats.Monoid

import cats.instances.int._    // for Monoid
import cats.instances.future._ // for Applicative and Monad
import cats.instances.vector._ // for Foldable and Traverse

import cats.syntax.foldable._  // for combineAll and foldMap
import cats.syntax.traverse._  // for traverse

import scala.concurrent._
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global


Here’s the implementation of parallelFoldMap delegating as much of the method body to Cats as possible:

def parallelFoldMap[A, B: Monoid]
      (values: Vector[A])
      (func: A => B): Future[B] = {
  val numCores  = Runtime.getRuntime.availableProcessors
  val groupSize = (1.0 * values.size / numCores).ceil.toInt

  values
    .grouped(groupSize)
    .toVector
    .traverse(group => Future(group.toVector.foldMap(func)))
    .map(_.combineAll)
}


val future: Future[Int] =
  parallelFoldMap((1 to 1000).toVector)(_ * 1000)


Await.result(future, 1.second)
// res18: Int = 500500000


The call to vector.grouped returns an Iterable[Iterator[Int]]. We sprinkle calls to toVector through the code to convert the data back to a form that Cats can understand. The call to traverse creates a Future[Vector[Int]] containing one Int per batch. The call to map then combines the match using the combineAll method from Foldable.

Return to the exercise




17.13 Case Study: Data Validation


17.13.1 Solution to: Basic Combinators 

We need a Semigroup for E. Then we can combine values of E using the combine method or its associated |+| syntax:

import cats.Semigroup
import cats.instances.list._   // for Semigroup
import cats.syntax.semigroup._ // for |+|

val semigroup = Semigroup[List[String]]


// Combination using methods on Semigroup
semigroup.combine(List("Badness"), List("More badness"))
// res3: List[String] = List("Badness", "More badness")

// Combination using Semigroup syntax
List("Oh noes") |+| List("Fail happened")
// res4: List[String] = List("Oh noes", "Fail happened")


Note we don’t need a full Monoid because we don’t need the identity element. We should always try to keep our constraints as small as possible!

Return to the exercise



17.13.2 Solution to: Basic Combinators Part 2

We want to report all the errors we can, so we should prefer not short-circuiting whenever possible.

In the case of the and method, the two checks we’re combining are independent of one another. We can always run both rules and combine any errors we see.

Return to the exercise



17.13.3 Solution to: Basic Combinators Part 3

There are at least two implementation strategies.

In the first we represent checks as functions. The Check data type becomes a simple wrapper for a function that provides our library of combinator methods. For the sake of disambiguation, we’ll call this implementation CheckF:

import cats.Semigroup
import cats.syntax.either._    // for asLeft and asRight
import cats.syntax.semigroup._ // for |+|


final case class CheckF[E, A](func: A => Either[E, A]) {
  def apply(a: A): Either[E, A] =
    func(a)

  def and(that: CheckF[E, A])
        (implicit s: Semigroup[E]): CheckF[E, A] =
    CheckF { a =>
      (this(a), that(a)) match {
        case (Left(e1),  Left(e2))  => (e1 |+| e2).asLeft
        case (Left(e),   Right(_))  => e.asLeft
        case (Right(_),  Left(e))   => e.asLeft
        case (Right(_), Right(_)) => a.asRight
      }
    }
}


Let’s test the behaviour we get. First we’ll setup some checks:

import cats.instances.list._ // for Semigroup

val a: CheckF[List[String], Int] =
  CheckF { v =>
    if(v > 2) v.asRight
    else List("Must be > 2").asLeft
  }

val b: CheckF[List[String], Int] =
  CheckF { v =>
    if(v < -2) v.asRight
    else List("Must be < -2").asLeft
  }

val check: CheckF[List[String], Int] =
  a and b


Now run the check with some data:

check(5)
// res5: Either[List[String], Int] = Left(value = List("Must be < -2"))
check(0)
// res6: Either[List[String], Int] = Left(
//   value = List("Must be > 2", "Must be < -2")
// )


Excellent! Everything works as expected! We’re running both checks and accumulating errors as required.

What happens if we try to create checks that fail with a type that we can’t accumulate? For example, there is no Semigroup instance for Nothing. What happens if we create instances of CheckF[Nothing, A]?

val a: CheckF[Nothing, Int] =
  CheckF(v => v.asRight)

val b: CheckF[Nothing, Int] =
  CheckF(v => v.asRight)


We can create checks just fine but when we come to combine them we get an error we might expect:

val check = a and b
// error:
// No given instance of type cats.kernel.Semigroup[Nothing] was found for parameter s of method and in class CheckF
// import cats.Semigroup
//                      ^


Now let’s see another implementation strategy. In this approach we model checks as an algebraic data type, with an explicit data type for each combinator. We’ll call this implementation Check:

sealed trait Check[E, A] {
  import Check._

  def and(that: Check[E, A]): Check[E, A] =
    And(this, that)

  def apply(a: A)(implicit s: Semigroup[E]): Either[E, A] =
    this match {
      case Pure(func) =>
        func(a)

      case And(left, right) =>
        (left(a), right(a)) match {
          case (Left(e1),  Left(e2))  => (e1 |+| e2).asLeft
          case (Left(e),   Right(_))  => e.asLeft
          case (Right(_),  Left(e))   => e.asLeft
          case (Right(_), Right(_)) => a.asRight
        }
    }
}
object Check {
  final case class And[E, A](
    left: Check[E, A],
    right: Check[E, A]) extends Check[E, A]
  
  final case class Pure[E, A](
    func: A => Either[E, A]) extends Check[E, A]
    
  def pure[E, A](f: A => Either[E, A]): Check[E, A] =
    Pure(f)
}


Let’s see an example:

val a: Check[List[String], Int] =
  Check.pure { v =>
    if(v > 2) v.asRight
    else List("Must be > 2").asLeft
  }

val b: Check[List[String], Int] =
  Check.pure { v =>
    if(v < -2) v.asRight
    else List("Must be < -2").asLeft
  }

val check: Check[List[String], Int] =
  a and b


While the ADT implementation is more verbose than the function wrapper implementation, it has the advantage of cleanly separating the structure of the computation (the ADT instance we create) from the process that gives it meaning (the apply method). From here we have a number of options:


	inspect and refactor checks after they are created;

	move the apply “interpreter” out into its own module;

	implement alternative interpreters providing other functionality (for example visualizing checks).



Because of its flexibility, we will use the ADT implementation for the rest of this case study.

Return to the exercise



17.13.4 Solution to: Basic Combinators Part 4

The implementation of apply for And is using the pattern for applicative functors. Either has an Applicative instance, but it doesn’t have the semantics we want. It fails fast instead of accumulating errors.

If we want to accumulate errors Validated is a more appropriate abstraction. As a bonus, we get more code reuse because we can lean on the applicative instance of Validated in the implementation of apply.

Here’s the complete implementation:

import cats.Semigroup
import cats.data.Validated
import cats.syntax.apply._     // for mapN


sealed trait Check[E, A] {
  import Check._

  def and(that: Check[E, A]): Check[E, A] =
    And(this, that)

  def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
    this match {
      case Pure(func) =>
        func(a)

      case And(left, right) =>
        (left(a), right(a)).mapN((_, _) => a)
    }
}
object Check {
  final case class And[E, A](
    left: Check[E, A],
    right: Check[E, A]) extends Check[E, A]
  
  final case class Pure[E, A](
    func: A => Validated[E, A]) extends Check[E, A]
}


Return to the exercise



17.13.5 Solution to: Basic Combinators Part 5

This reuses the same technique for and. We have to do a bit more work in the apply method. Note that it’s OK to short-circuit in this case because the choice of rules is implicit in the semantics of “or”.

import cats.Semigroup
import cats.data.Validated
import cats.syntax.semigroup._ // for |+|
import cats.syntax.apply._     // for mapN
import cats.data.Validated._   // for Valid and Invalid


sealed trait Check[E, A] {
  import Check._

  def and(that: Check[E, A]): Check[E, A] =
    And(this, that)

  def or(that: Check[E, A]): Check[E, A] =
    Or(this, that)

  def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
    this match {
      case Pure(func) =>
        func(a)

      case And(left, right) =>
        (left(a), right(a)).mapN((_, _) => a)

      case Or(left, right) =>
        left(a) match {
          case Valid(a)    => Valid(a)
          case Invalid(e1) =>
            right(a) match {
              case Valid(a)    => Valid(a)
              case Invalid(e2) => Invalid(e1 |+| e2)
            }
        }
    }
}
object Check {
  final case class And[E, A](
    left: Check[E, A],
    right: Check[E, A]) extends Check[E, A]
  
  final case class Or[E, A](
    left: Check[E, A],
    right: Check[E, A]) extends Check[E, A]
  
  final case class Pure[E, A](
    func: A => Validated[E, A]) extends Check[E, A]
}


Return to the exercise



17.13.6 Solution to: Checks 

If you follow the same strategy as Predicate you should be able to create code similar to the below:

import cats.Semigroup
import cats.data.Validated


sealed trait Check[E, A, B] {
  import Check._

  def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

  def map[C](f: B => C): Check[E, A, C] =
    Map[E, A, B, C](this, f)
}

object Check {
  final case class Map[E, A, B, C](
    check: Check[E, A, B],
    func: B => C) extends Check[E, A, C] {
  
    def apply(in: A)(implicit s: Semigroup[E]): Validated[E, C] =
      check(in).map(func)
  }
  
  final case class Pure[E, A](
    pred: Predicate[E, A]) extends Check[E, A, A] {
  
    def apply(in: A)(implicit s: Semigroup[E]): Validated[E, A] =
      pred(in)
  }

  def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =
    Pure(pred)
}


Return to the exercise



17.13.7 Solution to: Checks Part 2

It’s the same implementation strategy as before with one wrinkle: Validated doesn’t have a flatMap method. To implement flatMap we must momentarily switch to Either and then switch back to Validated. The withEither method on Validated does exactly this. From here we can just follow the types to implement apply.

import cats.Semigroup
import cats.data.Validated


sealed trait Check[E, A, B] {
  def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

  def flatMap[C](f: B => Check[E, A, C]) =
    FlatMap[E, A, B, C](this, f)

  // other methods...
}

final case class FlatMap[E, A, B, C](
  check: Check[E, A, B],
  func: B => Check[E, A, C]) extends Check[E, A, C] {

  def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =
    check(a).withEither(_.flatMap(b => func(b)(a).toEither))
}

// other data types...


Return to the exercise



17.13.8 Solution to: Checks Part 3

Here’s a minimal definition of andThen and its corresponding AndThen class:

sealed trait Check[E, A, B] {
  def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

  def andThen[C](that: Check[E, B, C]): Check[E, A, C] =
    AndThen[E, A, B, C](this, that)
}

final case class AndThen[E, A, B, C](
  check1: Check[E, A, B],
  check2: Check[E, B, C]) extends Check[E, A, C] {

  def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =
    check1(a).withEither(_.flatMap(b => check2(b).toEither))
}


Return to the exercise



17.13.9 Solution to: Recap 

Here’s our final implementaton, including some tidying and repackaging of the code:

import cats.Semigroup
import cats.data.Validated
import cats.data.Validated._   // for Valid and Invalid
import cats.syntax.semigroup._ // for |+|
import cats.syntax.apply._     // for mapN
import cats.syntax.validated._ // for valid and invalid


Here is our complete implementation of Predicate, including the and and or combinators and a Predicate.apply method to create a Predicate from a function:

sealed trait Predicate[E, A] {
  import Predicate._
  import Validated._

  def and(that: Predicate[E, A]): Predicate[E, A] =
    And(this, that)

  def or(that: Predicate[E, A]): Predicate[E, A] =
    Or(this, that)

  def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
    this match {
      case Pure(func) =>
        func(a)

      case And(left, right) =>
        (left(a), right(a)).mapN((_, _) => a)

      case Or(left, right) =>
        left(a) match {
          case Valid(_)   => Valid(a)
          case Invalid(e1) =>
            right(a) match {
              case Valid(_)   => Valid(a)
              case Invalid(e2) => Invalid(e1 |+| e2)
            }
        }
    }
}

object Predicate {
  final case class And[E, A](
    left: Predicate[E, A],
    right: Predicate[E, A]) extends Predicate[E, A]

  final case class Or[E, A](
    left: Predicate[E, A],
    right: Predicate[E, A]) extends Predicate[E, A]

  final case class Pure[E, A](
    func: A => Validated[E, A]) extends Predicate[E, A]

  def apply[E, A](f: A => Validated[E, A]): Predicate[E, A] =
    Pure(f)

  def lift[E, A](err: E, fn: A => Boolean): Predicate[E, A] =
    Pure(a => if(fn(a)) a.valid else err.invalid)
}


Here is a complete implementation of Check. Due to a type inference bug in Scala’s pattern matching, we’ve switched to implementing apply using inheritance:

import cats.Semigroup
import cats.data.Validated
import cats.syntax.apply._     // for mapN
import cats.syntax.validated._ // for valid and invalid


sealed trait Check[E, A, B] {
  import Check._

  def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

  def map[C](f: B => C): Check[E, A, C] =
    Map[E, A, B, C](this, f)

  def flatMap[C](f: B => Check[E, A, C]) =
    FlatMap[E, A, B, C](this, f)

  def andThen[C](next: Check[E, B, C]): Check[E, A, C] =
    AndThen[E, A, B, C](this, next)
}

object Check {
  final case class Map[E, A, B, C](
    check: Check[E, A, B],
    func: B => C) extends Check[E, A, C] {

    def apply(a: A)
        (implicit s: Semigroup[E]): Validated[E, C] =
      check(a) map func
  }

  final case class FlatMap[E, A, B, C](
    check: Check[E, A, B],
    func: B => Check[E, A, C]) extends Check[E, A, C] {

    def apply(a: A)
        (implicit s: Semigroup[E]): Validated[E, C] =
      check(a).withEither(_.flatMap(b => func(b)(a).toEither))
  }

  final case class AndThen[E, A, B, C](
    check: Check[E, A, B],
    next: Check[E, B, C]) extends Check[E, A, C] {

    def apply(a: A)
        (implicit s: Semigroup[E]): Validated[E, C] =
      check(a).withEither(_.flatMap(b => next(b).toEither))
  }

  final case class Pure[E, A, B](
    func: A => Validated[E, B]) extends Check[E, A, B] {

    def apply(a: A)
        (implicit s: Semigroup[E]): Validated[E, B] =
      func(a)
  }

  final case class PurePredicate[E, A](
    pred: Predicate[E, A]) extends Check[E, A, A] {

    def apply(a: A)
        (implicit s: Semigroup[E]): Validated[E, A] =
      pred(a)
  }

  def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =
    PurePredicate(pred)

  def apply[E, A, B]
      (func: A => Validated[E, B]): Check[E, A, B] =
    Pure(func)
}


Return to the exercise



17.13.10 Solution to: Recap Part 2

Here’s our reference solution. Implementing this required more thought than we expected. Switching between Check and Predicate at appropriate places felt a bit like guesswork till we got the rule into our heads that Predicate doesn’t transform its input. With this rule in mind things went fairly smoothly. In later sections we’ll make some changes that make the library easier to use.

import cats.syntax.apply._     // for mapN
import cats.syntax.validated._ // for valid and invalid


Here’s the implementation of checkUsername:

// A username must contain at least four characters
// and consist entirely of alphanumeric characters

val checkUsername: Check[Errors, String, String] =
  Check(longerThan(3) and alphanumeric)


And here’s the implementation of checkEmail, built up from a number of smaller components:

// An email address must contain a single `@` sign.
// Split the string at the `@`.
// The string to the left must not be empty.
// The string to the right must be
// at least three characters long and contain a dot.

val splitEmail: Check[Errors, String, (String, String)] =
  Check(_.split('@') match {
    case Array(name, domain) =>
      (name, domain).validNel[String]

    case _ =>
      "Must contain a single @ character".
        invalidNel[(String, String)]
  })

val checkLeft: Check[Errors, String, String] =
  Check(longerThan(0))

val checkRight: Check[Errors, String, String] =
  Check(longerThan(3) and contains('.'))

val joinEmail: Check[Errors, (String, String), String] =
  Check { case (l, r) =>
    (checkLeft(l), checkRight(r)).mapN(_ + "@" + _)
  }

val checkEmail: Check[Errors, String, String] =
  splitEmail andThen joinEmail


Finally, here’s a check for a User that depends on checkUsername and checkEmail:

final case class User(username: String, email: String)

def createUser(
      username: String,
      email: String): Validated[Errors, User] =
  (checkUsername(username), checkEmail(email)).mapN(User.apply)


We can check our work by creating a couple of example users:

createUser("Noel", "noel@underscore.io")
// res5: Validated[Errors, User] = Valid(
//   a = User(username = "Noel", email = "noel@underscore.io")
// )
createUser("", "dave@underscore.io@io")
// res6: Validated[Errors, User] = Invalid(
//   e = NonEmptyList(
//     head = "Must be longer than 3 characters",
//     tail = List("Must contain a single @ character")
//   )
// )


One distinct disadvantage of our example is that it doesn’t tell us where the errors came from. We can either achieve that through judicious manipulation of error messages, or we can modify our library to track error locations as well as messages. Tracking error locations is outside the scope of this case study, so we’ll leave this as an exercise to the reader.

Return to the exercise



17.13.11 Solution to: Kleislis 

Here’s an abbreviated definition of run. Like apply, the method must accept an implicit Semigroup:

import cats.Semigroup
import cats.data.Validated

sealed trait Predicate[E, A] {
  def run(implicit s: Semigroup[E]): A => Either[E, A] =
    (a: A) => this(a).toEither

  def apply(a: A): Validated[E, A] =
    ??? // etc...

  // other methods...
}


Return to the exercise



17.13.12 Solution to: Kleislis Part 2

Working around limitations of type inference can be quite frustrating when writing this code, Working out when to convert between Predicates, functions, and Validated, and Either simplifies things, but the process is still complex:

import cats.data.{Kleisli, NonEmptyList}
import cats.instances.either._   // for Semigroupal


Here is the preamble we suggested in the main text of the case study:

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =
  NonEmptyList(s, Nil)

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

def check[A, B](func: A => Result[B]): Check[A, B] =
  Kleisli(func)

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =
  Kleisli[Result, A, A](pred.run)


Our base predicate definitions are essenitally unchanged:

def longerThan(n: Int): Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must be longer than $n characters"),
    str => str.size > n)

val alphanumeric: Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must be all alphanumeric characters"),
    str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must contain the character $char"),
    str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =
  Predicate.lift(
    error(s"Must contain the character $char only once"),
    str => str.filter(c => c == char).size == 1)


Our username and email examples are slightly different in that we make use of check() and checkPred() in different situations:

val checkUsername: Check[String, String] =
  checkPred(longerThan(3) and alphanumeric)

val splitEmail: Check[String, (String, String)] =
  check(_.split('@') match {
    case Array(name, domain) =>
      Right((name, domain))

    case _ =>
      Left(error("Must contain a single @ character"))
  })

val checkLeft: Check[String, String] =
  checkPred(longerThan(0))

val checkRight: Check[String, String] =
  checkPred(longerThan(3) and contains('.'))

val joinEmail: Check[(String, String), String] =
  check {
    case (l, r) =>
      (checkLeft(l), checkRight(r)).mapN(_ + "@" + _)
  }

val checkEmail: Check[String, String] =
  splitEmail andThen joinEmail


Finally, we can see that our createUser example works as expected using Kleisli:

final case class User(username: String, email: String)

def createUser(
      username: String,
      email: String): Either[Errors, User] = (
  checkUsername.run(username),
  checkEmail.run(email)
).mapN(User.apply)


createUser("Noel", "noel@underscore.io")
// res2: Either[Errors, User] = Right(
//   value = User(username = "Noel", email = "noel@underscore.io")
// )
createUser("", "dave@underscore.io@io")
// res3: Either[Errors, User] = Left(
//   value = NonEmptyList(head = "Must be longer than 3 characters", tail = List())
// )


Return to the exercise




17.14 Case Study: CRDTs


17.14.1 Solution to: GCounter Implementation 

Hopefully the description above was clear enough that you can get to an implementation like the one below.

final case class GCounter(counters: Map[String, Int]) {
  def increment(machine: String, amount: Int) = {
    val value = amount + counters.getOrElse(machine, 0)
    GCounter(counters + (machine -> value))
  }

  def merge(that: GCounter): GCounter =
    GCounter(that.counters ++ this.counters.map {
      case (k, v) =>
        k -> (v max that.